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émanant des établissements d’enseignement et de
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A generic framework for the development of geospatial processing pipelines on
clusters

Rémi Cresson and Gabriel Hautreux∗

The amount of remote sensing data available to applications is constantly growing due to the
rise of very-high-resolution sensors and short repeat cycle satellites. Consequently, tackling com-
putational complexity in Earth Observation information extraction is rising as a major challenge.
Resorting to High Performance Computing (HPC) is becoming a common practice, since it pro-
vides environments and programming facilities able to speed-up processes. In particular, clusters
are flexible, cost-effective systems able to perform data-intensive tasks ideally fulfilling any compu-
tational requirement. However, their use typically implies a significant coding effort to build proper
implementations of specific processing pipelines. This paper presents a generic framework for the
development of RS images processing applications targeting cluster computing. It is based on com-
mon open sources libraries, and leverages the parallelization of a wide variety of image processing
pipelines in a transparent way. Performances on typical RS tasks implemented using the proposed
framework demonstrate a great potential for the effective and timely processing of large amount of
data.

I. INTRODUCTION

There is an increasing volume of remote sensing
(RS) images for earth observation in recent years.
Satellite and airborne RS data become widespread
and sensors are currently sustaining major technical
revolution. In one hand, the use of very high res-
olution RS data is booming, and both spectral and
spatial resolutions are each generation sharper [1]. In
the other hand, there is a growing need of sensors with
close temporal acquisition in Earth Sciences. With the
arrival of satellites such as Sentinel constellation (10m
spatial resolution, 5 days revisit cycle), we entered a
new era of earth observation. High orbital revisit fre-
quency allow to monitor in near real time the earth’s
surface, which strongly benefits to many sectors, e.g.
agricultural [2]. Currently, Earth Observation is pro-
ducing permanently a stream of data. Therefore, ex-
tracting information from existing RS data became a
major computational challenge [3].

For this purpose, high performance computing
(HPC) techniques provide solutions to speed-up com-
putations allowing the processing of large data vol-
umes in reasonable time [4]. Basically, it relies on
parallelization to increase computational power [5],
and involves various computing environments and pro-
gramming facilities. Several approaches of HPC have
been used with RS data, like multiprocessors, comput-
ers networks (e.g. clusters, grids, clouds), and hard-
ware such as graphics processing units (GPU). While
multiprocessors and GPUs work usually in a shared
memory context, i.e. on the same data stored in mem-
ory, clusters and clouds are distributed systems, aim-
ing to handle distinct parts of the data bulk. Clus-
ters are homogeneous systems (i.e. similar hardware
and software) composed of tightly coupled machines
(e.g. Thunderhead Beowulf cluster at NASA’s God-
dard Space Flight Center), whereas grids and clouds
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are heterogeneous and loosely coupled systems, gen-
erally on a larger scale [6]. It can also be noted that
grids and clouds can be composed of several clusters,
and most clusters exploit multiprocessors and GPUs
as co-processors. Hence, HPC techniques are handled
in a complementary pattern. Although each one may
suit to a particular application, clusters are consid-
ered by the Earth and space sciences community as a
cost-effective system able to satisfy specific computa-
tional requirements [7]. This is why in this paper, we
choose to focus on cluster based systems only. In the
following we call ”cluster” a group of machines with
the same hardware, namely ”nodes”. Nodes are con-
nected by a fast local area network, sharing a parallel
file storage system.

In this context, one crucial point is the software
implementation. Often the literature presents algo-
rithms adapted to HPC architectures for one very spe-
cific task. Therefore, coding is not generic and each
new algorithm implementation require expertise, of-
ten at considerable cost. We can distinguish common
parallel programing paradigms for various HPC archi-
tectures. OpenMP and Pthreads are commonly used
to carry out parallel computations with multiple pro-
cessors in a shared memory environment. For writing
programs on GPUs, CUDA and OpenCL frameworks
are frequently used. In cluster based systems, the
Message Passing Interface (MPI) programming model
is commonly used to manage communications between
nodes. Besides, hybrid parallel algorithms are regu-
larly employed to achieve the best performances, e.g.
MPI + CUDA on a GPU cluster. Hence, developing
RS processing pipelines on HPC architectures require
some advanced knowledge of both hardware and pro-
gramming paradigms, holding back its democratiza-
tion especially for research and academics. Currently,
existing popular libraries have programming interfaces
embedding multiprocessing in a shared memory envi-
ronment [8] and GPUs [9]. There is only a few stud-
ies presenting frameworks for RS image processing on
clusters, mainly relying on MPI [10] and hybrid ap-
proaches [11]. However, up to our knowledge, there
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is no available cluster-oriented paradigm benefiting
from multiprocessing in a shared memory environ-
ment and GPUs. In this paper, we present a generic
framework for the development of geospatial process-
ing pipelines on clusters, which is (i) open-source and
portable (cross-platform), (ii) developer friendly, with
strong abstraction of low level cluster related mecha-
nisms, (iii) based on an existing rich image processing
library, Orfeo Toolbox (OTB, [12]) and relying on the
MPI standard. Our approach benefits from multipro-
cessing in a shared memory environment as well as
GPU support, while ensuring the distribution of the
entire data across clusters. We first give in Section II
a detailed description of our cluster-oriented RS image
processing parallelization framework. Our approach is
then successfully tested with a set of popular pipelines
on some Spot 6 satellite images (Section III). We fi-
nally discuss the main advantages and limits of our
approach in Section IV.

II. METHOD

A. Overview

We consider the library for RS image processing,
OTB, built on top of an application development
framework widely used in medical image processing
(ITK, the Insight Toolkit [8]), and a cluster composed
of several nodes with a parallel file system. Our goal
is to bring a development framework to exploit the
cluster processing capabilities. The parallelization of
already implemented pipelines should be enabled with
the minimum effort, and the opportunity to build
clusters compliant pipelines must be granted to non-
expert developers (namely users) without fully under-
standing the low level MPI implementation. The ex-
isting support for multiprocessing in a shared mem-
ory environment and GPU brought by ITK and OTB
must also be preserved. In the following sections, we
provide description of the existing image processing
framework of the used libraries (Section II B). Then
we introduce the concepts of parallel process objects
in Section II C 1 and parallelized pipeline in Section
II C 2. Finally, we detail our solution to overcome the
problem of geospatial raster data output in Section
II D.

B. Description of a pipeline

This section describes the terminology and the ex-
ecution steps of a RS processing pipeline, from the
OTB perspective. A pipeline is a directed graph of
process objects, that can be:

• Sources: initiating the pipeline. Generating in-
put data objects (e.g. image file reader),

• Filters: processing the data objects,

• Mappers: terminating the pipeline. Writing
data on disk (e.g. image file writer), or inter-
facing with some other system (e.g. display).

Sources and filters can generate one or multiple data
objects (e.g. image, mesh, vector, matrix, number).
For the user, building a pipeline consists in connecting
process objects together. The execution of a pipeline
starts by triggering process objects, usually mappers.
More details about these objects and architecture are
provided in [13].

The architecture of the libraries hides the com-
plexity of internal mechanisms for pipeline execution,
which involve several important steps. First of all,
process objects that need to be triggered are deter-
mined, to avoid redundant execution.

Then, the execution of the pipeline is started by a
mapper trigger. When a filter or a mapper is trig-
gered, a signal is sent upstream to request informa-
tion about mandatory input data (i.e. information
about output data of upstream process object(s)). In
this way, it is propagated back through the pipeline,
from mappers to sources via filters. Once this request
reach sources, information are generated from meta-
datas. This information can be image size and pixel
spacing, that are propagated downstream to mapper.
It may be noted that filters can potentially modify
these information, according to the process they im-
plement (e.g. resampling might change output image
size). Finally, they reach the mapper, initiating the
data processing.

Information regarding the size of the image that has
to be produced, is then used by the mapper to choose
a splitting strategy. Typically, the splitting scheme
is based on the system memory specification. Other
strategies can be chosen, e.g. striped or tiled regions
with fixed dimensions. Once the splitting strategy is
determined, the mapper proceed, typically write on
disk. The mapper process the image sequentially, re-
gion by region, requesting its input filter. The data
request and generation is handled through the pipeline
in the same way as for the information: once the re-
quest reaches the sources, initiating the pipeline, the
requested region is produced, then processed through
filters, to finally end in the mapper. The pipeline ex-
ecution continues with the next image region.

C. Toward parallel process objects

The idea is to go through a cluster-oriented parallel
approach, while preserving the existing development
framework of the libraries. This includes the cod-
ing of process object (sources, filters, mappers), and
pipelines creation on a higher abstraction level. In
the following, we detail two concepts. We first intro-
duce parallel process objects, which are basically pro-
cess objects implementing a MPI based abstraction
layer. Second, we present the parallelized pipeline,
which designates the set of pipelines running across
the cluster, each one being a different MPI process.
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1. Parallel process objects

Regarding the parallel approach, two kind of pro-
cess objects generating images must be distinguished.
The first ones can produce output images in a region
independent fashion, meaning that identical pixels are
generated whatever the output requested images re-
gion. Hence, an entire output image can be gathered
from multiple generation of different regions, mak-
ing these process objects straightforwardly suitable
for parallel approach. The second kind of process ob-
jects generates output images that are dependent of
the requested region and, thus, require specific imple-
mentation. However, the ITK and OTB libraries pro-
pose a convenient development framework to greatly
reduce the developer task in implementing such al-
gorithms. This is particularly useful to design and
implement filters which, for instance, process data us-
ing multi-process on shared memory (namely Multi-
threaded filters) and filters that persist data through
multiple update (namely Persistent filters). The ad-
vantage of Multithreaded filters is that the developer
does not need to be an expert in low level threads
management, neither knowing the end user’s hard-
ware specifications. Typically, he just has to im-
plement some specific methods. These methods are
generally data generation on thread region (Thread-
edGenerateData), and shared resources handling be-
fore and/or after the multi-threaded part (e.g. Be-
fore/AfterThreadedGenerateData). Similarly, Persis-
tent filters implement methods to handle variables
needing to be updated during the process, e.g. pix-
els statistics (Synthesis, Reset). In their parallelized
version, such filters must induce communications be-
tween MPI processes to aggregate variables over the
cluster. This is achieved using the MPI with many-to-
one, one-to-many or many-to-many communication
patterns in the previously mentioned methods.

2. Parallelized pipeline

As described in the previous part, libraries offer
an abstraction layer for the low level multiprocessing
paradigm. In addition, a wide range of existing filters
use GPU. To take benefit from these advantageous
supports, working only in a shared memory context,
we focus on the MPI processes grain level to parallelize
pipelines: we distribute one pipeline per MPI process,
ensuring the shared memory context, then pipelines
are executed simultaneously to work in a collabora-
tive fashion. A parallelized pipeline can be composed
of parallelized or native process objects, depending if
the implemented algorithm produces the same unique
result whatever the requested region (as explained in
Section II C 1). Given the typology of our parallelized
pipeline, it must be terminated with a parallel mapper
that ensures the load balancing of the cluster. This
is achieved by computing a splitting scheme as de-
scribed in Section II B, and determining the way of

Table 1. Characteristics of the dataset

Id Product type
Image size

(col × row × band)

Values

encoding

File

size

XS Multispectral 10699 × 11899 × 4 16 bits 1.0 Gb

PAN Panchromatic 42599 × 47299 × 1 16 bits 4.0 Gb

distributing data across the cluster.

D. Raster writing on parallel file systems

Most of RS processing applications produce images
in raster format. Unfortunately, this kind of data have
large size, leading to an I/O (Input/Output) bottle-
neck [14]. For this purpose, we develop a mapper able
to write GeoTiff file on parallel file systems. Thanks
to our implementation using MPI-IO (MPI subrou-
tines for file access [15]), multiple MPI processes can
write their piece of data simultaneously in the same
unique file. We chose to write files in the GeoTiff for-
mat, in a row-wise, interleaved pixel fashion, which is
faster than tile-wise [16]. Our writer implements vari-
ous strategies for cluster-oriented splitting scheme de-
scribed in Section II B. Either size or number of splits
can be manually set, or automatically computed us-
ing the system specifications (memory and number of
MPI processes). Our writer has a static load balanc-
ing, meaning that each process has a fixed processing
schedule.

III. EXPERIMENTS

The method presented in Section II is implemented
in C++ using OTB, ITK and MPI. We parallelized
large number of already implemented pipelines in
OTB [17]. In this section, we first analyze perfor-
mances in reading and writing images (Section III A),
then we present the results related to the speedup of a
set of pipelines frequently used in RS image processing
(Section III B). To conduct this series of experiments,
we used a dataset of very-high-resolution Spot 6 im-
ages acquired within the GEOSUD project[18] pre-
sented in Table 1. All experiments are conducted on
a cluster composed of 16 DELL R630 Intel Xeon E5-
2690 nodes, each one made of 2 sockets of 12 cpus at
2,6Ghz and 64 Gb RAM. Machines are linked with a
very fast network (Infiniband 40 Gb/s). All files were
stored on a RAID disk array shared to the cluster with
a General Parallel File System. We binded MPI pro-
cess with socket rather than node, to populate each
socket exclusively by threads from one unique MPI
process. This ensures optimal caching, enabling effi-
ciency of the ITK and OTB multi processing frame-
work which rely on shared memory. Therefore, each
node hosts two MPI processes.
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Figure 1. Time consumed by reading (white bars) and writing
(black bars) the Spot 6 GeoTiff image stored in the cluster
file system, with error bars. An inset presents the speedup of
reading (white boxes) and writing (black boxes).

A. I/O performances

We used a simple parallel pipeline, composed of a
source and our parallel writer, for measuring I/O re-
lated durations.

Figure 1 shows measures dedicated to reading and
writing operations from the XS GeoTiff image file.

Time spent in reading decreases linearly with the
number of MPI processes. This operation is quite scal-
able, with a speedup close to the number of processes.
Yet, the speedup for writing is not linear and reaches
a maximum of 6.1 for 32 processes. This poor scala-
bility is related to the striping for writing data, which
needs to be fine tuned to fit better the file system
use. Besides, writing speedup is expected to be lower
than reading because more processes synchronization
is required.

B. Parallelized pipelines

We derived the following OTB pipelines Pi in their
parallelized flavor, replacing each original image file
writer by our parallel one:

(P1) Orthorectification:

(P2) Textures Extraction, using Haralick indicators:

(P3) Pansharpening, from PAN and XS images:

(P4) Image classification, using a random forest based rule:

(P5) Meanshift filtering:

Table 2. Run times and speedup of pipelines for N MPI
processes

N 1 2 4 8

P1 1911s 970s (×2.0) 481s (×4.0) 241s (×7.9)

±17s ±9.3s (0.02) ±4.0s (0.03) ±1.6s (0.05)

P2 498s 260s (×1.9) 125s (×4.0) 64s (×7.8)

±13s ±8.6s (0.06) ±0.48s (0.02) ±2.0s (0.24)

P3 2613s 1339s (×2.0) 674s (×3.9) 347s (×7.5)

±18s ±13s (0.02) ±2.3s (0.01) ±3.0s (0.06)

P4 495s 471s (×1.1) 127s (×3.9) 63s (×7.9)

±2.2s ±1.7s (0.00) ±0.36s (0.01) ±0.16s (0.02)

P5 1972s 851s (×2.4) 522s (×3.9) 284s (×7.1)

±137s ±113s (0.26) ±85s (0.61) ±41s (0.98)

P6 1013s 526s (×1.9) 262s (×3.9) 127s (×8.0)

±2.5s ±4.6s (0.02) ±1.4s (0.02) ±0.21s (0.01)

P7 2192s 1106s (×2.0) 561s (×3.9) 285s (×7.7)

±16s ±11s (0.02) ±1.2s (0.01) ±0.82s (0.02)

IO 17s 11s (×1.6) 5.5s (×3.2) 3.0s (×5.7)

±0.32s ±0.16s (0.02) ±0.07s (0.04) ±0.08s (0.15)

N 12 16 32

P1 163s (×12) 125s (×15) 63s (×31)

±1.2s (0.08) ±0.36s (0.04) ±0.04s (0.02)

P2 42s (×12) 31s (×16) 15s (×32)

±1.00s (0.27) ±0.81s (0.41) ±0.42s (0.85)

P3 241s (×11) 188s (×14) 115s (×23)

±2.0s (0.09) ±0.56s (0.04) ±5.2s (0.96)

P4 44s (×11) 34s (×15) 17s (×29)

±0.44s (0.12) ±0.31s (0.13) ±0.12s (0.21)

P5 186s (×11) 152s (×13) 69s (×29)

±19s (1.1) ±15s (1.4) ±3.6s (1.5)

P6 94s (×11) 64s (×16) 33s (×31)

±0.99s (0.11) ±0.15s (0.04) ±0.08s (0.07)

P7 196s (×11) 151s (×14) 84s (×26)

±0.70s (0.04) ±0.73s (0.07) ±0.57s (0.18)

IO 2.3s (×7.6) 1.9s (×9.0) 1.5s (×12)

±0.06s (0.21) ±0.06s (0.29) ±0.07s (0.51)

(P6) Conversion from Jpeg2000 format to GeoTiff:

(P7) Resampling XS image over PAN image:

(I/O) Reading and writing the image in another file:

To analyze the computational performance of our ap-
proach, we decompose run time of each Pi for sev-
eral number of MPI processes, and calculate the cor-
responding speedup.

Table 2 presents measured run times in seconds and
Figure 2 shows the speedup.

The speedup is more or less equal to the number of
MPI processes, characterizing a good scalability, ex-
cept for the single I/O operation. Besides, Section
III A shows that writing operation limits the scalabil-
ity, explaining why the speedup is slightly below the
number of MPI processes for each Pi.
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Figure 2. Measured speedup of Pi for increasing number of
MPI processes.

IV. DISCUSSION

A. A novel approach to create cluster oriented
pipelines

Our first goal was to provide a framework to develop
cluster oriented applications for RS images processing.
The solution we propose takes roots in the extensively
used open-source libraries ITK and OTB. The origi-
nal development framework was enriched to embed
the MPI, for inter-nodes communication and paral-
lel file access. We introduced parallel process objects,
and parallel pipelines, enabling the execution of one
pipeline on multiple nodes of a cluster.

B. Scalability

Our research also sought to result in operational
and scalable processes. The approach was success-
fully applied to a set of common RS pipelines, on
Spot 6 imagery at very-high-resolution. Run times
were measured for various number of MPI processes,
and demonstrate a good scalability of tested parallel
pipelines. In the near future, it will be used to extract
a wide range of information for earth observation, on
a daily basis from satellite imagery acquired through
the GEOSUD platform and the THEIA Land Data
Center[19].

C. Limits and further research

It should be noted that the presented method also
has limits, which may restrict its use in some cases.
To start with, we used a small cluster which has only a
dozen of nodes to lead our tests. Hence, we could not

fully investigate the limits of our approach in term of
scalability on many nodes. Besides, a key drawback of
the use of clusters is the I/O bottleneck, which is com-
mon in HPC. In our experiments, we show that the
scalability of one pipeline is closely dependent on the
balance between processing time and file access time.
While pipelines are generally scalable, I/O operations
might require fine tuning according to the file system
specifications. Nevertheless, a cluster should not be
used to speed up a process spending a lot more time
in writing data than processing. Another possible im-
provement would be to use a dynamic load balancing,
which might tackle the problem of algorithms running
in a non-constant time on different image regions. Fi-
nally, our approach is only suitable for filters compos-
ing a pipeline that could be parallelized using com-
munications between nodes. Depending on the imple-
mented algorithm, some filters might not fulfill this
condition, or could lead to a poor speedup. Regard-
ing this last issue, we recommend to split this kind of
pipeline in multiple homogeneous parts with uniform
scalability and to run them sequentially. This puts
forward the question related to the orchestration of
multiple connected pipelines execution, which should
be addressed in the future.

V. CONCLUSION

This work was carried out with a view toward pro-
cessing very-high-resolution and high-acquisition-rate
satellite images on clusters. We propose a cluster ori-
ented framework for the development of remote sens-
ing images processing applications, using the Orfeo
Toolbox and the Message Passing Interface. We paral-
lelized successfully a number of existing pipelines, and
demonstrated the good scalability of the processes.
Parallel pipelines will be executed every day to extract
Earth observation data from very-high-resolution and
multi-temporal images acquired through the GEO-
SUD platform and the THEIA Land Data Center,
at CNES (the french Space Agency) and Irstea (the
french Research Institute of Science and Technology
for Environment and Agriculture). Further research
could focus on improving the load balancing strate-
gies, as well as the orchestration of multiple connected
pipelines execution. The source code corresponding
to the pipelines presented in this paper is available
for download at [20], and the exposed framework will
be integrated in the forthcoming releases of the Orfeo
Toolbox[21].
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