
Hardware Engines for Bus Encryption: a Survey of

Existing Techniques

Reouven Elbaz, Lionel Torres, Gilles Sassatelli, Pierre Guillemin, Claude

Anguille, Michel Bardouillet, Christian Buatois, Jean-Baptiste Rigaud

To cite this version:

Reouven Elbaz, Lionel Torres, Gilles Sassatelli, Pierre Guillemin, Claude Anguille, et al..
Hardware Engines for Bus Encryption: a Survey of Existing Techniques. DATE: De-
sign, Automation and Test in Europe, Mar 2005, Munich, Germany. 3, pp.40-45, 2005,
<10.1109/DATE.2005.170>. <lirmm-00106453>

HAL Id: lirmm-00106453

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00106453

Submitted on 16 Oct 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by HAL-EMSE

https://core.ac.uk/display/52623746?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00106453

Hardware Engines for Bus Encryption: a Survey of Existing Techniques

R. Elbaz, L. Torres, G. Sassatelli
LIRMM, UMR University of
Montpellier 2-CNRS C5506
Email: {name@lirmm.fr}

P. Guillemin, C. Anguille,
M. Bardouillet

STMicroeletronics
Advanced System Technology

Email: pierre.guillemin@st.com

C. Buatois, J. B. Rigaud
CMP, Centre microélectronique
de Provence Georges Charpak

 Email: {name@emse.fr}

Abstract
The widening spectrum of applications and services

provided by portable and embedded devices bring a new
dimension of concerns in security. Most of those
embedded systems (pay-TV, PDAs, mobile phones, etc…)
make use of external memory. As a result, the main
problem is that data and instructions are constantly
exchanged between memory (RAM) and CPU in clear
form on the bus. This memory may contain confidential
data like commercial software or private contents, which
either the end-user or the content provider is willing to
protect. The goal of this paper is to clearly describe the
problem of processor-memory bus communications in this
regard and the existing techniques applied to secure the
communication channel through encryption –
Performance overheads implied by those solutions will be
extensively discussed in this paper.

1. Introduction:

The range of services provided by every single
embedded system tends to widen rapidly: banking
transactions, web browsing, application / game download
are nowadays common applications on mobile devices. In
many cases, confidentiality in multiple forms has to be
guaranteed: end-user private data must be kept secret,
illegal software use must be avoided, etc. Unfortunately,
the amount of memory needed for those platforms imply to
use external memories for storing software and data,
usually in clear form. That makes the processor-memory
bus the weakest point of the system, hacker’s favorite
security hole. Observing both memory content and system
execution can be done through simple board-level probing
at almost no cost.

The obvious basic tool to counter these attacks is
cryptography.

Cryptography can be divided in two families:
- Symmetric cryptography (a.k.a. private-key

cryptography) [1]; the same key is used to cipher and
decipher a message. Symmetric cryptography can be
divided in two subfamilies, stream cipher (RC4, Steal) and
block cipher (DES, 3DES, AES), both depicted later in
this paper.

- Asymmetric cryptography (a.k.a. public-key
cryptography) [1]; Two keys are used, one is public
(known by every one) and the other is private and
therefore has to be kept secret. This family of algorithms
can address different purposes: if the private key is used to
encrypt a message, everyone can decrypt it using the
public key: such a scheme is usually used for
authentication. On the other hand, if the public key is used
to encrypt, only the private key owner can decrypt it, in
this scheme, asymmetric cryptography is used for
ciphering. That enables to achieve secure data exchanges
over networks without having previously agreed of a
common private key.

All cryptographic schemes are confronted to the
temporal problem: the key must be long enough to thwart
the “Brute force attack”. These attacks consist in trying all
possible keys. It’s usually considered that a cryptosystem
has a lifetime of at most 10 years due to the increase in
computer processing power (Moore’s law).

Two major issues are to be considered when dealing
about security: integrity ensures that the data has not been
modified (usually done for breaking into the system) while
confidentiality guarantees the privacy of the data. This
paper will only address the latter through existing
encryption techniques. Moreover it will not explore the
key management mechanisms relative to multitasking
operating systems; refer to [2] for extensive discussion on
that topic.

The paper is organized as follows:
Section 2 presents the context. Emphasis will be

placed on the problem itself, and the consequences of
inserting cryptosystems into SoCs will be discussed.
Classification and targeted security level will also be
exposed. Section 3 presents the different hardware

1530-1591/05 $20.00 © 2005 IEEE

encryption units proposed in the literature. Section 4
relates some yet unexplored solutions, discussing their
respective advantages and drawbacks. Finally, some
conclusions are drawn in section 5.

2. Context:

2.1 Software confidentiality

The emergence of on-demand software downloading

services brings in the foreground the problem of content
protection. It is therefore mandatory to establish a secure
channel over a non secure network. As depicted in Figure
1 (issue from [3]) the software editor protects his product
against piracy according to the following technique: a
session key (K) is chosen and the software is ciphered
using a symmetric algorithm. However in this case there
are two potential risks:

i) A third-party may intercept the session key; the
session key is the weak point and shall not be transmitted
in clear form over the network (necessary prior to establish
the secure channel). That’s where public key algorithms
come into play: they allow to transmit the session key in
encrypted form; the protocol used is as follows:

1. A couple of keys – private (Dm) / public (Em) – is
provided by the chip manufacturer. The first one
(Dm) is stored in a non-volatile memory inside the
“secure” processor, and the second one (Em) is
transmitted to everyone who wants to
communicate in a secure way with the processor.

2. The processor requests from the software editor
the session key (K).

3. The software editor requests from the chip
manufacturer the public key (Em), who sends it
over a non secure transmission channel.

4. The software editor sends, on the non secure
transmission channel, a ciphered version of K,
obtained with an asymmetric algorithm and (Em).

5. Only the processor can decipher the message (K
ciphered version) with the private key (Dm)
stored in the non-volatile memory.

6. Finally, the processor uses K and a symmetric
algorithm to decipher the software and to install
the code in the external memory.

ii) The second risk is that the software might be copied

afterwards: it is stored in clear form inside the external
memory. During execution, information (data and
instructions) are exchanged with the processor in clear: the
bus can be probed and the software can be distributed
without the knowledge of the software editor. The problem
is shifted from the transmission channel to the
communication bus between the CPU and external
memory.

Key

M
fkey((key) :asymmetrical
 (de)ciphering

Key

M
gkey((key) :symmetrical
 (de)ciphering

Key

M
fkey((key) :asymmetrical
 (de)ciphering

Key

M
gkey((key) :symmetrical
 (de)ciphering

Figure 1: Secret key exchange protocol on a non

secure transmission channel

In order to prevent that, the first idea would consist in
using the symmetric algorithm employed by the software
editor between the CPU and the external memory.
However, the software editor can choose among different
symmetric algorithm witch additionally might not be
appropriate for processor-memory communication.
Therefore, the deciphering step (with the session key (K))
often takes place in software.

The cipher unit has to be on the System On Chip
(SOC), to complicate observation of the cryptosystem
process, and thus, taking into account constraints such as:
area, power consumption, performance penalties, is
mandatory.

2.2 Cryptosystem SOC context

Electing a cryptosystem has to be done with respects to
the system specifications. It is often a tradeoff between
intended security (robustness) and affordable performance
loss. The deciphering process implied by external CPU
request will be deeply explored because of the usually
stated critical impact on performance. Despite memory
content ciphering can be done offline, data encryption has
nevertheless to be considered as well for memory write
operations, that will be discussed later in this paper.

Asymetric vs Symetric cryptography:
Asymmetric cryptography algorithms are often based

on modular arithmetic, and operate on huge integers (512-
2048 bits). They require more processing power (due to
modular exponentiation) than symmetric algorithm for an
equivalent robustness. Moreover, ciphered text is longer
than the original clear text; larger memories are thus

needed. Therefore, only symmetric algorithms will be
considered in this paper.

 Key

stream
generator

Key
stream

generator

Mi (plaintext)

Ki (Key Ki (Key

Ciphering Deciphering

Ci (ciphered text)
1 1

1 1 1

(a)

Encryption

Plaintext

Ciphered
text

N-bit block

N-bit

K

n n

(b)

E
xt

er
na

l M
em

or
y Trusted area

CPU
core

C
ac

he

M
em

or
y

C
on

tro
lle

r

EDU

E.D.U. : Encryption / Decryption Unit

(c)

Figure 2: (a) Stream cipher principle; (b) Bloc
cipher principle; (c) Example of encryption unit

placement
Symmetric cryptography algorithms are divided in two

families: stream cipher and block cipher.
Concerning block cipher, the plaintext is splitted in

blocks (Figure 2b), and then each block is ciphered. On
the other hand, the stream cipher principle (Figure 2a) is
based on a XOR gate and a key stream. The first step is to
generate the key stream. Then, the cipher text results from
a XOR operation between the plaintext and the key
stream. The robustness of this cryptosystem is based
mainly on the key stream generation.

In our context, stream cipher seems to be more suitable
in term of performance: the key stream generation can be
parallelised with external data fetch. The shortcoming of
block cipher cryptosystems is that deciphering cannot start
until a complete block has been received.

The following observations must be taken into account
by the cryptosystem designer; they’re mainly related to
block cipher implementations issues but can also apply to
stream cipher to some extend.

Block cipher algorithms (symmetric algorithms) allow
different ciphering mode [1]. Electronic CodeBook (ECB)

is the most obvious mode; ciphered blocks is a function of
the corresponding plaintext block, the algorithm and the
secret key. Consequently a same data will be ciphered to
the same value; which is the main security weakness of
that mode. Cipher block chaining (CBC) mode provides
improved security since each encrypted block depends
also on the previous plaintext block. Its use proves limited
in a processor-memory system due to the random data
access problem (JUMP instructions).

If the encryption unit is located between cache memory
and memory controller (Figure 2c), data stored in the
cache memory will be in clear form. Accordingly, each
cache miss implies external memory access along with
additional latency due to the deciphering process.
However, a write operation can have an even worst impact
on the performance. The writing operation of a data
smaller than the ciphered block size is penalizing because
implies the following steps:

- Read the block from memory,
- Decipher it,
- Modify the corresponding sequence into the

block,
- Re-cipher it,
- Write it back in memory.

One of the challenges of the cryptosystem design
would be to hide these latencies.

2.3 Attack classification

IBM proposed a taxonomy [4] of adversaries and
attacks in order to classify the security level achieved by
each of their product: “Adversaries were grouped into
three classes, in ascending order, depending on their
expected abilities and attack strengths:
Class I (clever outsiders): They are often very intelligent
but may have insufficient knowledge of the system. They
may have access to only moderately sophisticated
equipment. They often try to take advantage of an existing
weakness in the system, rather than try to create one.
Class II (knowledgeable insiders): They have substantial
specialized technical education and experience. They have
varying degrees of understanding of parts of the system
but potential access to most of it. They often have access
to highly sophisticated tools and instruments for analysis.
Class III (funded organizations): they are able to
assemble teams of specialists with related and
complementary skills backed by great funding resources.
They are capable of in-depth analysis of the system,
designing sophisticated attacks, and using the most
sophisticated analysis tools (very expensive). They may
use Class II adversaries as part of the attacks team.”

Throughout this paper, the consumer market is
targeted. For a hacker the cost of the attack should not
exceed the price of the protected entity or the amount of

profits expected. Thus, in our case, only attacks and
adversaries classified in class II are taken into account.

Only none strongly invasive attacks are considered,
physical access to data is limited to bus probing. The main
objective is to prevent an attacker from understanding the
contents of the data stored in external memory. Reference
[5] provides a complete overview of existing attacks
targeting secure embedded systems.

For example a famous attack carried out against the
bus-encryption system of the DS5002FP microcontroller
[6] by Marcus Kuhn consisted in the following:

The security principle of this microcontroller is based
on a ciphering by block of 8-bit instructions. The hacker
circumvents the cryptographic problem by finding a hole
in the architecture processing and by applying exhaustive
attack (8-bit instruction � 256 possibilities). After having
identified the MOV instruction, he dumped the external
memory content in clear form through the parallel-port.

3. State of the art:

The principle of bus encryption (encryption of the
external memory content) was first introduced by Best 25
years ago [7] [8] [9]. Best proposed to consider the CPU
as secure and consequently all data and addresses are in
decrypted form inside the CPU and encrypted outside the
SOC. Accordingly, a cipher unit is implemented on-chip,
and a secret cipher key is located in an on-chip register
(Figure 3). The block cipher chosen is based on basic
cryptographic functions such as mono and poly-alphabetic
substitutions and byte transpositions.

 Figure 3: Principle of Best's patent

Some of the rules enounced by Best are still today
considered as reference: System On Chip (SOC) is trusted,
cipher unit and secret key remain on-chip, moreover all
proposed hardware encryption units are located between
the cache and the external memory controller.

Concerning industrial research, numerous patents exist.
VLSI technology [10] proposes an architecture (Figure 4)
where data transfers to and from the external memory are
done page-by-page. All CPU external requests are
managed by a secure DMA unit and communications
between external and internal memory use an encryption /
decryption core. This system allows the use of block

cipher techniques (robustness). As the DMA is controlled
by the operating system, this technique is viable provided
that the OS is trusted.

Figure 4: Principle of VLSI technology's patent

Figure 5: Principle of the General Instrument's patent

Another patent, by General Instrument Corporation
[11], proposed to encrypt the memory content with a 3-
DES (Data Encryption Standard) (Figure 5) in block
chaining mode (CBC), and to offer the possibility to
authenticate the data coming from external memory thanks
to a keyed hash algorithm. Nonetheless, as seen
previously, cipher block chaining technique is very robust
but implies unacceptable CPU performance degradation
for random accesses in external memory.

Figure 6: Principle of the Dallas semiconductor's
device

A famous industrial device designed for different
markets like pay-TV access control and credit cards is the

one proposed by Dallas Semiconductor (Figure 6). The
old version of their product, the DS5002FP [12], was
broken by the well known Markus G. Kuhn attack [6]. The
new one, the DS5240 [12], implements a ciphering based
on a true DES or 3-DES block cipher which strengthened
the robustness of the product. Accordingly, the 8-bit based
ciphering passes to 64-bit based ciphering.

Concerning academic works, three projects [3][13][14]
proposed tamper-resistant architectures including bus
encryption units.

Guilmont et al. [3] use a fetch prediction unit and
pipelined triple-DES block cipher. They assume to keep
the deciphering cost under 2,5% in term of performance
cost. However, this work only addresses static code
ciphering and consequently authors are not confronted to
smaller-than-block-size memory operations (occurs for
data writing). As seen previously, great performance loss
is to be expected in such cases.

The Xom project [13] uses a pipelined AES
(Advanced Encryption Standard) block cipher as cipher
unit which features a low latency of 14 latency cycles,
while a throughput of one encrypted/decrypted data per
clock cycle is claimed. In these projects the cipher unit is
not the central focus: it’s a part of a tamper-resistant
architecture, and no specific benchmark has been carried
out. Indeed, taking into account only the latency doesn’t
inform about the overall system cost.

The third work is called AEGIS [14]. In this work, the
bus encryption engine is evaluated separately, therefore
the given cost overhead information in terms of
performance and silicon area are more detailed. The
cipher unit is composed by a pipelined AES (300,000
gates) in CBC (Cipher Block Chaining) mode. But the
ciphering block chain corresponds to a cache block, thus
allowing random access to external memory (each cache
block may be ciphered in CBC mode separately).
However, the fetch instruction cannot be provided to the
processor until an entire cache block is deciphered. The
generation of the initialization vector (IV) needed by the
CBC mode proves really secure: it is composed by the
block address and by a random vector; to thwart the
birthday attack [1] it is possible to replace the random
vector by a counter. The major drawback is again the
heavy trade-off between security and embedded
constraints: they estimate the performance overhead
induced by the encryption engine to 25%.

Numerous researches were carried out on the subject;
the principle allowing a strong security is known:
hardware implementation of algorithm approved by the
NIST [15] – National Institute of Standard and
Technology – in the past DES algorithm and currently the
AES; however the cost overhead generated by those
implementations remains considerable and unacceptable
(in particular in term of execution time).

4. Various solutions considered:

All the presented existing solutions proposed a cipher
unit on chip between cache memory and controller
memory (Figure 7a).

Decrypted data Encrypted data

E.D.U. : Encryption / Decryption Unit

(a)

Trusted area

CPU
core

 C
ac

he

M
em

or
y

C
on

tr
ol

le
r

E
xt

er
na

l M
em

or
y

EDU

(b)

Trusted area

C
ac

he

M
em

or
y

C
on

tr
ol

le
r

Key
stream

EDU Key
stream
generator

CPU
core

E
xt

er
na

l M
em

or
y

Figure 7: (a) EDU between cache and memory
controller; (b) EDU between CPU and cache memory

Another possibility is to use a cipher unit during the
data transfers between CPU and cache memory (Figure
7b). Consequently, all the data contained in the cache
memory will be ciphered.

However, this scheme is critical. Modifying the cache
access time directly impacts the system performance. The
encryption / decryption process must be transparent for the
CPU. That’s why the cipher unit shall be a stream cipher.
Additional problems appear: the key stream must be
available on-chip to prevent drastic performance loss; it
must also be sufficiently random to be secure.

Concerning the availability of the key stream and its
reproduction for the deciphering process, a simple solution
to resolve these two problems is to store it in an on-chip
memory. That implies to add an on-chip memory
equivalent to the cache memory in term of size.

Ciphering cache by this way, seems to enhance the
security level (against the class III attackers which can
observe an integrated memory); however, if the
monitoring of on-chip memory is considered feasible, the
hacker can easily obtain the key stream (stored in an on-
chip memory) and can easily decipher the cache content
without difficulty; consequently a solution must be found
to protect the key stream if the security level has to fend
off class III attackers. Concerning the key stream

generation, several schemes are possible, but one
constraint has to be matched: the time to create the key
stream corresponding to a cache line must be equal, in the
worst case, to an external memory data fetch otherwise it
again implies important performance loss. Indeed, the
generation of the key stream corresponds to a cache miss
after a CPU data request.

Moreover, this scheme seems to provide no benefit in
term of performance when compared to a stream cipher
located between cache memory and memory controller.

The problem of an encryption unit is mainly the CPU
performance degradation. A possible solution to improve
performance would be to add a compression step to a
ciphering solution (Figure 8). The compression has to be
done before ciphering, if not, compression will have a very
poor ratio due to the strong stochastic properties of
encrypted data. The ciphering unit has not to be inserted
between the cache memory and the processor otherwise
the latency induced will be too important.

E.D.U. : Encryption / Decryption Unit

Trusted area

C
om

pr
es

si
on

Decrypted and uncompressed data
Encrypted and uncompressed data

D
ec

om
pr

es
si

on
/

Encrypted and compressed data

CPU
core C

ac
he

M
em

or
y

C
on

tro
lle

r

E
xt

er
na

l M
em

or
y

EDU

Figure 8: Compression and encryption

Compression can improve the performance of the

encryption unit by decreasing the data size to cipher and to
decipher. In addition, compression can raise hopes for a
gain of memory capacity, and also performance benefit
due to lowered bus usage. IBM proposes a tool for code
compression: CodePack [16]. The performance impact is
claimed to be about +/- 10% (depends on the type of
memory used) and an increase of memory density of 35%.

Moreover, compression increases the message entropy
and thus improves the efficiency of an encryption
algorithm on the same message. Another benefit is that
compression adds a layer of security.

5. Conclusion and perspectives

Designing a system offering a sufficient level of
security, and as a result ensuring confidentiality is today
feasible, thanks to a ciphering unit. Avoiding significant
performance losses is the challenge. The first proposed
scheme (insert the ciphering engine between the cache

memory and CPU) appears to be difficult to set up, due to
the sensitive character of the CPU-cache memory
communication in term of timing. Moreover, doubling the
integrated memory size seems to be unaffordable.

Consequently, one investigation proposed is to add a
compression step preceding the ciphering step and
eventually merge both on the same core. This might lower
the performance loss and increase the security as well.

In future exploration, it might also be relevant to take
into account the problem of integrity, to thwart attacks
based on the modification of the fetched instructions.

References:

[1] B. Schneier, Applied Cryptography: Protocols, Algorithms

and Source Code in C. John Wiley and Sons, 1996.
[2] M. Kuhn, The TrustNo 1 Cryptoprocessor Concept. CS555

Report, Purdue University
(http://www.cl.cam.ac.uk/˜mgk25/), Apr. 1997.

[3] Tanguy Gilmont, Jean-Didier Legat, Jean Jacques
Quisquater: “Enhancing Security in the Memory
Management Unit”. 25th Euromicro Conference, September
1999, Vol. 1 p.1449-

[4] DG Abraham, GM Dolan, GP Double, JV Stevens,
“Transaction Security System”, in IBM Systems Journal v
30 no2 (1991) pp 206-229

[5] S. Ravi, A. Raghunathan and S. Chakradhar, “Tamper
Resistance Mechanisms for Secure Embedded Systems,”
IEEE Intl. Conf. on VLSI Design, Jan. 2004

[6] M. G. Kuhn: Cipher Instruction Search Attack on the Bus-
Encryption Security Microcontroller DS5002FP, IEEE
Trans. Comput., vol. 47, pp. 1153–1157, Oct. 1998.

[7] Best, R. M.: Microprocessor for Executing Enciphered
programs, U.S. Patent No. 4 168 396, September 18, 1979.

[8] Best, R. M.: Crypto Microprocessor for Executing
Enciphered Programs, U.S. Patent No. 4 278 837, July 14,
1981.

[9] Best, R. M.: Crypto Microprocessor that Executes
Enciphered Programs, U.S. Patent No. 4465 901, August
14, 1984

[10] Richard Takahashi and Daniel N. Heer: Secure memory
management unit for microprocessor, U.S. Patent (from
VLSI Technology, Inc.) No. 5 825 878, October 20, 1998

[11] Brant Candelore and Eric Sprunk: Secure processor with
external memory using block chaining and block re-
ordering, U.S. Patent (from General Instrument
Corporation) No. 6 061 449, May 9, 2000

[12] Dallas Semiconductor (Maxim), http://www.maxim-
ic.com/Microcontrollers.cfm

[13] XOM project: http://www-vlsi.stanford.edu/~lie/xom.htm
[14] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S.

Devadas, AEGIS: Architecture for Tamper-Evident and
Tamper-Resistant Processing, in Proc. Intl Conf.
Supercomputing (ICS ’03), pp. 160–171, June 2003.

[15] NIST: National Institute of Standard and Technology,
http://www.nist.gov/

[16] IBM code pack : http://www.ibm.com/us/

	Main Page
	DF'05
	Front Matter
	Table of Contents
	Author Index

	DATE'05

