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Abstract 

 

The aggregation dynamics of solid particles in liquid media is currently followed by optical 

based particle sizing methods. Because it can be used in situ and applied to a wide particle 

size range, turbidimetry is acknowledged as one of the best methods for this characterization. 

Although much work has been done about aggregation, some aspects are less known and 

require additional experimental and theoretical research. This is particularly the case of 

aggregation of hydrophobic particles. Corresponding aggregates are 3-phase objects (solid-

liquid-gas) the morphology and optical properties of which are not known. Present work rests 

on the turbidimetric study of hydrophilic and hydrophobic silica samples in stirred aqueous 

solutions. Modelling involves different aspects: aggregate morphology, aggregate optical 

properties, and aggregation dynamics. This paper particularly emphasizes the second one. 

Fractal-like models are proved to be representative of the aggregate morphology even at small 

size. Light scattering cross-section of the aggregates is calculated from their averaged 

projected area; effective refractive index is proved to be a good parameter for modelling their 

optical properties both for hydrophilic and hydrophobic aggregates. Classical models of 

porous aggregate formation (Kusters theory) are used for describing the aggregation 

dynamics.  

Keywords : Light scattering ; aggregates ; hydrophilic ; hydrophobic ; silica. 
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Introduction 

 

Aggregation of hydrophilic particles in stirred liquid media can be considered as a relatively 

well understood process in spite of the variety and complexity of its aspects: physico-

chemical, hydrodynamic, morphological (Elimelech et al., 1995). On the contrary, 

aggregation of hydrophobic particles in aqueous media or more generally solid particles in 

non wetting media is less known, at least on certain aspects, particularly the aggregate 

structure and properties.  

 Experimental works have confirmed the existence of strong long range (20-200 nm) 

attractive forces between hydrophobic surfaces in water (Yushchenko et al., 1983; Parker et 

al., 1994). This hydrophobic interaction was quantified from direct force measurements and 

proved to be, in most cases, much larger than the van der Waals forces. Previous 

experimental results have given rise to intensive theoretical work about the origins of the 

hydrophobic interaction. Several interpretations have been explored in some details (Attard, 

2003).  It seems that the most likely explanation focuses upon the bridging of nanobubbles 

which are present on the hydrophobic surface. The existence of these bubbles was first 

deduced from force measurements and then confirmed by direct observations (Parker et al., 

1994; Yabukov et al., 2000; Attard, 2003). Although experimental evidence and 

thermodynamic interpretation conclusively prove that gas bridging from pre-existing 

nanobubbles is of major importance in hydrophobic aggregation, some theoretical aspects are 

less understood. In particular, volume fraction and spatial repartition of gas in hydrophobic 

aggregates are not known. 

 Here a few results are presented from an experimental study of aggregation of two silica 

samples coming from the same lot: the original sample is naturally hydrophilic; the other has 

been made hydrophobic by surface chemical processing. Aggregation process is followed by 

 2



in situ turbidimetry, the interpretation of which requires knowledge of the light scattering 

cross section of aggregates. 

 

Experimental Methodology 

 

Materials and methods 

 

Original solid samples consist of monodisperse silica spheres (0.5 µm in diameter, Geltech 

Inc product code: S0501). They are highly insoluble in water and can be made hydrophobic 

by superficial grafting of carbon chains. The grafting procedure consists first of an 

hydroxylation process which produces highly reactive silanol (-SiOH) groups, then of a 

wetting step with a N,N dimethyloctadecylaminosilane solution which produces the surface 

silanisation reaction, i.e. the grafting of a carbon chain via a strong Si-O-Si bond. The contact 

angle on this processed surface is 125° in pure water. Both silica particles, processed or 

unprocessed, have a zero point charge pH of 3.2 (Cugniet, 2003; Gruy et al., 2004). 

The reactor is a double jacketed 4-baffled 1.45 L vessel. It is provided with a watertight cover 

so that it can be completely filled with liquid, avoiding in this the presence of a free interface 

which could entrap hydrophobic particles. Turbulent agitation is ensured by a four bladed 45° 

teflon impeller. Temperature is kept constant at 25.0°C. Each aggregation experiment consists 

of the following steps: preliminary dispersion by ultrasonics of 0.246 g of solid sample in an 

ethanol-rich small volume; filling-up of the reactor with water; injection of the silica 

suspension and destabilization by nitric acid addition (pH 2 to 4). Aggregation immediately 

starts and can be followed by turbidimetry.  

 Over the last ten years, we have developed several optical devices to determine in situ the 

particle size distribution (PSD) or the moments of particulate systems. For diluted 
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suspensions (solid volume fraction φ < 10-4), an optical sensor based on spectral turbidimetry 

principles can be used to determine the PSD of suspensions composed of submicronic and 

micronic particles (Crawley et al., 1997). The turbidity probe is vertically located at the two-

thirds of the vessel radius halfway between two baffles, and mounted at third liquid height 

above the bottom of the tank. Light emitted by a Xenon UV light source is led by fibre optics 

to the probe window. The emerging light beam is collimated by a lens. When crossing the 1 

cm optical path, light is scattered by the different particles and aggregates. Emerging light is 

collected by the same system (similar lens and fibre optics) and led to a commercial 

spectrophotometer which finally delivers the turbidity spectrum in the wavelength range [350 

nm-800 nm]. Turbidity τ which expresses the extinction due to scattering by particles is 

defined by the relation: 
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in which λ0 is the wavelength, I0(λ0) the intensity of the incident beam and I(λ0) the intensity 

of the transmitted beam after an optical path of length Lopt.  

 

Principle of exploitation of the experimental data 

 

In situ turbidimetry has been successfully applied by the authors to several systems in order to 

determine their aggregation dynamics. Details can be found in Cugniet (2003) and Saint-

Raymond et al. (1998). 

 For a polydisperse population of particles, turbidity contains the contribution of each class 

of aggregate: 
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where Ni is the number concentration of aggregates consisting of i primary particles. Particle 

extinction section Cext,i is derived from the Mie theory (van de Hulst, 1957); Cext,i depends on 

the particle diameter, on the refractive index ratio and on the wavelength. Its calculation is 

relatively easy for spherical, compact, or large particles. However, it is much more intricate 

for small, non compact aggregates. From equation (2) it can be seen that variations in the 

different aggregate concentrations Ni result in turbidity variation, thus the interest of 

turbidimetry to follow the aggregation process. When aggregation takes place in a liquid 

suspension, turbidity either increases or decreases versus time (Saint-Raymond et al., 1998; 

Gruy et al., 2004). From a general point of view, decreasing or increasing trend is determined 

both by the primary particle size and the refractive index ratio between the liquid phase and 

the aggregates. In both cases, amplitude of turbidity variation indicates the global extent of 

the whole process. Initial slope is proportional to the aggregation rate whereas non-zero 

height of the final plateau reveals the existence of aggregate maximum size possibly due to 

fragmentation. 

 

Experimental results 

 

Figures 1 and 2 represent respectively turbidity change with time for hydrophilic and 

hydrophobic silica (λ = 550 nm) in ethanol (3.45 %)-water (96.55 %) mixture. This 

composition corresponds to the smallest ethanol quantity leading to a high dispersion of 

hydrophobic silica suspension during sonication. Effect of the stirring rate on turbidity 
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variation with time has been examined in both cases. Relatively simple calculation using Mie 

theory (van de Hulst, 1957) shows that, for the present initial radius and refractive index 

values, turbidity should increase at least initially when aggregation proceeds. This is observed 

for the unprocessed particles. The opposite trend which is noted for hydrophobic silica can be 

explained by a decrease in the aggregate refractive index and a change in the index contrast 

between the liquid phase and the aggregate. Precisely, presence of gas (air or vapour) in an 

aggregate may considerably change this contrast and be responsible for the behaviour 

modification we noted. Referring to the usual models of hydrophobic interaction (Attard, 

2003), this is a strong indication for the presence of gas bridges between the particles. 

Another confirmation can be found in the final value of the turbidity (Figures 1 and 2) which 

is very low in the case of hydrophobic particles and consistent with the formation of few large 

aggregates. In the case of unprocessed particles, the relatively high level of final turbidity 

indicates the presence of numerous small aggregates. The hydrophobic aggregates are 

apparently much less or even not at all sensitive to fragmentation in the same hydrodynamic 

conditions. This behaviour is as well consistent with the presence of gas bridges between the 

particles which strongly strengthen the aggregates.  
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Figure 1. Influence of stirring rate on hydrophilic 0.5 μm silica aggregation. 1: 200 rpm; 2: 

400 rpm; 3: 800 rpm 

 

 

Figure 2. Influence of stirring rate on hydrophobic 0.5μm silica aggregation. 1: 200 rpm; 2: 

400 rpm; 3: 800 rpm 
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Interpretation and Models 

 

Aggregate morphology 

 

Most recent experiments of aggregation in turbulent medium tend to prove that the aggregates 

have a fractal structure (Kusters et al., 1997; Gruy, 2001; Cugniet, 2003). An aggregate 

containing i identical primary particles of radius a1 is characterised by its fractal dimension Df 

and outer radius ai which are linked by the relation: 

 
1

1

Df

i
ia a

Fs
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (3) 

where Fs is a structure factor, which obeys the relation (Gmachowski, 1996):  

 0.42 0.22fFs D= −  (4) 

According to the different authors, the fractal dimension corresponding to turbulent (local 

shear flow) aggregation is equal to 2.35 ± 0.15. 

The fractal-like models are normally applicable only to large aggregates; Gruy (2001), 

however, has introduced the notion of weak fractal dimension (based on projected area of an 

aggregate on any plane) which can be extended to small aggregates and may make equations 

(3,4) suitable for them. 

 

Aggregate optical properties 

 

 In a previous paper (Cournil et al., 2002), it was shown that hydrophobic particles are 

probably covered by a gas layer which invades their superficial porosity and that this gas 

layer may play an essential part both in the aggregate formation and fragmentation. In 
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particular, aggregate fragmentation is considerably reduced due to the presence of gas bridges 

between particles whereas effect of hydrophobicity is less noticeable on aggregation kinetics, 

i.e. the change of aggregate concentrations ( )iN t . As decrease in turbidity occurs as early as 

the start of aggregation, it is believed that new optical properties of the aggregates should be 

invoked at the first instance to explain the trend inversion in the turbidity variation. 

Sedimentation of large aggregates also occurs later on in the process. 

 

Previous work on microbubbles-particles suspension 

Suspensions with small particles and air bubbles (or microvoids) in a liquid or resin are met in 

the paints or coatings industry (Ross, 1971; Kerker et al., 1975). Generally a white paint film 

is composed of titania (TiO2 , rutile) particles uniformly covered by a shell of silica, alumina 

or other materials. Opacity or hiding power is one of the main properties of a paint. It is due 

to multiple scattering of light by small particles. The higher the concentration of particles and 

the higher the optical contrast, the better the opacity. However, if the TiO2 particle 

concentration is too large, particles can form aggregates, that are less efficient for scattering 

the light (Auger et al., 2003). In order to minimize the cost of white paint, one replaces rutile 

particles by small air bubbles, which are, however, less efficient scatterers than TiO2 particles 

(Ross, 1971). So, a paint film can contain single rutile particles, microvoids or air 

microbubbles and aggregates of rutile particles.  It has been suggested that the scattering 

efficiency could be improved by introducing rutile particles inside the microbubbles, due to 

the increased optical contrast (TiO2 n = 2.8; air n = 1; resin n = 1.5). This situation is very 

similar to the system under study (SiO2 n = 1.44; air n = 1; water n = 1.34).  

Turbidimetry for diluted suspension rests on the “single scattering event” theory. For a 

monodisperse suspension, turbidity is expressed by:  
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where l  is the mean free path of photon. For a concentrated dispersion such as a paint, optical 

properties will be calculated in the framework of  the radiative transfer theory. Simpler 

modelling of scattering in paints is also realized by using Kubelka-Munk theory (Ross, 1971).  

The main physical parameter for the two theories is the transport mean free path defined 

as: 

*l
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with 

 

  (1 1sca
p

S C
V

)μ= −  (7) 

 

where , , pVμ φ  are respectively the particle anisotropy factor, the volume fraction of particles 

and the volume of one particle.  and S characterize, respectively, the suspension and the 

particle.  and S are also called  the scattering efficiency of the film and of the particle. 

*l

1*l −

Kerker et al., (1975) studied a single titania particle coated by an air layer embedded in resin. 

They calculated its scattering efficiency as a function of the size parameter 2 /bν π= λ  (b is 

the radius of the spherical particle - air layer set) and volume fraction pφ  of titania. 

When 2ν < , the scattering efficiency presents a strong minimum for 0.2 0.5pφ< <  and the 

corresponding values of pφ  and S are dependent on ν . This result was confirmed by Auger 

(Auger et al., 2004). A similar conclusion, by using /sca pC V  as scattering efficiency, was 
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attained by Auger (Figs 4, 5, 6. in Auger et al., 2001) for 10ν <  . When 2ν >> ,  Kerker et al. 

(1975) observed a synergistic effect: the replacement of a part of the particle by a microvoid 

concentric spherical shell results in an enhancement of the scattering efficiency S (but, not for 

/sca pC V ). This effect, though weaker, was confirmed by Auger et al.(2004) for 5ν > . The 

transition value for ν  between the two behaviours is dependent on the system: TiO2 which is 

characterized by an high refractive index presents a maximum of scattering efficiency for a 

particle radius equal to about 0.2 µm (1 2 /a 2ν π λ< = < ). Then, minimum for scattering 

efficiency may occur for a spherical particle - air shell set, the size of which is larger than the 

one of a single particle having a maximal scattering efficiency. Kerker et al. (1975) suggested 

that the minimum of scattering efficiency can be explained in the framework of Rayleigh 

theory, i.e. by introducing the polarisability of a coated sphere (Kokhanovsky, 2001). Then, 

this is equivalent to the definition of an effective refractive index  for small coated sphere: csm

 

  
( ) ( )
( ) ( )

2 2 2 2 2 22

2 2 2 2 2 2 2

( ' 1) 2 ' ( ' ) 2 ' 1( 1)
( 2) ( ' 2) 2 ' ( ' ) 2 ' 2

pcs

cs p

m m m m m mm
m m m m m m m

φ

φ

− + + − +−
=

+ + + + − −
  (8) 

 

m and m’ are respectively the relative (compared to the continuous medium) refractive index 

of particle and gas. Minimum of scattering efficiency corresponds to this value of . csm

The displacement of the TiO2 particle from the centre to the edge of the air bubble can lead to 

either an increase or a decrease of  scattering cross section by a factor two (Auger et al., 

2001). However, the effect of location of particle inside the air bubble on scattering properties 

is less pronounced than the effect of the particle location that can be inside or outside the air 

bubble (Fig 4. in Auger et al., 2001). This brief survey shows that the presence of 

microbubbles in suspension may lead to a decrease of its scattering properties. 

 To characterize the optical properties of silica suspensions, it is proposed to calculate 
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now the extinction cross section of the hydrophilic, then hydrophobic aggregates. Exact 

methods could be used for calculating scattering properties of aggregates (see, for instance, 

Xu, 1995; Xu, 1998; Auger et al., 2001; Auger et al., 2003). Due to time-consuming 

computations, these calculations are restricted to very small aggregates and only used in the 

case of simple aggregate morphology. As the aggregation process leads to a wide population 

of aggregates with various morphologies, one needs approximate methods for extinction cross 

section estimates. 

 

Hydrophilic silica aggregates 

Each aggregate is characterised by its radius ai and its mean inner volume fraction aφ  

(deduced from (3)). Two kinds of modelling are successfully used to calculate optical 

properties of small silica aggregates (Gruy, 2001). 

 

- Effective Refractive Index method 

The easiest way to determine the optical properties of an aggregate is to calculate its effective 

refractive index ma (see, for instance, Born and Wolf (1980); Vargas et al. (2000). The 

equation derived by Maxwell-Garnett has been proved to be suitable (Gruy, 2001) for this 

system: 
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m and ma are the relative refractive indices respectively for primary particles and aggregates. 

Given the radius and the effective refractive index of an aggregate, the Mie theory (van de 

Hulst, 1957) can allow us to calculate the scattering cross section Csca for a given wavelength 
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λ. 

- Anomalous Diffraction method 

Another simple way to calculate the optical properties of small silica aggregates considers 

interferences between electromagnetic waves scattered by each primary particle of the 

aggregate. In present case of 0.5 μm silica particles in water-ethanol solution, optical 

parameters have the following properties: 11〈〈−m  and ( ) 114
1 ≈−ma

λ
π . When ( )14

1 −ma
λ
π  is 

not too small, light scattering by particles follows the anomalous diffraction model (van de 

Hulst, 1957), i.e., globally, straight transmission and subsequent diffraction. In this case, 

scattered intensity is concentrated near the original direction of propagation and the extinction 

cross section is given by relation: 

 

 ∫∫ −−=
pS

pext dSmC ))1(2cos1(2 δ
λ
π  (10) 

 

 Integration is performed over the object projected area Sp on a plane perpendicular to 

propagation direction. δ is the optical path length through the object. This calculated path is a 

function of the projection coordinates. As aggregate can randomly orientate, the optical 

properties are obtained after calculating an average over all orientations. 

 

Hydrophobic silica aggregates 

 

Refractive indices of silica, water and gases are respectively 1.44, 1.34 and 1.0. Scattering 

properties of particles in a medium mainly depend on the index contrast between the media 

and on the particle size. According to the works of Kerker et al. (1975) and Auger et al. 

(2001, 2004), presence of gas (air or vapour) in an aggregate may considerably change this 
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contrast and be responsible for the behaviour modification that was noted in Figures 1 and 2. 

 Calculation of the scattering properties of a silica-water-air aggregate requires 

assumptions on the three-phase (silica, water, gas) location. The two cases which have been 

envisaged - surrounding thin layer (Figure 3a) or homogeneous density in the porous particle 

(Figure 3b) (Cugniet, 2003) - give similar results.  

 In this paper, considered hydrophobic aggregates are a set of primary particles, each 

covered by a thin layer of gas. Then, one can apply the anomalous diffraction theory in order 

to calculate the extinction cross section: 

 

 (∫∫ ⎥
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δ and δ’ are, respectively, the light path (function of the projection coordinates) through silica 

and gas. m and m’ are, respectively, the relative refractive index of silica and gas. Figure 4 

represents the ratio of scattering cross sections without and with gas versus gas content P 

(ratio of gas volume over silica volume) for different silica small aggregates (Df = 2.7). One 

observes the decrease of scattering cross section with P whatever the aggregate size. This 

decrease is due to ' 1m <  in equation (11). 

 

 

  

 

  a)    b) 

 

Figure 3. Different gas-liquid-solid configurations in the hydrophobic aggregates: a) thin gas 

 14



layer located around each particle; b) homogeneous gas phase inside the aggregate 

 

 Because of time consuming calculations particularly for large aggregates by the 

previous method, a fast procedure resting on Effective Refractive Index method is proposed. It 

has been validated by comparison with numerical results coming from anomalous diffraction 

theory (equation 11). The approximated scattering cross section corresponds to a sphere (Mie 

theory) with equivalent radius  (12a,12b,12c) and equivalent relative refractive index ma’ 

(13a,13b,13c) as follows: 
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=  (13c) 

 

Equation 12 takes into account the size change with the gas content. Equation 13 is a 

corrected Maxwell-Garnett expression: it contains two empirical parameters A and B. A is 
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only effective for very small aggregates ( 4i ≤ ). In B expression, it appears two parameters 

and which are simple functions of Df  (Cugniet, 2003). 1b 2b

  Another benefit of this procedure is that the effect of the turbidimeter acceptance angle 

can be easily taken into account in the framework of Mie theory for sphere (Gruy, 2001). 

 

 

Figure 4. Ratio of scattering cross sections without and with gas versus gas content P for 

different silica aggregates (weak fractal dimension Df = 2.7); primary particle number per 

aggregate is indicated on each plot 

 

Simulations 

 

Previous optical models can be used to calculate the turbidity of different suspensions of 

hydrophobic and hydrophilic silica aggregates. Given an aggregation model (Kusters et al. 

1997), the variation with time of the aggregate population density can be calculated, thus the 

turbidity change over the aggregation process. By comparison between predicted and 
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measured turbidity plots versus time, the different models can be validated and the unknown 

parameters calculated. 

 This procedure was used recently in (Cugniet, 2003) to interpret the main aspects of 

hydrophilic and hydrophobic silica aggregation. We give here two typical examples of 

simulations. Figure 5 shows the experimental and simulated curves obtained for hydrophilic 

silica aggregation. Figure 6 relates to hydrophobic silica aggregation. 

 
 
 

Figure 5. Comparison between experimental and simulated (Df = 2.4; L = 68) turbidity plots 

for 0.5 μm hydrophilic silica particles aggregation at stirring rate 200 rpm. 

 

Relevant simulation parameters are aggregate fractal dimension, respectively, 2.4 and 

2.67 for hydrophilic and hydrophobic aggregates, and maximum particle number per 

aggregate, respectively, 68 and 2048 in this case. For hydrophobic aggregate, a volume 

fraction of 0.3 in gas corresponds to the best agreement between experimental and calculated 

curves. 
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From a strict optical point of view, this example confirms as well as many others 

(Cugniet, 2003) that the inversion in turbidity variation which was observed experimentally is 

due to the presence of gas in the hydrophobic silica aggregates. 

 

 

 

Figure 6. Aggregation of 0.5 μm hydrophobic silica at 200 rpm: experimental and simulated 

(Df = 2.67; L = 2048; P = 0.3) turbidity curves.  

 

Conclusion 

 

The influence of stirring rate on aggregation of hydrophilic and hydrophobic silica in water 

was studied experimentally by turbidimetry. The strong differences in behaviour which are 
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clearly observed have an optical origin which expresses itself through modifications in the 

structure of the aggregates. In addition to its interest relatively to original conditions of 

aggregation, this paper presents new calculation procedures of light scattering cross-section of 

small aggregates of micron sized silica particles in a liquid phase and of three-phase (gas-

liquid-solid) aggregates. The different models are validated using the available aggregation 

experimental data. 
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