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Abstract 
The widening spectrum of applications and services 

provided by portable and embedded devices bring a new 
dimension of concerns in security. Most of those 
embedded systems (pay-TV, PDAs, mobile phones, etc…) 
make use of external memory. As a result, the main 
problem is that data and instructions are constantly 
exchanged between memory (RAM) and CPU in clear 
form on the bus. This memory may contain confidential 
data like commercial software or private contents, which 
either the end-user or the content provider is willing to 
protect. The goal of this paper is to clearly describe the 
problem of processor-memory bus communications in this 
regard and the existing techniques applied to secure the 
communication channel through encryption – 
Performance overheads implied by those solutions will be 
extensively discussed in this paper.  
 
 

1. Introduction: 
 

The range of services provided by every single 
embedded system tends to widen rapidly: banking 
transactions, web browsing, application / game download 
are nowadays common applications on mobile devices. In 
many cases, confidentiality in multiple forms has to be 
guaranteed: end-user private data must be kept secret, 
illegal software use must be avoided, etc. Unfortunately, 
the amount of memory needed for those platforms imply to 
use external memories for storing software and data, 
usually in clear form. That makes the processor-memory 
bus the weakest point of the system, hacker’s favorite 
security hole. Observing both memory content and system 
execution can be done through simple board-level probing 
at almost no cost.  

The obvious basic tool to counter these attacks is 
cryptography. 

 
 
 

Cryptography can be divided in two families:  
- Symmetric cryptography (a.k.a. private-key 

cryptography) [1]; the same key is used to cipher and 
decipher a message. Symmetric cryptography can be 
divided in two subfamilies, stream cipher (RC4, Steal) and 
block cipher (DES, 3DES, AES), both depicted later in 
this paper. 

- Asymmetric cryptography (a.k.a. public-key 
cryptography) [1]; Two keys are used, one is public 
(known by every one) and the other is private and 
therefore has to be kept secret. This family of algorithms 
can address different purposes: if the private key is used to 
encrypt a message, everyone can decrypt it using the 
public key: such a scheme is usually used for 
authentication. On the other hand, if the public key is used 
to encrypt, only the private key owner can decrypt it, in 
this scheme, asymmetric cryptography is used for 
ciphering. That enables to achieve secure data exchanges 
over networks without having previously agreed of a 
common private key. 

All cryptographic schemes are confronted to the 
temporal problem: the key must be long enough to thwart 
the “Brute force attack”. These attacks consist in trying all 
possible keys. It’s usually considered that a cryptosystem 
has a lifetime of at most 10 years due to the increase in 
computer processing power (Moore’s law). 

Two major issues are to be considered when dealing 
about security: integrity ensures that the data has not been 
modified (usually done for breaking into the system) while 
confidentiality guarantees the privacy of the data. This 
paper will only address the latter through existing 
encryption techniques. Moreover it will not explore the 
key management mechanisms relative to multitasking 
operating systems; refer to [2] for extensive discussion on 
that topic.  

The paper is organized as follows: 
Section 2 presents the context. Emphasis will be 

placed on the problem itself, and the consequences of 
inserting cryptosystems into SoCs will be discussed. 
Classification and targeted security level will also be 
exposed. Section 3 presents the different hardware 
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encryption units proposed in the literature. Section 4 
relates some yet unexplored solutions, discussing their 
respective advantages and drawbacks. Finally, some 
conclusions are drawn in section 5. 

2. Context: 

2.1 Software confidentiality 
 
The emergence of on-demand software downloading 

services brings in the foreground the problem of content 
protection. It is therefore mandatory to establish a secure 
channel over a non secure network. As depicted in Figure 
1 (issue from [3]) the software editor protects his product 
against piracy according to the following technique: a 
session key (K) is chosen and the software is ciphered 
using a symmetric algorithm. However in this case there 
are two potential risks: 

i) A third-party may intercept the session key; the 
session key is the weak point and shall not be transmitted 
in clear form over the network (necessary prior to establish 
the secure channel). That’s where public key algorithms 
come into play: they allow to transmit the session key in 
encrypted form; the protocol used is as follows: 

1. A couple of keys – private (Dm) / public (Em) – is 
provided by the chip manufacturer. The first one 
(Dm) is stored in a non-volatile memory inside the 
“secure” processor, and the second one (Em) is 
transmitted to everyone who wants to 
communicate in a secure way with the processor. 

2. The processor requests from the software editor 
the session key (K). 

3. The software editor requests from the chip 
manufacturer the public key (Em), who sends it 
over a non secure transmission channel. 

4. The software editor sends, on the non secure 
transmission channel, a ciphered version of K, 
obtained with an asymmetric algorithm and (Em). 

5. Only the processor can decipher the message (K 
ciphered version) with the private key (Dm) 
stored in the non-volatile memory. 

6. Finally, the processor uses K and a symmetric 
algorithm to decipher the software and to install 
the code in the external memory. 

 
ii) The second risk is that the software might be copied 

afterwards: it is stored in clear form inside the external 
memory. During execution, information (data and 
instructions) are exchanged with the processor in clear: the 
bus can be probed and the software can be distributed 
without the knowledge of the software editor. The problem 
is shifted from the transmission channel to the 
communication bus between the CPU and external 
memory.  
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Figure 1: Secret key exchange protocol on a non 

secure transmission channel 
 

In order to prevent that, the first idea would consist in 
using the symmetric algorithm employed by the software 
editor between the CPU and the external memory. 
However, the software editor can choose among different 
symmetric algorithm witch additionally might not be 
appropriate for processor-memory communication. 
Therefore, the deciphering step (with the session key (K)) 
often takes place in software.  

The cipher unit has to be on the System On Chip 
(SOC), to complicate observation of the cryptosystem 
process, and thus, taking into account constraints such as: 
area, power consumption, performance penalties, is 
mandatory. 

2.2 Cryptosystem SOC context 
 

Electing a cryptosystem has to be done with respects to 
the system specifications. It is often a tradeoff between 
intended security (robustness) and affordable performance 
loss. The deciphering process implied by external CPU 
request will be deeply explored because of the usually 
stated critical impact on performance. Despite memory 
content ciphering can be done offline, data encryption has 
nevertheless to be considered as well for memory write 
operations, that will be discussed later in this paper. 

 
Asymetric vs Symetric cryptography: 
Asymmetric cryptography algorithms are often based 

on modular arithmetic, and operate on huge integers (512-
2048 bits). They require more processing power (due to 
modular exponentiation) than symmetric algorithm for an 
equivalent robustness. Moreover, ciphered text is longer 
than the original clear text; larger memories are thus 



 

needed. Therefore, only symmetric algorithms will be 
considered in this paper. 
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Figure 2: (a) Stream cipher principle; (b) Bloc 
cipher principle; (c) Example of encryption unit 

placement 
Symmetric cryptography algorithms are divided in two 

families: stream cipher and block cipher.  
Concerning block cipher, the plaintext is splitted in 

blocks (Figure 2b), and then each block is ciphered. On 
the other hand, the stream cipher principle (Figure 2a) is 
based on a XOR gate and a key stream. The first step is to 
generate the key stream. Then, the cipher text results from 
a XOR operation between the plaintext and the key 
stream. The robustness of this cryptosystem is based 
mainly on the key stream generation. 

In our context, stream cipher seems to be more suitable 
in term of performance: the key stream generation can be 
parallelised with external data fetch. The shortcoming of 
block cipher cryptosystems is that deciphering cannot start 
until a complete block has been received. 

The following observations must be taken into account 
by the cryptosystem designer; they’re mainly related to 
block cipher implementations issues but can also apply to 
stream cipher to some extend. 

Block cipher algorithms (symmetric algorithms) allow 
different ciphering mode [1]. Electronic CodeBook (ECB) 

is the most obvious mode; ciphered blocks is a function of 
the corresponding plaintext block, the algorithm and the 
secret key. Consequently a same data will be ciphered to 
the same value; which is the main security weakness of 
that mode. Cipher block chaining (CBC) mode provides 
improved security since each encrypted block depends 
also on the previous plaintext block. Its use proves limited 
in a processor-memory system due to the random data 
access problem (JUMP instructions). 

If the encryption unit is located between cache memory 
and memory controller (Figure 2c), data stored in the 
cache memory will be in clear form. Accordingly, each 
cache miss implies external memory access along with 
additional latency due to the deciphering process. 
However, a write operation can have an even worst impact 
on the performance. The writing operation of a data 
smaller than the ciphered block size is penalizing because 
implies the following steps: 

- Read the block from memory, 
- Decipher it, 
- Modify the corresponding sequence into the 

block, 
- Re-cipher it, 
- Write it back in memory.  

One of the challenges of the cryptosystem design 
would be to hide these latencies. 

2.3 Attack classification 
 

IBM proposed a taxonomy [4] of adversaries and 
attacks in order to classify the security level achieved by 
each of their product: “Adversaries were grouped into 
three classes, in ascending order, depending on their 
expected abilities and attack strengths: 
Class I (clever outsiders): They are often very intelligent 
but may have insufficient knowledge of the system. They 
may have access to only moderately sophisticated 
equipment. They often try to take advantage of an existing 
weakness in the system, rather than try to create one. 
Class II (knowledgeable insiders): They have substantial 
specialized technical education and experience. They have 
varying degrees of understanding of parts of the system 
but potential access to most of it. They often have access 
to highly sophisticated tools and instruments for analysis. 
Class III (funded organizations): they are able to 
assemble teams of specialists with related and 
complementary skills backed by great funding resources. 
They are capable of in-depth analysis of the system, 
designing sophisticated attacks, and using the most 
sophisticated analysis tools (very expensive). They may 
use Class II adversaries as part of the attacks team.” 
 

Throughout this paper, the consumer market is 
targeted. For a hacker the cost of the attack should not 
exceed the price of the protected entity or the amount of 



 

profits expected. Thus, in our case, only attacks and 
adversaries classified in class II are taken into account.  

Only none strongly invasive attacks are considered, 
physical access to data is limited to bus probing. The main 
objective is to prevent an attacker from understanding the 
contents of the data stored in external memory. Reference 
[5] provides a complete overview of existing attacks 
targeting secure embedded systems. 

For example a famous attack carried out against the 
bus-encryption system of the DS5002FP microcontroller 
[6] by Marcus Kuhn consisted in the following:  

The security principle of this microcontroller is based 
on a ciphering by block of 8-bit instructions. The hacker 
circumvents the cryptographic problem by finding a hole 
in the architecture processing and by applying exhaustive 
attack (8-bit instruction � 256 possibilities). After having 
identified the MOV instruction, he dumped the external 
memory content in clear form through the parallel-port. 

3. State of the art: 
 

The principle of bus encryption (encryption of the 
external memory content) was first introduced by Best 25 
years ago [7] [8] [9]. Best proposed to consider the CPU 
as secure and consequently all data and addresses are in 
decrypted form inside the CPU and encrypted outside the 
SOC. Accordingly, a cipher unit is implemented on-chip, 
and a secret cipher key is located in an on-chip register 
(Figure 3). The block cipher chosen is based on basic 
cryptographic functions such as mono and poly-alphabetic 
substitutions and byte transpositions.  

 

 Figure 3: Principle of Best's patent 
 

Some of the rules enounced by Best are still today 
considered as reference: System On Chip (SOC) is trusted, 
cipher unit and secret key remain on-chip, moreover all 
proposed hardware encryption units are located between 
the cache and the external memory controller.  

Concerning industrial research, numerous patents exist. 
VLSI technology [10] proposes an architecture (Figure 4) 
where data transfers to and from the external memory are 
done page-by-page. All CPU external requests are 
managed by a secure DMA unit and communications 
between external and internal memory use an encryption / 
decryption core. This system allows the use of block 

cipher techniques (robustness). As the DMA is controlled 
by the operating system, this technique is viable provided 
that the OS is trusted. 

 

 
Figure 4: Principle of VLSI technology's patent 

Figure 5: Principle of the General Instrument's patent 
 

Another patent, by General Instrument Corporation 
[11], proposed to encrypt the memory content with a 3-
DES (Data Encryption Standard) (Figure 5) in block 
chaining mode (CBC), and to offer the possibility to 
authenticate the data coming from external memory thanks 
to a keyed hash algorithm. Nonetheless, as seen 
previously, cipher block chaining technique is very robust 
but implies unacceptable CPU performance degradation 
for random accesses in external memory. 

 

 

Figure 6: Principle of the Dallas semiconductor's 
device 

 

A famous industrial device designed for different 
markets like pay-TV access control and credit cards is the 



 

one proposed by Dallas Semiconductor (Figure 6). The 
old version of their product, the DS5002FP [12], was 
broken by the well known Markus G. Kuhn attack [6]. The 
new one, the DS5240 [12], implements a ciphering based 
on a true DES or 3-DES block cipher which strengthened 
the robustness of the product. Accordingly, the 8-bit based 
ciphering passes to 64-bit based ciphering. 

Concerning academic works, three projects [3][13][14] 
proposed tamper-resistant architectures including bus 
encryption units.  

Guilmont et al. [3] use a fetch prediction unit and 
pipelined triple-DES block cipher. They assume to keep 
the deciphering cost under 2,5% in term of performance 
cost. However, this work only addresses static code 
ciphering and consequently authors are not confronted to 
smaller-than-block-size memory operations (occurs for 
data writing). As seen previously, great performance loss 
is to be expected in such cases. 

The Xom project [13] uses a pipelined AES 
(Advanced Encryption Standard) block cipher as cipher 
unit which features a low latency of 14 latency cycles, 
while a throughput of one encrypted/decrypted data per 
clock cycle is claimed. In these projects the cipher unit is 
not the central focus: it’s a part of a tamper-resistant 
architecture, and no specific benchmark has been carried 
out. Indeed, taking into account only the latency doesn’t 
inform about the overall system cost.  

The third work is called AEGIS [14]. In this work, the 
bus encryption engine is evaluated separately, therefore 
the given cost overhead information in terms of 
performance and silicon area are more detailed. The 
cipher unit is composed by a pipelined AES (300,000 
gates) in CBC (Cipher Block Chaining) mode. But the 
ciphering block chain corresponds to a cache block, thus 
allowing random access to external memory (each cache 
block may be ciphered in CBC mode separately). 
However, the fetch instruction cannot be provided to the 
processor until an entire cache block is deciphered. The 
generation of the initialization vector (IV) needed by the 
CBC mode proves really secure: it is composed by the 
block address and by a random vector; to thwart the 
birthday attack [1] it is possible to replace the random 
vector by a counter. The major drawback is again the 
heavy trade-off between security and embedded 
constraints: they estimate the performance overhead 
induced by the encryption engine to 25%.  

Numerous researches were carried out on the subject; 
the principle allowing a strong security is known: 
hardware implementation of algorithm approved by the 
NIST [15] – National Institute of Standard and 
Technology – in the past DES algorithm and currently the 
AES; however the cost overhead generated by those 
implementations remains considerable and unacceptable 
(in particular in term of execution time). 

4. Various solutions considered: 
 

All the presented existing solutions proposed a cipher 
unit on chip between cache memory and controller 
memory (Figure 7a).  
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Figure 7: (a) EDU between cache and memory 
controller; (b) EDU between CPU and cache memory 

 

Another possibility is to use a cipher unit during the 
data transfers between CPU and cache memory (Figure 
7b). Consequently, all the data contained in the cache 
memory will be ciphered. 

However, this scheme is critical. Modifying the cache 
access time directly impacts the system performance. The 
encryption / decryption process must be transparent for the 
CPU. That’s why the cipher unit shall be a stream cipher. 
Additional problems appear: the key stream must be 
available on-chip to prevent drastic performance loss; it 
must also be sufficiently random to be secure.  

Concerning the availability of the key stream and its 
reproduction for the deciphering process, a simple solution 
to resolve these two problems is to store it in an on-chip 
memory. That implies to add an on-chip memory 
equivalent to the cache memory in term of size. 

Ciphering cache by this way, seems to enhance the 
security level (against the class III attackers which can 
observe an integrated memory); however, if the 
monitoring of on-chip memory is considered feasible, the 
hacker can easily obtain the key stream (stored in an on-
chip memory) and can easily decipher the cache content 
without difficulty; consequently a solution must be found 
to protect the key stream if the security level has to fend 
off class III attackers. Concerning the key stream 



 

generation, several schemes are possible, but one 
constraint has to be matched: the time to create the key 
stream corresponding to a cache line must be equal, in the 
worst case, to an external memory data fetch otherwise it 
again implies important performance loss. Indeed, the 
generation of the key stream corresponds to a cache miss 
after a CPU data request.  

Moreover, this scheme seems to provide no benefit in 
term of performance when compared to a stream cipher 
located between cache memory and memory controller. 

The problem of an encryption unit is mainly the CPU 
performance degradation. A possible solution to improve 
performance would be to add a compression step to a 
ciphering solution (Figure 8). The compression has to be 
done before ciphering, if not, compression will have a very 
poor ratio due to the strong stochastic properties of 
encrypted data. The ciphering unit has not to be inserted 
between the cache memory and the processor otherwise 
the latency induced will be too important. 
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Figure 8: Compression and encryption 

 
Compression can improve the performance of the 

encryption unit by decreasing the data size to cipher and to 
decipher. In addition, compression can raise hopes for a 
gain of memory capacity, and also performance benefit 
due to lowered bus usage. IBM proposes a tool for code 
compression: CodePack [16]. The performance impact is 
claimed to be about +/- 10% (depends on the type of 
memory used) and an increase of memory density of 35%.  

Moreover, compression increases the message entropy 
and thus improves the efficiency of an encryption 
algorithm on the same message. Another benefit is that 
compression adds a layer of security. 

5. Conclusion and perspectives 
 

Designing a system offering a sufficient level of 
security, and as a result ensuring confidentiality is today 
feasible, thanks to a ciphering unit. Avoiding significant 
performance losses is the challenge. The first proposed 
scheme (insert the ciphering engine between the cache 

memory and CPU) appears to be difficult to set up, due to 
the sensitive character of the CPU-cache memory 
communication in term of timing. Moreover, doubling the 
integrated memory size seems to be unaffordable. 

Consequently, one investigation proposed is to add a 
compression step preceding the ciphering step and 
eventually merge both on the same core. This might lower 
the performance loss and increase the security as well.  

In future exploration, it might also be relevant to take 
into account the problem of integrity, to thwart attacks 
based on the modification of the fetched instructions. 
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