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Abstract
Over the last decade, distance-based methods have been introduced and then improved in the field of spatial
economics to gauge the geographic concentration of activities. There is a growing literature on this theme
including new tools, discussions on their specific properties and various applications. However, there is currently
no typology of distance-based methods. This paper fills that gap. The proposed classification helps understand
all the properties of distance-based methods and proves that they are variations on the same framework.
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Introduction
In the article on “spatial economics” in the New Palgrave Dictionary of Economics, Gilles Duranton wrote “On the
empirical front, a first key challenge is to develop new tools for spatial analysis. With very detailed data becoming
available, new tools are needed. Ideally, all the data work should be done in continuous space to avoid border
biases and arbitrary spatial units.” (Duranton, 2008). In recent years, economists have made every effort in that
direction. Measurement of the spatial concentration of activities is certainly one of the most striking examples
and has been considerably renewed in the last decade with the development of distance-based methods (Combes
et al., 2008). To present the motivation for the use of distance-based methods briefly, let us say that economists
traditionally employ disproportionality methods (terminology used by Bickenbach and Bode, 2008) defined on a
discrete definition of space. In the latter, the territory being analyzed is divided in several exclusive zones (e.g.
a country is divided in turn into regions) and the spatial concentration of activities is evaluated at a given level
of observation with the Gini (1912), the Ellison and Glaeser (1997) or the entropy indices of overall localization
(Cutrini, 2009), for example. However, the issues arising from discrete spaces are now well known and linked to the
Modifiable Areal Unit Problem – MAUP (Arbia, 1989; Openshaw and Taylor, 1979): the position of the zoning
boundaries and level of observation have an impact (Briant et al., 2010). A first tentative to limit the MAUP’s effects
is to combine discrete-based measures with autocorrelation measures. The motivation is the following: results of
spatial concentration provided by discrete-based measures are not affected by the permutation of zones (see Arbia,
2001b, for an illustrative example). As autocorrelation measures evaluate the degree of similarity between zones,
they can bring complementary results to the spatial concentration estimates (Guillain and Le Gallo, 2010). Some
authors also try to correct in some extent aspatial concentration results by integrating the degree of autocorrelation to
the spatial concentration indices (Guimarães et al., 2011). This approach can be of interest if data is only available at
the aggregated level of the zone. A second way of research has been undoubtedly more explored since a decade.
This second approach does not limit the effects of the MAUP but solves the MAUP. The basic idea is to remove any
zoning of space. The development of spatial concentration indices is compulsory to take more effective account
of geography (Marcon and Puech, 2003). This encourages the development of distance-based methods which are
continuous functions of space. Distance-based measures provide information about concentration at all scales
simultaneously and do not rely on zoning. In that case, individual data (and not aggregated data) is used. The seminal
work by Ripley (1976, 1977) introduced the best known of the existing distance-based methods: the K function.
The latter was taken up quickly by field scientists in ecology (see handbooks by Diggle, 1983; Cressie, 1993, for
instance) but its use remained incidental in economics (Arbia, 1989; Arbia and Espa, 1996; Barff, 1987; Feser and
Sweeney, 2000; Sweeney and Feser, 1998) until the works of Marcon and Puech (2003, 2010) and Duranton and
Overman (2002)1 who introduced an alternative approach.

In this paper, we propose a typology of distance-based methods. There are two main reasons behind our work.
First, a great variety of distance-based methods are used by economists today. The varied toolbox provided by these
measures may bring some confusion for economists interested in testing a hypothesis rather than a methodology,
so a state of the art may be helpful. Second, in this article we provide a unified theoretical framework by showing
that all distance-based methods rely on counting the number of neighbors of points, normalizing this number by
space or another number of neighbors, averaging the results in the appropriate way and finally normalizing the result.
Monte-Carlo simulations of the null hypothesis allow the data to be tested against it and can also solve remaining
issues. As a result, if objects (for example plants) attract each other, more neighbors (other plants) will be found
around them on average than if they were distributed randomly and independently. In conclusion, these methods are
variations on the same framework to gauge spatial concentration. This being the case, this typology can be useful for
readers to choose the appropriate distance-based tool to answer their question.

The paper is organized as follows. In the first part, we give a quick presentation of the common framework and
basic vocabulary. Then, all the available distance-based measures are introduced. The third part builds a typology of
these methods, showing that they follow the same pattern but vary because they assume different theoretical choices.
The last part is a discussion of each tool’s properties and their relevance to address economic questions.

1Published as Duranton and Overman (2005).
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1. Basic principles
Before presenting distance-based measures in detail, we shall propose a general overview of the framework of these
functions.

When studying the location of activities, economists document the spatial distribution of one kind of entity
(points2), for example shops with a given activity. Their aim is to detect phenomena of attraction (also called
aggregation, agglomeration, localization), repulsion (dispersion) or independence between those entities in a
territory. Industries that are spatially concentrated or dispersed are sometimes referred as diverging industries (Barlet
et al., 2013). Another field of research analyzes the relations between entities belonging not to one, but to two
different groups (co-localization phenomenon). All the tools considered in this review identify the spatial structure
of the point distribution. Their particularity resides in their analysis of space: they treat space as continuous and not
as a collection of predefined zones. They are based on the distance separating pairs of entities, which is why they are
called distance-based methods or distance-based measures. Results are presented as a plot of a function of distance,
whose values are meaningful or not, and always compared to an envelope representing the confidence interval of
a null hypothesis to be tested. Intratype (or univariate) functions consider a single type of points to address their
localization. Intertype (or bivariate) functions are used to characterize co-localization. They are built in the same
way. The curve shows the potential attraction or repulsion of two types of points (between two types of shops for
example). Moreover, most functions allow weighting points. For example, if one studies the spatial distribution of
shops, (s)he can consider shops regardless of its size or (s)he can keep the number of employees of shops in her/his
analysis. Loosely speaking, distance-based measures compare the number of neighbors of points of interest to a
benchmark corresponding to the null hypothesis of no spatial structure. This can be done in many ways leading to
critical choices related to the question to tackle. After Brülhart and Traeger (2005) and Marcon and Puech (2010),
we define a typology of the methods:

• The null hypothesis of no spatial structure may be that the points of interest are distributed like the others:
more points will be found in dense areas. The alternative null hypothesis is that their density is a function
of space, the same everywhere if space is homogeneous or variable if space is inhomogeneous. The null
hypothesis generates a benchmark included in the measure. The choice of the benchmark defines relative
vs topographic functions. Some functions have no benchmark, so they are called absolute functions: their
value is of little interest but they can be compared to the confidence interval of their null hypothesis to detect
significant, but not directly quantifiable, patterns.

• The number of neighbors may be considered at a given distance, or up to it. This choice defines density vs
cumulative functions.

To give a brief survey, let us consider the map given of figure 1a. Two types of points are distributed on the
squared territory: the “cases” and the “controls”. The cases will be the points of interest. Figure 1b presents the
results of a distance-based measure, the m function, applied to the hypothetical sample of points of figure 1a. The
m function (y-axis) is plotted against distance (x-axis). The value m(r) at distance r is the ratio of the number
of case-neighbors r apart from each case to the number of all neighbors. A confidence interval is calculated for
the following null hypothesis: the cases have the same spatial distribution as the whole point pattern. The center
of the confidence interval (denoted CI center on figure 1b) is the expected value of the function according to the
null hypothesis. Values of the m function above the confidence interval for a range of distances indicate spatial
concentration of cases relatively to controls at these distances. Values of the m function under the confidence interval
detect repulsion of cases at these distances. The m function is estimated for all distances: a complete description of
interactions between points can be identified and comparisons of the level of spatial concentration is possible. For
example, is the spatial degree of concentration of cases in the clusters more important than the one between clusters?
The answer is provided by comparing the m values reached at the first and second concentration peaks on figure 1b .
We conclude immediately that the level of the relative spatial concentration of cases inside clusters is the highest.

2In the entire article, the term “points” refers to the studied entities (shops, plants etc.) of the sample.
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Finally note that the m function plotted on figure 1b is a relative, density function. It is univariate and, for the sake
of simplicity in that example, it has been applied to unweighted points. This short, informal presentation will be
detailed in the remainder of the paper.

Controls

Cases

(a) Hypothetical sample with an aggregate distribution of cases
and a complete spatial randomness for controls.

0.0 0.1 0.2 0.3 0.4

0.
0

0.
5

1.
0

1.
5

2.
0

Distance

m
 v

al
ue

s

m
α = 1%, global CI
CI center

(b) m function results

Figure 1. m function applied to a hypothetical distribution of points (cases are the points of interest)

To go farther in more technical terms, let us say that distance-based methods investigate the spatial structure
of point patterns. Their mathematical framework is that of point processes. It is clearly outside the scope of this
paper to explore the point process theory (see the first chapter of Møller and Waagepetersen, 2004, for a rigorous
introduction), but basic knowledge is required for a good understanding of what follows. Point processes are similar
to random variables (the best known are described by their distribution, with parameters) however their output is
not a number but a point set in space (often called a point pattern). Practical interest is limited to two-dimensional
finite spaces, that is to say points on a map. The observed point set is a realization of an underlying point process for
which the law is unknown, so its characterization must be non-parametric: some statistics will be used for tests and
even to quantify some properties, but identifying the point process will generally remain impossible. These statistics
will be defined according to relevant properties of the point process. Their value will be estimated from the data.

The first property of interest is intensity, the number of points per unit of space observed in a small area. Intensity
is denoted λ (x), where x is a point of the sample. If intensity is the same throughout the space, it is denoted λ

and the point process is said to be stationary. The probability of finding a point around x is λ (x)dx. Intensity can
be estimated by density λ̂ (x), the number of observed points per unit of space. In simple cases, points are just
counted. If density changes over the space, kernel methods (Diggle, 1985) must be used. They rely on counting
points around x, up to a chosen distance called bandwidth, while giving a decreasing weight to the further points.
Several types of smoothing exist (Silverman, 1986) but Gaussian kernel smoothing is generally employed in spatial
economics (see Duranton and Overman, 2005, among others).

2. Distance-based methods: a brief presentation

2.1 The g function
The second-order property of a point pattern characterizes the relation between points: attraction, repulsion or
independence. It is defined as the ratio between the joint probability of finding two points in two places x and
y, denoted λ (x,y)dxdy and the product of the probabilities of finding each of them. For practical purposes, this
property is assumed to depend only on the distance between the points (as it does not change with direction, the
point process is said to be isotropic). A stationary and isotropic process is called homogeneous. The second-order
property is denoted g(r) = λ (x,y)/[λ (x)λ (y)] where r is the distance between two points x and y. If points are
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distributed independently, g(r) = 1. This value corresponds to the benchmark where no interaction between points
is detected. If g(r)> 1, the probability of finding two points r apart is greater than if they were independent and
inversely for g(r)< 1. The first case corresponds to attraction, the second to dispersion.

The following idea, "writing the conditional probability of finding a point around y when a point is actually at x",
is at the origin of all the measures presented here. It results in the following method:

• Some points are chosen as reference points, for example establishments of one given manufacturing industry.

• Neighbors of reference points are counted at distance r. Neighbors may be of a different type to the reference
points or the same. In the former case, intertype (or bivariate) measures are defined, and intratype (univariate)
in the latter.

• The ratio of the average density of neighbors at distance r from reference points to the density of this type of
points anywhere is the estimator of g, noted ĝ(r). It is a location quotient (Florence, 1972).

Estimating g(r) from the data requires a technique to count neighbors at a given distance: kernel functions are
used again, but in one dimension this time. A kernel function gives a weight to neighbors at distances around r. The
closer the distance to r, the greater the weight, and the kernel function sums to 1 for all distances. Duranton and
Overman (2005, Eq.1) used a Gaussian kernel following Silverman (1986). Its estimator is k(||xi− x j||,r) where xi

and x j are the exact locations of points i and j.3

The maximum value of k(||xi− x j||,r) is reached at the exact distance r between points i and j and decreases
according to a Gaussian distribution of standard deviation h if the distance between points deviates from r. We can
define:

k
(∥∥xi− x j

∥∥ ,r)= 1
h
√

2π
exp

(
−
(∥∥xi− x j

∥∥− r
)2

2h2

)
(1)

g(r) is estimated by:4

ĝ(r) =
1

2πrλ̂ 2
∑

i
∑
j 6=i

k
(∥∥xi− x j

∥∥ ,r)c(i, j) (2)

where c(i, j) is an edge-effect correction depending on both points.5 When a point is close to the boundary of
the area under study, some of its neighbors are not observed because no data is available outside the area. Since the
number of neighbors is underestimated for points located near the border of the domain, a statistical bias appears if
no edge-effect correction is applied. For example, Marcon and Puech (2003), working on French data, showed that a
severe bias existed in the distribution of manufacturing plants. A variety of edge-effect corrections are conceivable
and have been proposed for relatively simple shapes (see Goreaud and Pélissier, 1999). However, these corrections
are intractable for actual geographical units, such as countries or regions (Law et al., 2009). This has compelled
authors to work on simple shapes to analyze the geographic distribution of economic activities (see Rowlingson
and Diggle, 1993; Feser and Sweeney, 2000, among others). Ohser (1983) developed complex corrections for any
polygonal window. They are implemented in the spatstat package for R (Baddeley and Turner, 2005; R Core Team,
2016), including the possibility to approximate any window by a raster image, as introduced by Wiegand et al.
(1999).

g is a topographic (restricted to homogeneous space), density function. It cannot be weighted.

3In the remainder, xi will designate reference points, x j their neighbors.
4To avoid any confusion in the paper, estimators will systematically be written with hats.
5Note that the unbiased estimator of λ 2 is n(n−1)/A2 (Stoyan and Stoyan, 2000) where n is the number of points and A the surface of

the study area.



A Typology of Distance-Based Measures of Spatial Concentration — 6/25

2.2 The K function
Ripley (1976, 1977) summed g on a range of distances from 0 to r to define the K function: K(r) =

∫ r
0 g(ρ)2πρdρ .

If the point process is homogeneous and independent (i.e. it is a homogeneous Poisson process) the spatial
pattern is called complete spatial randomness (CSR). In concrete terms, the CSR hypothesis means that all the points
of the distribution have the same probability of being located anywhere on the territory: the density is constant
everywhere in the domain. A complete spatial random distribution thus corresponds to a random distribution of
independent points (no attraction or repulsion between points of the distribution under study). In the case of CSR,
Ripley proved that the K function reaches its benchmark: K(r) = πr2. If K(r) is greater than πr2, then more points
are found within a radius of r from each point. The point process is said to be attractive and spatial concentration is
detected. Values of K(r) below πr2 indicate that points repulse each other up to distance r (dispersion).

As K(r) is not easy to plot and πr2 is not an easy-to-compare reference, Besag (1977) proposed to transform it into
L(r) =

√
K(r)/π so that its benchmark value is r, i.e. a straight line. It has often been plotted as L(r)− r in the

literature (Pélissier, 1998, for example) making its benchmark value 0. The notation has gradually shifted and
has become L(r) =

√
K(r)/π − r (Goreaud and Pélissier, 1999, for example). Some authors define it as H(r)

(Kiskowski et al., 2009). L(r) can be interpreted as a distance (Marcon and Puech, 2003): L(r) = l means that as
many neighbors are found around reference points up to distance r as would be expected at distance r+ l if neighbor
points are distributed independently of reference points. We believe that K(r)/πr2 is a better normalization because
it becomes a location quotient: the density of neighbors around reference points divided by the density of neighbors
anywhere. Note that the normalized benchmark value is 1.

Estimation of K is done by counting neighbors up to r and is defined as:

K̂ (r) =
1

Aλ̂ 2
∑

i
∑
j 6=i

1
(∥∥xi− x j

∥∥≤ r
)

c(i, j) (3)

1
(∥∥xi− x j

∥∥≤ r
)

is the indicator function equal to 1 if the distance between xi and x j is less than r, 0 else. A is
the surface area under study. Like ĝ, K̂ suffers edge effects.

K is the cumulative function of g: it provides information up to a given distance while g provides information at
a distance. By analogy to probability density, the latter type of functions are called density functions below, although
few of them are actually normalized so that they sum to 1.

With K intertype functions, neighbors of a particular type (Lotwick and Silverman, 1982) are counted around
points of another type. The null hypothesis may be that points are labeled randomly or that point locations are
independent. It must be chosen with care to avoid erroneous results (Arbia et al., 2008; Goreaud and Pélissier, 2003):

• random labeling is appropriate when locations are given, types are chosen. More precisely, in this case we
assume that locations of points are given and that type-labeling is independent of the position of points. The
hypothesis of random labeling is accurate for the location of shops in a city.

• population independence is the right hypothesis when points can be set anywhere, but not independently of
other points of the same type. A good example of this hypothesis is trickier to find. One possible example
could be interactions between two types of sellers on a beach (ice creams and sun hats, for instance) where
each of them has its own spatial structure.

Empirical applications of Ripley’s K and Besag’s L functions to assess the geographical concentration of
economic activities are limited. Some authors aim to detect the location patterns of subsectors of manufacturing
industries (Marcon and Puech, 2003) or services (Ó hUallacháin and Leslie, 2007). Others depict specific location
patterns of industrial production by focusing on one characteristic: plants size (Arbia, 1989) or the technology used
(Barff, 1987), for example. However, these functions have two main limitations in the field of spatial economics
preventing them from becoming wide used. The first one is related to the CSR hypothesis. The constant density
benchmark is very strong for evaluating of the spatial distribution of activities and considerably limits the usefulness
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of the K and L functions in the field of spatial economics. To give some intuitive examples for the location of plants
(we will come back to that point in the discussion section), this implies that there are no lakes or other locations
where no buildings are permitted etc. The second important limitation is that the number of employees in the plants
can not be taken into account: points can not be weighted. From an economic point of view it is hardly convincing if
we aim to explain the agglomeration forces at work. This second limitation can be solved, however, by introducing a
new function presented in the next subsection.

K is a topographic (restricted to homogeneous space), cumulative function. It cannot be weighted.

2.3 The Kmm function
The Kmm function was introduced by Penttinen et al. (Penttinen, 2006; Penttinen et al., 1992). It generalizes Ripley’s
K function by associating quantitative marks w(xi) to points that can be used as weights. By considering the spatial
distribution of firms, a classical weight for the entities is the number of employees. However, other weights are
possible, such as value-added per establishment.

The Kmm function can be understood as a K function computed on a data set where every point is associated with
a mark (its weight in our case). The mark of the point i is denoted w(xi) and that of point j is w(x j). Its estimator is:

(4)
K̂mm (r) =

1

Aλ̂ 2w2
∑

i
∑
j 6=i

1
(∥∥xi − x j

∥∥ ≤ r
)

w(xi)w(x j)c(i, j)

=
A

n(n− 1)w2 ∑
i

∑
j 6=i

1
(∥∥xi − x j

∥∥ ≤ r
)

w(xi)w(x j)c(i, j)

w2 is the average squared point weight, equal to ∑i ∑ j 6=i w(xi)w(x j)

n(n−1) .

K̂mm(r) was not normalized by n(n−1)w2 by Penttinen et al. (1992) who transformed it into Lmm(r) =
√

Kmm(r)
πW 2

where W is the total weight of points. Studying the spatial concentration of plants, Giuliani et al. (2014) divided
K̂mm(r) by W 2 (we estimated it by n(n−1)w2) so that K̂mm(r) has the same properties as K̂(r). We follow them
and Illian et al. (2008), section 5.3.3. The benchmark value is reached if the points and marks are independent:
Kmm = πr2 and Lmm = 0.

Note that the derivative of Kmm, that is to say the weighted equivalent of g denoted gmm, was first introduced by
Stoyan and Ohser (1984, 1985) but not used in empirical applications.

In spatial economics, only one application of the Kmm function can yet be found to date in Giuliani et al. (2014).
In a few words, over the same period of observation (1996-2004), the Kmm function detected agglomeration of high
and high-medium technology manufacturing firms in the Milan’s area (Italy), whereas no significant results appeared
for these industries in the area of Turin.

Kmm is a topographic (restricted to homogeneous space), cumulative function. It can be weighted.

2.4 The D function
Ripley’s K, Besag’s L and Penttinen et al.’s Kmm functions consider space as homogeneous (as defined in section
2.1). To deal with non-stationary point patterns, Diggle and Chetwynd (1991) introduced the D function, equal to
the difference between two K functions: that of the points of interest, called cases, and that of other points, called
controls: D = Kc−K0. The authors show that under the null hypothesis Kc = K0. Both also equal the intertype
function of cases and controls Kc,0. When not zero, D cannot be interpreted and is limited to tests. We introduce
here another version of D (previously advocated by Arbia et al., 2008), which we will denote Di:

(5)Di = Kc − Kc,0

It also equals to 0 under the null hypothesis and can be used exactly like D. Its advantage compared to the D
of Diggle and Chetwynd is that it compares two K functions computed around the same points (the cases). Thus,
Di/πr2 is the difference between two location quotients: that of the cases around themselves and that of the cases
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around the controls. Finally, note that the D function is also called the KD function by Waller (2010), certainly due
to the use of Ripley’s K function in the definition of the D function.

From a statistical point of view, three important limitations of the D function can be given. Firstly, values are not
comparable on the same plot of the D function. The excess number of points does not have the same signification at
small distances as it does at greater ones (the expected number of points is greater at large distances). Secondly, over
the same distances, values of two D plots are not comparable if the controls are not the same. Changing the reference
points (the controls) implies a change in the benchmark distribution: comparisons are then unfounded whatever the
distance. Thirdly, the D function results from a difference between two K functions and therefore points can not be
weighted.

This function was originally used by Diggle and Chetwynd to detect the spatial concentration of rare diseases.
Despite the three limitations cited above, numerous applications of the D function can be found in the field of spatial
economics. In a pioneering empirical study, using the D function, Sweeney and Feser (1998) showed that plants
size matters in the measuring agglomeration of manufacturing firms in North Carolina (medium-sized plants show
greater levels of spatial concentration). Marcon and Puech (2003) evaluated the spatial distribution of manufacturing
firms in France and provided some comparisons with the results obtained using Ripley’s original K function on the
same data. Other studies have investigated more sophisticated questions, such as a possible greater degree of spatial
concentration for firms that are linked (Feser and Sweeney, 2000) or the existence of differences in the geographic
concentration of patents according to the sector considered (Arbia et al., 2008).

D is a topographic, cumulative function. It cannot be weighted.

2.5 The ginhom and Kinhom functions
The K function cannot be estimated from data if the point process is not stationary. Baddeley et al. (2000) derived the
inhomogeneous version of K called Kinhom, equal to the integral of ginhom and centered on πr2 under the assumption
of independence of points. It has been little used in economics (but see Arbia et al., 2009, 2012) because it requires
the intensity of the point process to be estimated by kernel methods. If the kernel’s bandwidth is very small, intensity
is highly variable and independence is found, while a wide kernel results in more stationarity and dependence. In
other words, the results are highly dependent on the arbitrary choice of the estimation kernel bandwidth (Diggle
et al., 2007). If it is not guided by additional knowledge supporting it, results may be arbitrary.

Intuitively, Kinhom counts the average number of neighbors on disks centered on the reference points, following
K, but does not calculate the average the same way. The average value of the indicator function is weighted by the
reciprocal of the intensity of the point process around each point, denoted λ (xi) for point i and λ (x j) for point j.
λ (xi) is defined as follow. Denote dxi the elementary area around point xi, N(dxi) the random number of points in
dxi and E(N(dxi)) its expectation. Then, λ (xi) = lim

dxi→0

E(N(dxi))
dxi

Kinhom is estimated by:

(6)K̂inhom (r) =
1
A ∑

i
∑
j 6=i

1
(∥∥xi − x j

∥∥ ≤ r
)

c(i, j)

λ̂ (xi) λ̂ (x j)

λ̂ (xi) and λ̂ (x j) are the local density of points around xi and x j, obtained by bi-dimensional kernel methods
(Diggle, 1985). They are the estimators of the point process intensity. ginhom’s estimator can be found in Law et al.
(2009):

(7)ĝinhom (r) =
1

2πr ∑
i

∑
j 6=i

k
(∥∥xi − x j

∥∥ ,r)c(i, j)

λ̂ (xi) λ̂ (x j)

In the spirit of Besag’s L function, the Linhom function is also proposed Arbia et al. (2012) and is estimated by:

(8)L̂inhom(r) =

√
K̂inhom

π
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The weighting of ginhom and Kinhom may be clarified by defining w(xi) = λ/λ (xi), i.e. the normalized reciprocal
of the local intensity. If the intensity of the point process around point xi is greater than the average intensity λ , point
xi receives a weight lower than 1, and conversely. In the same way, we also define the normalized reciprocal of the
local intensity around x j: w(x j) = λ/λ (x j). Then, the estimators of ginhom and Kinhom write as those of gmm and Kmm,
with the average square weight w2 set to 1, so that Kinhom simplifies to K for homogenous processes (Baddeley et al.,
2000). Thus, Kinhom and Kmm are formally similar, but the meaning of weights is very different: in Kmm, weights are
an attribute of points (such as the number of employees of firms) whilst they are a feature of space (a function of the
local intensity of the point process) in Kinhom.

Despite the great qualities of the Kinhom function, its applications are still scarce in economics. To the best of our
knowledge, the first paper that introduced this function in our field was by Bonneu (2007). In this paper, he analyzed
the distribution of fire department emergencies in the area of Toulouse (France) in 2004. Another application was
recently proposed by Arbia et al. (2012). They provide an evaluation of the spatial distribution of five sectors of the
high-tech industry in 2001 in Milan (Italy). The authors justified the use of the Linhom function for its potential in a
dynamic context, although even if they did not deal with space-time analysis in their paper.

ginhom and Kinhom are topographic, density and cumulative functions. They cannot address point weights.

2.6 The Kd function
Duranton and Overman (2005)’s Kd is the probability density function to find a point’s neighbor at a given distance.
It counts and averages the number of point pairs at each distance, and smooths the results to obtain a continuous
function that is normalized to sum to 1. Values of Kd are compared to the confidence interval of the null hypothesis
that points are randomly placed on their actual location set. A variant of Kd named Kemp (also proposed by Duranton
and Overman, 2005) allows points to be weighted, counting employees in firms. Actually, Kd and Kemp are the
densities of neighbor points and neighbor employees around reference points, according to the definition of their
estimators by their authors. Duranton and Overman’s kernel function f in their definition of K̂d (r) is actually not
the previously defined kernel function but k

(∥∥xi− x j
∥∥ ,r)h. We have:

(9)K̂d (r) =
1

n(n− 1) ∑
i

∑
j 6=i

k
(∥∥xi − x j

∥∥ ,r)

(10)K̂emp (r) =
1

n(n− 1)w2 ∑
i

∑
j 6=i

w(xi)w(x j)k
(∥∥xi − x j

∥∥ ,r)
There is no benchmark for Kd and Kemp under the null hypothesis of independence between point locations. For

each distance, the benchmark is obtained by simulations of the null hypothesis: it is the center of the confidence
interval. The null hypothesis is built by redistributing the reference points over all points locations. In other words,
Kd is applied to a single type of points (e.g. one manufacturing sector) among a wider point pattern (e.g. the whole
manufacturing industry).

The Kd function is now considered one of the leading functions in spatial economics. In consequence, Duranton
and Overman’s methodology has been widely applied in our field since their seminal paper. In this paper, they
broadly depicted the advantages of the Kd function on an exhaustive dataset of UK manufacturing plants in 1996
at the four-digit sectoral level. In a later study, Duranton and Overman (2008) paved the way for future research
by studying various pertinent economic questions on location patterns: plant entries and exits, affiliated and non-
affiliated plants, domestic and foreign plants etc. Then their methodology has been applied to various countries
(see Klier and McMillen, 2008, among others) and extended to empirical studies in services (Nakajima et al., 2012;
Barlet et al., 2013; Koh and Riedel, 2014). Behrens and Bougna (2015) preferred to use the Kd function to depict
change in the spatial distribution of manufacturing activities in Canada from 2001 to 2009. They also tested the
importance of the level of sectoral aggregation as Fratesi (2008) did for the distribution of the pharmaceutical and
optical-photographic sectors in Great-Britain.
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Three recent interesting contributions have been made. The first one is proposed by Kerr and Kominers (2015)
who use the Kd function to understand the spatial cluster patterns. The second is done by Behrens and Bougna
(2015) who introduced the cumulative versions of the weighted and unweighted Kd function (i.e.

∫ r
0 Kd(r)dr). This

development seems to be motivated by the difficulties of interpreting Kd results. These new but unnamed cumulative
functions of Kd provide the proportion of plant pairs located less than a distance r apart. Some comparisons with the
Kd function or Ellison and Glaeser’s index (1997) were given. The authors did not provide the confidence interval of
the null hypothesis, which could have been calculated the same way as that of Kd . Finally, Marcon and Puech (2010,
2015) provided theoretical and empirical comparisons of the Kd results with other distance-based methods (like the
D function presented before).

Kd is an absolute, density function. Kemp is its weighted version.

2.7 The M and m functions
Marcon and Puech’s (2010) M function is a cumulative function that gives the relative frequency of neighbors of a
chosen type up to each distance, compared to the same ratio in the whole area under study. The neighbors of the
chosen type (say, a sector of activity) are denoted xc

j, while x j is for any neighbor whatever its type. M is estimated
by:

(11)M̂ (r) = ∑
i
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w(x j)

/∑
i
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Wc is the total weight of the points xc
j and W the total weight of all points of the sample. The denominator

is slightly different in the intertype function, ∑i {Wc/[W −w(xi)]}, avoiding a small bias. For any distance, the
benchmark value is thus 1.6

Some empirical applications of the M function can be found in economics. For instance Jensen and Michel
(2011) developed the unweighted version of the M function to gauge the spatial pattern of shops in the Lyon area in
France. Marcon and Puech (2015) compare the empirical results obtained with the M function to other distance-based
methods (D and Kd) to show the limitation of each measure. Finally, although Marcon and Puech (2010) showed that
M and Kd are complements rather than substitutes, applications using the M function in economics are undoubtedly
less numerous than those using Kd . However, it is interesting to note that the M function has been rapidly transferred
to other scientific fields, such as geography (Deurloo and De Vos, 2008), ecology (Marcon et al., 2012), biology
(Fernandez-Gonzalez et al., 2005) or seismology (Nissi et al., 2013).

In a recent paper Lang et al. (2015) proposed the m function: a density function version of M. By keeping the
same notations, the estimator of m is:

(12)m̂(r) = ∑
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As in Duranton and Overman (2005), a Gaussian kernel of optimal bandwidth was applied according to Silverman
(1986). The numerator is the local ratio: the relative weight of neighbors of interest at distance r from all reference
points and averaged over all reference points. The denominator corresponds to the global ratio: it is defined in
the same way as the local ratio, but over the whole data set. 1 is the benchmark value for any distance r and the
generation of a confidence interval of the null hypothesis with Monte-Carlo simulations provide the significance of
the m estimates.

Note the similarities between m and the cumulative M function, but that the local ratio is defined at distance r
and not up to it for the m function.

m and M are relative, density and cumulative functions. They can be weighted.

6In extreme cases, if the industrial concentration (in the sense of Ellison and Glaeser, 1997) is too high, for every radius r, the benchmark
value would be the center of the confidence interval.
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3. A typology of distance-based methods
In what follows, we shall prove that all these functions can be built empirically following the same five steps. First,
neighbors are counted around each point at or within a distance r; sometimes weights are summed instead. Second,
an average number of neighbors n(r) is calculated. Third, n(r) is divided by a local reference z(r). In accordance
with the typology of Brülhart and Traeger (2005) we shall use the following vocabulary:

• Topographic measures use space as their benchmark: the number of neighbors is divided by the area of a ring
or a disk (2πr dr or πr2).

• Relative measures divide the number of neighbors of interest by that of all neighbors.

• Absolute measures do not have any benchmark.

Fourth, n(r)/z(r) is compared to the value it has on the whole domain, n0/z0, to normalize the function. Fifth
and last, the significance of the values of the functions at several distances is generally tested against a null hypothesis
by Monte-Carlo simulations of the appropriate counterfactual. These five steps are detailed below.

3.1 Step 1: a number of neighbors n(xi,r)
The first step consists in counting neighbors of each point, at distance r (on the circle of radius r) or up to distance r
(in the circle of radius r). The first option defines density functions: g, ginhom, Kemp, Kd and m. The second defines
cumulative functions: K, Kinhom, Kmm, Di, the cumulative of Kemp, the cumulative of Kd , and M. M, Kemp and Kmm

attribute a weight to points, such as the plants’ number of employees. This raw number of neighbors of the point i at
a distance r or up to r is denoted n(xi,r). ginhom and Kinhom do not just count 1 for each point but give them a weight
that is inversely proportional to the local density of points: more neighbors are expected where more points are
located and these portions of space must not be overweighted.

Table 1 summarizes the way neighbors are counted around reference points for each function. Reference points
(circle centers) are denoted xi, their neighbors are x j. The point types may be identical or not, defining intertype
functions in the latter case. By construction, M focuses on one special type of neighbor points denoted xc

j to compare

their distribution to that of all neighbors denoted x j at step 3. w(x j) is the weight of point x j. λ̂ (x j) is the density of
points around x j. It is the estimator of λ (x j), the intensity of the point process. As we have already noted, we use
hats in equations for estimators to avoid any confusion: K, g have a mathematical definition relying on the point
process they are used to characterize and are estimated from the data. We also define Kd and M in this way in this
paper. k

(∥∥xi− x j
∥∥ ,r) is some kernel function able to evaluate the number of neighbors at distance r. c(i, j) is some

edge-effect correction depending on both points.

3.2 Step 2: Computing an average number of neighbors
The value obtained around each point following table 1 is then averaged for all reference points. In topographic,
inhomogeneous measures, the weight of each point is inversely proportional to the intensity of the process around it
so that space is sampled uniformly. All points have the same weight in Kd and M.

Table 2 summarizes the way the average number of neighbors is calculated. n(r) is the average number of
neighbors. n is the total number of reference points (the centers of circles).

3.3 Step 3: Defining a local reference and identifying the nature of the measure
These numbers of neighbors are then divided by a local reference z(r), table 3. This step determines the nature of
the measure:

• if z(r) is a measure of space, the function is topographic,

• if it is a number of neighbors, the function is relative,

• if there is no benchmark, the function is absolute.
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Table 1. Estimating the number of neighbors, n(xi,r)

Function Neighbors around xi Observations

K̂ (r)/
(
πr2
)

n(xi,r) = ∑
j 6=i

1
(∥∥xi− x j

∥∥≤ r
)

c(i, j) The number of neighbors is counted and
corrected from edge effects.

K̂mm (r)/
(
πr2
)

K̂inhom (r)/
(
πr2
) n(xi,r) = ∑

j 6=i
1
(∥∥xi− x j

∥∥≤ r
)

w(x j)c(i, j) As K above, but each neighbor counts
for its weight. In Kinhom, weights are
λ/λ̂ (x j).

ĝ(r) n(xi,r) = ∑
j 6=i

k
(∥∥xi− x j

∥∥ ,r)c(i, j) As K above, but the neighbors are counted
at distance r.

ĝinhom (r) n(xi,r) = ∑
j 6=i

k
(∥∥xi− x j

∥∥ ,r)w(x j)c(i, j) As g above, but each neighbor counts for
the inverse of the density around it. In
ginhom, weights are λ/λ̂ (x j).

K̂d (r) n(xi,r) = ∑
j 6=i

k
(∥∥xi− x j

∥∥ ,r) As g above, without edge-effect correc-
tion.

K̂emp (r) n(xi,r) = ∑
j 6=i

k
(∥∥xi− x j

∥∥ ,r)w(x j) As Kd above, but each neighbor counts for
its weight.

M̂ (r) n(xi,r) = ∑
j 6=i

1
(∥∥xi− xc

j

∥∥≤ r
)

w
(
xc

j
)

Each neighbor of the type of interest
counts for its weight.

m̂(r) n(xi,r) = ∑
j 6=i

k
(∥∥xi− xc

j

∥∥ ,r)w
(
xc

j
)

As M above, but the neighbors are
counted at distance r.

Table 2. Average number of neighbors, n(r)

Function Average number of neighbors Observations

K̂ (r)/
(
πr2
)

ĝ(r)
K̂d (r)
M̂ (r)
m̂(r)

n(r) =
1
n ∑

i
n(xi,r) The number of neighbors around each point is not

weighted. n is the number of circle centers, limited
to the number of points of the sector of interest in M
and m.

K̂mm (r)/
(
πr2
)

K̂emp (r)
K̂inhom (r)/

(
πr2
)

ĝinhom (r)

n(r) =
1

nw2 ∑
i

w(xi)n(xi,r) The average is weighted (w2 is the average squared
weight). In ginhom dans Kinhom, weights are λ/λ̂ (xi)
and w2 = 1.
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Table 3. Defining a local reference z(r) and identifying the nature of the measure

Function Local reference Observations

K̂ (r)/
(
πr2
)

K̂inhom (r)/
(
πr2
)

K̂mm (r)/
(
πr2
)

z(r) = πr2 The local reference is the area of a disk.

ĝ(r)
ĝinhom (r)

z(r) = 2πr As K above, but the measure is the length of a ring.

K̂d (r)
K̂emp (r)

z(r) = 1 Kd is not compared to anything. It is an absolute mea-
sure.

M̂ (r) z(r) =
1
n ∑

j 6=i
1
(∥∥xi− x j

∥∥≤ r
)

w(x j) The number of neighbors of the type of interest is com-
pared to the number of neighbors of all types.

m̂(r) z(r) =
1
n ∑

j 6=i
k
(∥∥xi− x j

∥∥ ,r)w(x j) As M above.

In relative functions, “all” neighbors usually include those of the reference type. They may be excluded (Diggle
et al., 2007; Marcon et al., 2012), for instance if the sampling design is such that all points of interest (the cases), but
only a sample of the benchmark distribution (the controls) are recorded. Then, the whole distribution of points is
better represented by the controls alone.

3.4 Step 4: Defining a global reference (a normalizing constant)
Normalization comes next (table 4). n(r)/z(r) is divided by its normalizing constant n0/z0. The latter ratio can be
understood as the value of the former with r large enough for all points to be neighbors of each other. Then, possible
spatial structure does not matter: n0 counts all points except the center of the circle, z0 is the total area (topographic
measures) or the total number of points (relative measures) or 1 (absolute measures).

All measures in table 4 are location quotients except for Kd and Kemp which are absolute measures.

3.5 Last step: Null hypothesis
We have obtained a value for each function at or within a distance r. Computation can be repeated for several values
of r to get each concentration measure as a function of distance.

How can the significance of the results be tested? In the vast majority of empirical studies, authors use Monte-
Carlo simulations to decide whether or not values obtained by the previous functions reject the null hypothesis
tested.

Practically, thanks to Monte-Carlo simulations, a confidence interval of the results is proposed. In a general
manner, Monte-Carlo simulations provide many values of the simulated function for each value of r. A proportion
of them is eliminated according to the accepted risk level (often the greatest and the smallest 2.5% in order to
obtain a 95% confidence interval). The remaining values constitute the local (i.e. at r) , also called pointwise,
confidence interval of the null hypothesis. To test the significance of the results, for every value of r the observed
value of the function is compared to the local confidence interval. Lagache et al. (2013) developed a method to
calculate the quantiles of K(r) under the null hypotheses of CSR analytically, without any simulation. Duranton and
Overman (2005) noted that repeating the same local test for all values of r is not satisfactory as the resulting local
confidence interval would be restrictive enough. This is confirmed by the findings of Loosmore and Ford (2006) and
Loop and McClure (2015) who proved the inadequacy of the local test. Duranton and Overman (2005) proposed a
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Table 4. Global reference: the normalizing constant, n0/z0

Function Global reference Observations

K̂ (r)/
(
πr2
)

ĝ(r)
K̂inhom (r)/

(
πr2
)

ĝinhom (r)
K̂mm (r)/

(
πr2
)

n0

z0
=

n−1
A

The normalizing constant is the intensity of the point
process, evaluated by the total number of points minus 1
(the circle center) divided by the area of the window.

K̂d (r)
K̂emp (r)

n0

z0
= n−1 Absolute measure. z0 = 1. n0 is the total number of

points minus 1 (the point at the circle center).

M̂ (r)
m̂(r)

n0

z0
= ∑

i

Wc−w(xi)

W −w(xi)
≈ Wc

W
The normalizing constant is calculated as n(r)/z(r)
with r large enough for all points to be neighbors to
each other. Wc is is the total weight of points belonging
to the neighbor type, W the total weight of all points.

way to build a global (more conservative) test, followed by Marcon and Puech (2010). This global test has been
justified theoretically by Myllymäki et al. (2015) who called it the “rank envelope test”. Barlet et al. (2013) showed
empirically that it is still not restrictive enough when the number of simulations is too small relatively to the number
of points: its confidence level is overestimated so Kd detects localization where there may not be any. The solution
is to increase the number of simulations.

For every intratype function, technical explanations of the construction of the associated confidence interval are
summarized in table 5.

The null hypothesis of intratype topographic functions is that the point process is Poisson so the simulations
are drawn from a Poisson process of the intensity estimated from the data. Bivariate topographic functions have
two possible null hypotheses presented in section 2.2: random labeling and population independence. Random
labeling is simulated by redistributing the point types randomly across points. Population independence is simulated
by shifting the whole neighbor point type randomly relatively to the reference point type. Relative and absolute
intratype functions rely on the random location null hypothesis first proposed by Duranton and Overman (2005).
Since nothing is known about the geography of the area under study except for the actual location of points, the null
hypothesis is simulated by redistributing the points (with their type and weight) across these locations. For intertype
functions, random labeling is simulated by randomizing point types, keeping locations and weights unchanged
whereas population independence keeps reference points unchanged and only randomizes the other point locations
(Marcon et al., 2015). Note that they are the standard null hypotheses of the literature: they are not limitative.
Any null hypothesis may be tested so long as it can be simulated, such as aggregative point processes to test by
topographic functions (Ngo Bieng et al., 2011).

It can be noted that Kd does not contain any reference to the overall distribution of points, as a relative measure
would. Comparing Kd to its simulated values (null hypothesis) provides a concentration test since the departure from
randomness is detected from all occupied sites observed in the real distribution. The expectation of the value Kd of
the simulated distributions is simply the value of Kd calculated on the whole point set since points of the type under
study are redistributed on all actual locations with the same probability, but its variability is unknown so simulations
cannot be avoided.

M and m allow the points to be given a weight, typically a number of employees. But it does not take into
account the possible influence of the structure of point weights. However, the necessity of controlling for industrial
concentration was highlighted by Ellison and Glaeser (1997). The answer is the following: the simulations are done
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Table 5. Simulation of the null hypothesis

Function Null Hypothesis

K̂ (r)/
(
πr2
)

ĝ(r)
A homogeneous Poisson process of intensity λ̂ (estimated from the data).

K̂inhom (r)/
(
πr2
)

ĝinhom (r)
An inhomogeneous Poisson process of intensity λ̂ (x) (estimated from the data).

K̂mm (r)/
(
πr2
)

Generally, a homogeneous Poisson process with random labeling.

K̂d (r)
K̂emp (r)

Points are redistributed across actual locations.

M̂ (r)
m̂(r)

Points are redistributed across actual locations.

with the actual weights, so the weight structure is controlled for by the confidence interval of the null hypothesis, if
not numerically.

The null hypothesis of Kmm varies. Penttinen et al. (1992) inferred the unmarked point process model and used it
to simulate points with a random permutation of marks. The null hypothesis was the independence of marks, given
the point set structure. Practically, Kmm can be used when the unmarked point process is a homogeneous Poisson,
but with great difficulty in other situations. Giuliani et al. (2014) integrated both point locations and mark structure
in a single model of localization, whose parameters cannot be inferred yet.

Kinhom was employed by Diggle et al. (2007) and Arbia et al. (2012) in a case-control design: a number of points,
the controls, were used to estimate the point process intensity (assuming they are approximately independently
distributed), while the different pattern of cases was attributed to dependence. This approach is quite similar to that
of M where all points weight 1: estimating λ̂ (x j) in table 1 for Kinhom with a simple box kernel with bandwidth r is
not different from z(r) in table 3 for M. The main difference (normalization apart) is that all reference points have
the same weight in M, while each piece of space has in Kinhom (table 2).

Goodness-of-fit (GoF) tests are an alternative explored by Heinrich (1991). They consist of calculating the
discrepancy between an estimated function for the real data and its expectation under the null hypothesis: the value
obtained is compared to its distribution under the null hypothesis. In the general case, neither the expectation nor the
quantiles of the distribution are known so they must be obtained by Monte-Carlo simulations. Loosmore and Ford
(2006) published a GoF test for the K function in ecology. Marcon et al. (2012) proposed an application of the GoF
test for the M function in ecology too. Barlet et al. (2013) developed a GoF test for the Kd function and proved it to
be unbiased.

Global, analytical tests (providing a p-value to reject the null hypothesis erroneously, calculated from the data
without simulations) are scarce. Jensen and Michel (2011) provided one for Kd based on the exact calculation of the
variance and one for the unweighted version of M. Lang and Marcon (2013) developed a test for K against CSR
in a square domain, Marcon et al. (2013) extended it to a rectangle domain and applied it to ecological data. A
non-trivial advantage of analytical tests is saving the time involved in calculating of confidence intervals, which is
quite long for large datasets.
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Table 6. Choice of the appropriate function to describe a point pattern structure

Function choice Topographic,
homogeneous

Topographic,
inhomogeneous

Absolute Relative

Density functions
g ginhom Kd m

Kemp

Cumulative functions
K Kinhom Cumulative of Kd M

Kmm Di Cumulative of Kemp Case-control Kinhom

4. Discussion
The aim of the previous section was to propose a common framework for understanding the statistic construction of
the most popular distance-based methods. In this section, we shall provide a discussion of those functions with the
objective of addressing economic questions.

4.1 Complementary functions for addressing multiple questions
The spatial structures of economic activities can be tested or evaluated in many ways because they are related to
different economic questions. In that sense, distance-based measures appear more complementary than competing
functions because of the richness of the results they provide. In the previous section, we presented more than ten
distance-based measures and we showed that every distance-based measure brings a particular description of the
data. The use of several functions may bring complementary results on the spatial distribution analyzed and thus
give a comprehensive analysis of the data. In each case, a significant departure from randomness can be detected but
the analysis is not the same, so results on the underlying spatial structure obviously will not systematically converge.
However the choice of the distance-based measure(s) retained for any analysis should be well-motivated to respond
at best to the economic question raised. This choice is not obvious and we propose a typology of all functions to find
the “good” distance-based measure(s) for any analysis. This typology (given in table 6) is constructed according to
two important tools’ properties:

• the nature of the spatial concentration studied (topographic, absolute or relative). This first choice is crucial
to avoid any misinterpretation of the data (Marcon and Puech, 2015). For example, urbanization externalities
may be addressed by topographic functions to relate topographic concentration and productivity (Ciccone and
Hall, 1996), whilst externalities induced by co-agglomeration (Ellison et al., 2010) require relative measures.

• a cumulative or a local approach. Analyzing the surroundings of the plants “at” a given distance or “up to”
a given distance is not the same thing. In the first case cumulative functions should be used, in the second case
density functions should be preferred (Marcon and Puech, 2010).

Let us now explain in details our motivation for that first classification of distance-based methods.

Consider at first the criterion of the nature of the spatial concentration. As we underlined, distance-based
methods that integrate physical space as their benchmark are topographic measures. Those which refer to another
variable, usually the distribution of all points, are called relative measures. Researchers should carefully motivate
the type of concentration that they want to use the appropriate function. It the question is “Is the proportion of
the manufacturing plants of the sector of interest in the neighborhood greater or lower than expected by chance?”
then relative concentration methods are appropriate but if it is “Is the density of neighbor manufacturing plants per
unit area greater or lower than expected by chance?”, this refers to topographic concentration. It is worth noting
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that “absolute concentration” is not an operational concept (Combes and Overman, 2004; Brülhart and Traeger,
2005). The local reference of topographic and relative functions corresponds to the hypothesis they test. In contrast,
absolute measures include no benchmark. Thus, the null hypothesis defines the type of concentration to address:
the random-location hypothesis supposes the distribution of the economic sector under study is that of the whole
industry, i.e. a departure from it reveals relative concentration. Alternatively, the null hypothesis could be CSR to test
topographic concentration. In summary, absolute functions are versatile since they allow testing both topographic and
relative concentration, even though we are not aware of empirical studies using Kd to test topographic concentration.
Yet, the usual way to apply Kd to test relative concentration is sometimes problematic. The fundamental issue is
that an absolute measure necessarily has an implicit reference: with Kd , the number of neighbors are counted on a
circle around each point, as in the g function for instance. The characteristic inverted U shape of the Kd function is
determined, at the first order, by geometry: the length of the perimeter of the circle around each point, which hosts
the neighbors, increases proportionally to r until the edge effects start to dominate, when the circle is too wide and
finally exceeds the size of the data set. The length of the perimeter of this circle is g’s benchmark, defining it as a
topographic function, whereas it is ignored by Kd . So Kd finally compares, by difference, the (normalized) number
of neighbors of the points of the type of interest to that of all points. This is very similar to what the D function does:
actually, Kd compares the topographic concentration of the sector of interest to that of the whole economic activity
instead of addressing relative concentration directly. Let us consider a real example to make things clearer. Marcon
and Puech (2015) showed that in the metropolitan area of Lyon (France), gas stations are topographically dispersed:
the D function is negative up to the maximum distance studied, 3 km. This means that the normalized (see table 4)
average (see table 2) number of neighbor gas stations around a typical gas station is lower than the normalized
average number of neighbor shops of all other sectors of activity. Yet, gas stations are relatively concentrated: the
M function shows that around a typical one, the proportion of gas stations among all neighbor shops is higher than
the average proportion of gas stations in the whole area. Indeed, gas stations are located in low-density shopping
areas: they are less topographically concentrated than the commercial activity in general, but in these areas, they are
relatively concentrated: two measures reveal two aspects of the spatial structure of the sector of activity. Kd detects
significant dispersion, as a topographic measure. We acknowledge that generally, relative concentration and higher
topographic concentration than the whole activity co-exist: the empirical consequences of this ambiguity of Kd are
limited.

Let us turn to the second criterion: the choice between a cumulative or a local approach. This is a recent open
debate that concerns the respective advantages of probability density functions and cumulative measures (Wiegand
and Moloney, 2004; Law et al., 2009; Marcon and Puech, 2010). Arguments are not repeated here (the reader should
refer to the cited papers) because the choice depends on both the question analyzed and the availability of data.
Marcon and Puech (2010) have shown that Kd or M are useful to evaluate the spatial distribution of activities and
depending on the question raised, one may give clearer results than the other. Kd provides more precise estimations
than M for gauging the local density of activities. Thus, Kd should be preferred if the objective is the evaluation of
local densities. M assesses the global effect of the superposition of spatial structures better. As a consequence, if
the question is “up to which distance do externalities matter?” then a cumulative function is more appropriate. A
probability density function will answer “do externalities matter at a given distance?” in a more satisfactory way. As
a consequence, M and Kd seem to be complements rather than substitutes.

To what extent may all the distance-based methods presented here properly address the measurement of
agglomeration or dispersion of economic activities? This question is very important to satisfactorily gauge the
economic forces at work (Ellison et al., 2010; Kerr and Kominers, 2015). An axiomatic approach can be proposed.
In particular, in their seminal paper Duranton and Overman listed five important properties required for any statistical
measure aiming to detect spatial structures in economics (Duranton and Overman, 2005, p.1079):

1. results should be comparable across industries;

2. the global agglomeration pattern should be taken into account;
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3. the measure should control for industrial concentration in the sense of Ellison and Glaeser (1997);

4. results should be unbiased across geographic scales (this is related to the MAUP issues);

5. test of the significance of the results should be provided

An overview of the typology provided in this paper shows that only four other functions Kd , Kinhom, M and m
respect all five criteria above (noticeably because criterion 3 excludes homogeneous, topographic concentration).
As we previously underlined, Kd is certainly now the most employed distance-based method in the economic
literature. However it appears that also Kinhom, M and m are good candidates to analyze spatial concentration in
spatial economics.

A second possible criterion of decision should be of interest: researchers may be interested not only in detecting
the spatial structures but also in quantifying agglomeration or dispersion results. Up to now, only a small number of
the distance-based methods listed previously can be mobilized to reach that objective. If the question is how many
times more neighbors are found at the chosen distance then only g, ginhom and m are of interest. If the question is
how many times more neighbors are found up to the chosen distance then only K/πr2, M, Kinhom and Kmm can be
used.

To conclude, the literature is not yet stabilized on the criteria that any distance-based method should respect
(Combes and Overman, 2004; Bonneu and Thomas-Agnan, 2015). Broadly speaking, methods treating space as
continuous are still in their infancy in economics in that they have only been developed over the past decade. As
Combes and Overman (2004) stressed, improvements are still needed because no distance-based method is bound
to a theoretical model to explain agglomeration. The debate is still open as to the “best” candidate for detecting
spatial structures in economics as noticed by Gibbons et al. (2015) even if we have shown that using different
measures could bring a more complete analysis of the data. The next step in the analysis is to provide a complete
theoretical background for distance-based methods. The statistical literature (Møller and Waagepetersen, 2004)
mainly deals with homogeneous point processes, used for topographic measures. Many theoretical results exist,
such as g and K expectations for many processes (Diggle, 1983; Illian et al., 2008). For the moment, topographic
measures for inhomogeneous space and relative measures still lack statistical support. This could be explained by
the long tradition in various scientific domains of employing (and thus developing) functions based on homogeneous
point processes.7 Since the use of distance-based measures is more recent in economics, theoretical developments
are just beginning. More are needed to improve the statistical background of the distance-based measures in a spatial
economic framework. First studies are being done in that direction. The growing interest in the Kd measure is very
promising (Ellison et al., 2010; Alfaro and Chen, 2014) and theoretical developments are now proposed (Barlet
et al., 2013). It is also the case of the M function: it has been proved recently that M is the generalization of Ripley’s
function with inhomogeneous point processes (Marcon et al., 2012).

4.2 Computation of distance-based methods
One important point concerns the computation of all these functions and their respective confidence intervals, which
can be very time-consuming. Quite often the important computational requirements are noticed by the authors (see
Kosfeld et al., 2011, among others). Recent developments have been proposed (Scholl and Brenner, 2015). For
example, an easy-to-use package called dbmss for “distance-based measures of spatial structures” (Marcon et al.,
2015) is now developed, based on the R spatstat package.8 This package allows the simple computation of all
distance-based measures presented in this article.

Distance-based methods are computer intensive. Complexity, resulting in computation time, is proportional
to the squared number of points (to calculate distances between all pairs of points) and the number of simulations of
the null hypothesis. Memory requirement is proportional to the squared number of points. The number of points
involved in computation depends on the function. Often, the spatial structure of a single type of points (say, a sector
of activity) is studied. Topographic and absolute measures only consider the points of this sector; the other points are

7This is the case for example in forestry where relative measures have not been employed before Marcon et al. (2012).
8Available at the following address: http://cran.r-project.org/web/packages/dbmss/

http://cran.r-project.org/web/packages/dbmss/
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either ignored (topographic measures) or used as possible locations in the null hypothesis. Relative measures take
into account all points in their benchmark so their computation time is much longer: if the type of interest contains
10% of the points, computing Kd is roughly 100 times faster than computing m. Reducing the memory requirement
is possible with approximation techniques (Scholl and Brenner, 2015) to summarize the n(n−1)/2 distances values
by classes, making it virtually independent of the size of the point pattern. This opens the door to deal with point
patterns of several tenths of thousands (computed) points with a current laptop computer. Hundred of thousands
points will require days or weeks of computation time that can be parallelized by the dbmss package if the necessary
hardware is available. On this subject, Marcon et al. (2015) provide a specific time-requirement example using the
dbmss R package.

To conclude, recent improvements in the computation of distance-based methods are very good news. The
intensive and somewhat unfriendly computing was noticed as a limit of the use of distance-based methods in
comparison to the Gini or the Ellison and Glaeser indices.

Distance-based methods are also data intensive. The availability of micro-geographic data has increased
a lot (Arbia, 2001a) but they may sometimes be blurred for confidentiality or technical reasons. What are the
consequences of the uncertainty about the exact location of entities on distance-based measures? Only a small
number of studies have tested the potential effects on the results of distance-based methods. On very limited datasets
in ecology, Fehmi and Bartolome (2001) show that differences in the K plots can be detected if they use the exact
position of the plants or a small grid-based data. Studying the mechanical engineering industry in the metropolitan
France, Barlet et al. (2008) do not notice that introducing a geographical noise affect Kd plots. More exactly, the use
of the exact position of the plants or their position at the municipality level (commune level) visually lead to the same
results (Kd plots are superposed for all distances from 0 km to 1000 km). As far as we know, no theoretical derivation
of the uncertainty or systematic simulation study has been yet conducted for distance-based measures. This will
certainly be a future way of research and the results will help to grasp the importance of the MAUP issues (as we
presented in the introduction of the paper). For the moment, we can advance two points. First, density functions use
kernel estimation of the number of neighbors: relatively small errors in the distances could very likely have a limited
effect on the estimation and compensate across pairs of points. Second, cumulative functions are insensitive to errors
at smaller scales than the distance they consider: if the uncertainty is a few hectometers, the number of neighbors up
to a few kilometers is known with no error except for the more distant ones, which are a small proportion.

4.3 Alternative distances
All the methods presented above rely on Euclidean distances to define neighborhoods. Alternative distances have
been discussed (Yamada and Thill, 2004; Combes and Lafourcade, 2005) to take into account the real-world
geography, where streets and roads define the paths between points and bridges are necessary to cross rivers. The
network-K function has been defined and studied by Okabe and Yamada (2001): it applies to distances measured
along a street network. The mathematical properties of point processes generally rely on Euclidean distances so
many known results (such as the expectation of the K function under CSR) are lost when this constraint is released.

Distances may also be defined in a graph as the minimum the number of steps between two nodes. The
M function can be adapted easily by defining that a neighborhood is the set of the n nearest neighbors of a reference
point rather than the points less than r apart from it. Taking n = 1 (i.e., considering the nearest neighbor of each
point only) and setting all weights to 1, M becomes the colocation quotient of Leslie and Kronenfeld (2011). These
possibilities have been little explored in the empirical literature (but see Bentley et al., 2016).

5. Conclusion
A decade ago, disproportionality methods such as the Gini or Ellison and Glaeser indices were classical tools for
economists. Quite logically, methods were then developed to take advantage of the knowledge of the exact position
of objects and solve issues linked to the Modifiable Areal Unit Problem (Openshaw and Taylor, 1979). The first
were statistics based on the distance of the nearest neighbor of points, after Clark and Evans (1954). They have
been outdated by the distance-based measures of concentration reviewed in this paper because the latter use the
information provided by all points less than r apart from each reference point instead of just one.
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When geo-referenced data are available, distance-based measures of concentration are a complete set of tools
to test data against null hypotheses of independence (to show aggregation or repulsion) and, for some of them, to
quantify the phenomena. We have explained in this article (table 6) which tool to use according to the underlying
framework (topographic, absolute or relative). Topographic measures are widely used and updated by ecologists
in handbooks (Fortin and Dale, 2005; Illian et al., 2008) which ignore relative measures. Economists mainly
use absolute and relative measures to take into account of the overall distribution of economic activities. Several
economists (among others Combes et al., 2008) clearly state that applications of distance-based methods should now
be given preference by researchers. The problem of the availability of geo-referenced economic data or easy-to-use
programs to implement these functions are short-term issues (Overman, 2008), although they have not been solved
yet (Marcon et al., 2015). However, relating these descriptive tools to economic theory is the real challenge (Alfaro
and Chen, 2014; Kerr and Kominers, 2015), following the way opened by Ellison et al. (2010).
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