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In the study of computer codes, filling space as uniformly as possible is important to describe the complexity of 
the investigated phenomenon. However, this property is not conserved by reducing the dimension. Some 
numeric experiment designs are conceived in this sense as Latin hypercubes or orthogonal arrays, but they 
consider only the projections onto the axes or the coordinate planes. In this article we introduce a statistic which 
allows studying the good distribution of points according to all 1-dimensional projections. By angularly scanning 
the domain, we obtain a radar type representation, allowing the uniformity defects of a design to be identified 
with respect to its projections onto straight lines. The advantages of this new tool are demonstrated on usual 
examples of space-filling designs (SFD) and a global statistic independent of the angle of rotation is studied. 
 
KEYWORDS: Computer experiments ; Space-Filling Designs ; Dimension Reduction ; Discrepancy ; 

Kolmogorov-Smirnov Statistic, Cramer-Von Mises Statistic 
 
 

1. INTRODUCTION 

 
For the last 15 years or so, the design of experiment theory initiated by Fisher (1926) has 

experienced a revival for the analysis of costly industrial computer codes. This development 

has led to at least two major changes. First, these codes represent phenomena of an increasing 

complexity, which implies that the corresponding models are often nonlinear and/or 

nonparametric. Second, the experiment itself is different. Numerical experiments are 

simulations and, except for stochastic codes implementing a Monte Carlo-based method, 

produce the same response for identical conditions (including algorithm and computer-based 

parameters). Therefore, repeating an experiment under the same conditions does not make 

sense since no new information is acquired. 

In this new paradigm, the experiment planning methods are different. For example when 

the code is to be analyzed for the first time before any simulation has been made (scanning 

phase), one often tries to satisfy the following two requirements. Firstly, distribute the points 

in the space as uniformly as possible to catch non-linearities; this excludes repetitions also. 

Secondly, this space coverage should remain well-distributed even when the effective 

dimension is lowered. The first requirement was the starting point of research work in space 

filling designs (SFD). The quality of the spatial distribution is measured either by using 

deterministic criteria like minimax or maximin distances (Johnson, Moore and Ylvisaker, 

1990), or by using statistical criteria like discrepancy (Niederreiter, 1987, Hickernell, 1998, 
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Fang, Li, Sudjianto, 2006). The second requirement stems from the observation that codes 

often depend only on a few influential variables, which may be either direct factors or 

“principal components” composed of linear combinations of these variables. Therefore 

dealing only with these influential factors is more efficient. Note that dimension reducing 

techniques like SIR (Li, 1991) or KDR (Fukumizu, Bach, Jordan, 2004) effectively identify 

the space generated by the principal factors. Hence, it is desirable that the space filling 

property should be also satisfied in the projection onto subspaces. This is the aim of Latin 

hypercubes designs (LHD) and orthogonal arrays (OA) in computer experiments. For 

instance, the space filling LHDs provide a uniform repartition in the projection onto margins, 

so that there is no loss of information if the code depends on only one variable. In addition, 

orthogonal arrays with space-filling properties extend this aspect to higher dimensions (see, 

for example, Koehler and Owen, 1996, and more generally, Owen, 1992 or Santner, Williams, 

Notz, 2003). Nevertheless, considering only the projections onto margins is not sufficient if, 

for example, the code is a function of a linear combination of 2 variables. 

In this article we introduce a statistic based on 1-dimensional projections to test the 

uniformity for a design of experiment. The choice of 1 dimension is due to the difficulty in 

computing the theoretical distribution for higher dimensional space. The advantage of 

restricting to a single dimension is that it offers a simple viewing tool similar to a radar 

screen. By representing the statistic’s value in all directions, one obtains a parameterized 

curve (or surface), identifying the uniformity defects of a design with respect to its projections 

onto straight lines. The article is structured as follows. In section 2 we define the new statistic 

and the associated visualization tool, called uniformity radar, and give some properties of 

them. In section 3 we show examples of radar applications to space-filling designs. Section 4 

is devoted to extend the concept by defining a global statistic which does not depend on a 

particular axis of rotation. In section 5, a discussion on the uniformity radar allows specifying 

its scope of application. Proofs are given in the appendix. 

 

2. UNIFORMITY RADAR 

 

In the analysis of a computer code, let us consider a uniform experiment design on a cubic 

domain [ ]1,1 dΩ = −  . Note 1,..., Nx x  the experimental points, and ( )0H  the hypothesis 

" 1,..., Nx x  were generated by independent random sampling according to the uniform 

distribution in  Ω  ".  If the computer code depends only on one principal component, the 
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projections on this axis should be well distributed. More generally, denote aL  the straight line 

generated by the unitary vector ( )1,..., da a a=  of Ω , and aμ  the probability distribution of 

the projections of 1,..., Nx x  onto aL . Ideally, we may expect that in any direction a the 

distribution aμ  is uniform. However, this is not realistic when aL  is not a coordinate axis. 

For example, in the case of the cubic domain [ ]21,1− , the density of the projected design 

points is higher in the central part of the axis as can be seen in Figure 1.  
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Figure 1. Left : Projections of points onto an axis La. Right : The histogram of the projections. 

 
More precisely, this distribution is supported by 3 areas defined by the projection of the 

corners of the domain. The distribution aμ  is continuous, with density represented below. 

The nodes of the trapezoidal density correspond to the corners of the square Ω  projected onto 

the axis aL , where ( )cos ,sina θ θ= . 

 

 
 
 
 
 
 
 
 

 

Figure 2. The distribution of the projections for a 3 dimensional cubic domain. 

 

In the general case, the projection onto aL  is a linear combination of independent random 

variables of uniform distribution, which leads to a traditional problem of probabilities first 

 0 

β 

α M -M -α 

where : 
 
M = |cosθ| + |sinθ| 
α = | |cosθ|-|sinθ| | 

β = 
α+M

1  
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solved by Lagrange in the 18th century (see discussion in Elias and Shiu (1987) on this topic). 

If we denote ( )1,..., dX X X= , where 1,..., dX X  are independent random variables identically 

distributed following the uniform distribution over [ ]1,1− , and Z  the projection of X onto aL , 

where 0 {1,..., }ja j d≠ ∀ ∈ , then the distribution function of Z is given by : 

FZ (z) =
1

2a jj=1

d

∏
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ × ε(s) (z + s.a)+

d

d!
s∈{−1,1}d

∑  

where ( ) { }1,..., 1,1 d
ds s s= ∈ −  are the corners of the hypercube [ ]1,1 dΩ = − , 

1
( )

d
j

j
s sε

=
= ∏ , 

.s a  is the scalar product of the vectors s and a, and ( ) max( ,0)y y+ =  the positive part of y. As 

a result, for a given axis, Z  admits a piecewise linear density whose nodes correspond to the 

projections of the corners of the domain. 

Note. The distribution of the projections is known in other situations, as in the case of a 

spherical domain: if Ω  is the unit sphere of Rd, a direct calculation shows that aμ  admits the 

density ( ) [ ] ( )2
1,1

2 1 1af x x x
π −= − , the distribution function being equal to 

21 1( ) (Arcsin 1 )
2aF x x x x

π
= + + −  for [ ]1,1x ∈ − . 

  

In sum, for a uniform experiment design to have good distribution properties on the 1- 

dimensional projections, it will be necessary that in all the directions a, the empirical 

distribution of the projections onto aL  is close to their theoretical distribution under the 

hypothesis ( )0H . There exist many distribution adequacy statistics (see D’agostino and 

Stephens, 1986), which allow for a large number of choices to define a criterion adapted for 

this purpose. However, possibilities are limited by special requirements. To start with, it is 

preferable that the statistic’s distribution be known to avoid the approximate calculation of its 

distribution. Furthermore, one would also like the statistic to be distribution free, that is, its 

distribution doesn’t depend on the projection direction to have a unique rejection threshold for 

all the angles. Also, for the sake of consistency, it would be desirable for the retained statistic 

to be interpretable in terms of discrepancy when projections are made onto a coordinate axis. 

Finally, two famous statistics (at least) correspond to these requirements: the Kolmogorov-

Smirnov statistic 
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 DN (a) = sup ˆ F N ,a (z) − Fa (z)  (1)

and the Cramér-Von Mises statistic 

 NωN
2(a) = ( ˆ F N ,a (z) − Fa (z))2 dz∫ (2)

where ,
ˆ
N aF  is the empirical distribution function of the projections of 1,..., Nx x  onto aL , and 

aF  the distribution function of aμ . When aL  is a coordinate axis, aμ  is the uniform 

distribution on [0,1] and these statistics correspond, respectively, to the discrepancies L∞ and 

L2 (Niederreiter, 1987). In what follows, we decided to work on the first because the 

conclusions seem equivalent, while the corresponding graphics are a little more readable (see 

section 5). By analogy with the case of coordinate axes, we will talk about a discrepancy of 

projections to designate the Kolmogorov-Smirnov statistic of the formula (1). 

 

The discrepancy of projections provides a tool for visualizing the defects in uniformity 

based on the 1-dimensional projections. Since this tool looks like a radar screen, we propose 

to call it uniformity radar. Its utilization depends on the dimension of Ω . In 2 dimensions, the 

discrepancy of projections is calculated in 360° by continuously projecting onto a rotating 

axis. Thus, one obtains a parameterized curve in polar coordinates  

( )NDθ θa  

defined over [0,2π], called 2D radar. By displaying the quality of distributions in all 

directions, the 2D radar provides decision support on design uniformity. In 3 dimensions, one 

calculates the discrepancy of projections onto an axis ,Lθ ϕ , for all directions, pivoting around 

the center of the domain. This axis is defined in spherical coordinates by an angle θ  in 

longitude and ϕ  in latitude. This time a parameterized surface is obtained, called  3D radar, 

( ) ( ), ,NDθ ϕ θ ϕa  

defined over [ ]0,2 ,
2 2
π ππ ⎡ ⎤× −⎢ ⎥⎣ ⎦

. In higher dimensions, it seems unrealistic to make an angular 

scan of the space Ω . In addition, it becomes almost unfeasible to represent the result 

graphically (although the calculation is still possible). However, the hypothesis (H0) remains 

valid on 2- and 3-dimensional coordinate spaces.  Therefore, the uniformity radar may be 

applied to all pairs and/or triplets of possible dimensions. 

In practice, the quality of the representation can be degraded by discretizing. Here the 2D 

and 3D radars are continuous applications. But ND  is not differentiable with respect to all the 
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axes aL  so that at least two points of Ω  are projected onto the same point, which explains 

why the parameterized curves of the next section are not smooth and contain many 

singularities. 

 
3. APPLICATIONS OF UNIFORMITY RADAR  

 

In this section we present a few examples to show the interest in using uniformity radar to 

test the uniformity of the distribution of experimental points by looking at their projection. 

We consider cases where the hypothesis ( )0H  of a uniform distribution in the experimental 

domain is plausible. For each representation of the uniformity radar we have added the circle 

(or the sphere) of radius ks equal to the statistic of the Kolmogorov-Smirnov test associated 

with a 95% confidence level. Recall that since the statistic is distribution free, ks does not 

depend on a. This provides a decision-making support or, at least, a means of comparison 

with the random designs obtained by a uniform sampling. Should the studied design be 

stochastic (pseudorandom, Latin hypercubes or randomized orthogonal arrays), the graph 

displays the directions a along which the hypothesis ( )0H  is rejected. If the design is 

deterministic, we are outside the usual scope of application of the test. If one of the values of 

( )ND a  is greater than ks, then we can only say that this design is worse than a random design 

since the probability that a random design will have a better discrepancy exceeds 95%. The 

following examples apply essentially to the latter cases because we preferred to use known 

SFD designs without transforming them. Nonetheless, in practice, it would suffice to apply 

randomization or scrambling (see, for example, Fang, Li, Sudjianto, 2006) to obtain a 

stochastic design, and thus be under the usual assumptions of statistical tests. 

 
Example 1. Analysis of a 15-dimensional Halton sequence using 2D radar. We consider 

the first 250 points of a 15-dimensional Halton sequence of low discrepancy (1960). Since the 

design is high dimensional, we apply the radar to all pairs of possible dimensions. Among the 

rejected pairs we have, for example, the pair (14, 15), represented on Figure 3. 
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Figure 3. Left: Design projections of a Halton sequence onto the plane (X14,X15). Right: The 2D radar curve. 

 

In this example, since there exist values of ( )ND a  outside the circle of radius ks, the 

uniformity radar detects a non-uniform distribution for the 2-dimensional projections onto 

( )14 15,X X . The largest deviation in uniformity is observed in direction a associated with an 

angle of approximately 135°, corresponding to the direction that is perpendicular to the visible 

diagonal alignments on the figure to the left. Here, we find ourselves faced with the well-

known defect of high-dimensional Halton sequences, which do not preserve a low 

discrepancy in projection (Thiémard (2000), Morokoff, Caflisch (1994)). Note, however, that 

the radar is not designed to systematically detect directions of alignment as we will see in the 

next example. 

 
Example 2. Analysis of orthogonal arrays using 3D radar. Let us consider a 49 points 

linear orthogonal array of strength two in 3 dimensions (Owen (1992) and Jourdan (2000)). 

Like Latin hypercubes, these designs are often recommended for numeric experimental 

designs because of their appreciable properties in projection. Projected onto a surface, an 

orthogonal array of strength two always yields a regular grid of points. However, the non-

redundancy of the 2-dimensional projections does not imply a good distribution of the points 

neither on the axes of the domain (here 7 packets of 7 points) nor in the 3D space, as we will 

see. 

X15 

X14 Uniformity radar 

ks≈0,09 
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Figure 4. Left. A 3-dimensional linear orthogonal array of strength two with 49 points. Right. Projections onto 
the plane (X1,X2). 

 

The considered design is a linear orthogonal array of strength two. The way it is built implies 

that the points satisfy the relation x1+3x2+x3=0 (mod 7). Therefore, these points are located on 

5 parallel planes. As a result, the distribution of the projections onto the axis perpendicular to 

these planes will not be satisfactory. This problem is never mentioned in computer 

experiments. However, it is well-known in the literature of experimental designs. 

We applied the uniformity radar to the studied orthogonal array and represented the sphere 

of radius ks (the Kolmogorov-Smirnov statistic with a 95% confidence level), the points 

( ),ND θ ϕ , and drew straight lines joining these points to the surface of the sphere to illustrate 

directionally the deviations in uniformity. We also represented the logarithm of the p-values 

of the Kolmogorov-Smirnov test as a function of θ  and ϕ . We observe that the radar does 

indeed detect a problem in the direction perpendicular to the 5 planes, 72 , 18θ ϕ= ° = ° . In 

addition, it reveals a poor distribution of the projected points onto the direction 

35 , 40θ ϕ= ° = ° . This is a problem that we could not have anticipated from the design’s 

characteristics.  
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Figure 5. Left. The p-values in –log10 of the Kolmogorov-Smirnov test.  Right. The values of the Kolmogorov 
Smirnov test with the radar’s representation in pins. 

 

However, the radar does not detect a problem on the coordinate axes, for which the 

projections are stacked in 7 packets of 7 points. This can be explained by observing the 

empirical cumulative distribution function (ecdf). For example, the deviation of the 

(transformed) ecdf of the projected points onto (Oz) from the uniform cdf is not large, as seen 

in Figure 6(c). Actually, the alignments can be detected by the Kolmogorov-Smirnov statistic, 

especially when they are not regularly distributed in space (as in example 1). To illustrate this 

point, we represented the (transformed) ecdf of the projected points onto the axis L1, L2, L3 

corresponding to, respectively, the direction  35 , 40θ ϕ= ° = ° , the axis perpendicular to the 5 

parallel planes, and (0z). The deviation in uniformity is much larger on figures (a) and (b). 

Figure 6. Left to right. the distribution functions (after transformation) of the projected points onto L1, L2 and 
L3. 

 

(a) (b) (c) 
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4. A GLOBAL STATISTIC FOR 2D RADAR 

 

Example 3. Toward an extension of the uniformity radar. Let us consider the first 100  

points of an 8-dimensional Halton sequence projected onto the subspace formed by ( )3 6,X X .  
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Figure 7. The first 100 terms of an 8-dimensional Halton sequence projected onto ( )3 6,X X . 

 
Note that all the points of the uniformity radar are inside the circle of radius ks and, as a 

result, the radar accepts the design although we can see that the points of the plane ( )3 6,X X  

are not uniformly distributed. However, the discrepancy values are rather scattered with a low 

value for angle θ = 0°, and rather high values, for example, for angle 29θ = ° , which seems to 

correspond to the orthogonal direction of alignments. The idea to reject this type of design 

amounts, therefore, to defining a new statistic which introduces minimum and maximum 

discrepancies. In order to avoid scale problems, we suggest taking the ratio of these quantities. 

We have:  

 

 [ ]

[ ]

0,2

0,2

sup ( )

inf ( )

N

N
N

D
G

D
θ π

θ π

θ

θ
∈

∈

=  (3)

 

This statistic should filter out designs which have a relative poor distribution in one direction. 

This statistic has the advantage of being global. This increase the power of the corresponding 

statistical test. For a fixed value of N, the distribution of NG  seems difficult to obtain other 

than by simulation. In the appendix, the table corresponding to N=1…100 is given. According 

to this table, the rejection threshold at level 95% for a design of 100 points is equal to 4.23. In 

6X  

3X  
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example 3, the observed value of the statistic NG  is equal to 6.07, which very clearly 

eliminates this design.  

In the statistic table, we observe that the values stabilize as N increases, which leads us to 

believe that it is possible to specify its asymptotic behavior. This is in fact the case. The 

following demonstration is based on the theory of empirical processes. 

 

Asymptotic distribution of the global statistic (3). Let ( )1,..., NX X X= , where X1,..., XN   

are independent random variables from uniform distribution on [ ]21,1− . Denote ( )R Xθ  as 

the projection of X  on axis Lθ . Let ( ),
t

t

N
A A

Y θ  be the following process: 

] ] ( ) ( ) ( ) ( ),
,

1 1

1 11 ( ) ( ) 1
tt

N N
N

i A i ttA
i i

Y R X P R X t X P X A
N N

θ
θ θ−∞

= =
= − < = − ∈∑ ∑  

where At = x ∈ Rd ,Rθ (x) < t{ }.   

Using these notations, the discrepancy of projections may be written as ( ) ,sup
t

N
N A

t
D Y θθ

∈
=

�
. 

Therefore, 

,

,

sup ( ) supsup

inf ( ) inf sup

t

t

N
N A

t
N NN A

t

D Y
G

D Y

θ

θ θ
θ

θ θ

θ

θ
= = . 

The limit distribution of the process ( ),
t

t

N
A A

Y θ  is obtained using the theory of empirical 

processes. With the central limit theorem, one obtains the convergence of the finite 

dimensional distributions toward the Gaussian process of same expectation and covariances. 

Furthermore, the family (At ) t  is a  VC-class (see …). Therefore,  

( ) ( ),
t t

t t

loiN
A AA A

Y Yθ θ⎯⎯→  

where ( )
t

t
A A

Yθ  is a centered Gaussian process with covariance: 
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( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( )

2
,

1cov , ( ) , ( )

1 ( ) . ( )

1 ( ) . ( )

( ) . ( )

cov , ( ) , ( ) ( ) . ( )

cov , ( ) ( ). ( ).

s t

s t

s t

N

A A
i j

N

i
N

j

A A

s t s tA A

Y Y P R X s R X t
N

P R X s P R X t
N

P R X t P R X s
N

P R X s P R X t

Y Y P R X s R X t P R X s P R X t

Y Y P A A P A P A

μ θ
μ θ

μ θ

θ μ

μ θ

μ θ
μ θ μ θ

μ θ

= < <

− < <

− < <

+ < <

= < < − < <

= ∩ −

∑

∑

∑  

(4) 

and    

P(GN < y) N →+∞⎯ → ⎯ ⎯ P
sup

θ
sup

t
YAt

θ

inf
θ

sup
t

YAt
θ

< y
⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟  

The probability ( )s tP A A∩  is interpreted as the surface of a polygon delimited by the domain 

and the straight lines s tA et A  (see Figure 8). This surface can be analytically calculated, by 

noting (for example) that the polygon is a partition of triangles with a common corner to be 

selected from among the vertices of the polygon. The asymptotic distribution of NG  can then 

be obtained by simulating a centered Gaussian field with covariance matrix defined by (4).  

 

Figure 8. Interpretation of the probability  ( )P A As t∩ . 

 

The procedure is semi-analytic because simulations are needed to perform the calculations. In 

theory, the global statistic may be extended to 3 dimensions. For a finite sample, the statistic 

1 

O=(0,0) 
Lμ  

t 

s 

tA  

sA  

-1 1 
-1 

Lθ  
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table can be calculated with simulations. However, the asymptotic distribution is much more 

difficult to obtain. 

 

5. DISCUSSION 

 
Due to the complexity of the phenomena simulated by computer codes, which implies non-

linearities, distributing numerical experiments as uniformly as possible in the domain is 

preferable. In addition, this distribution should continue to be satisfactory when projecting 

onto subspaces, especially when the code depends only on a small number of factors or 

principal components. In this article we introduce a statistic based on 1-dimensional 

projections to test the uniformity for a design of experiment. In 2 and 3 dimensions, it 

provides a simple viewing tool called uniformity radar, which graphically tests the uniformity 

hypothesis by omni-directional scanning. Moreover, we introduced a global statistic in 2 

dimensions to further identify unsatisfactory designs that had been accepted by the uniformity 

radar. 

These tools were applied on usual SFD designs. On these case studies, some of the designs 

have very poor properties when projecting to subspaces, as the 15-dimensional sequence with 

low discrepancy in example 1 or the 3-dimensional orthogonal array in example 2. The 

uniformity radar was able to detect these defects. It succeeds when there is a rectangular 

shaped empty area in the domain, as in the aforementioned examples. In such cases, the 

distribution is unsatisfactory when projecting onto the rectangle’s width. The uniformity radar 

can also detect the alignments of points, but may not identify them if the directions of 

alignments are well distributed such as with a factorial design (see example 2). This 

underscores the lack of power of the Kolmogorov-Smirnov test when the sample is generated 

from a continuous distribution supported by the union of small intervals regularly distributed. 

In practice, this situation is not very detrimental because the SFD obtained by a deterministic 

process are often randomized or scrambled (see, for example,  Fang, Li and Sudjianto, 2006). 

Our uniformity radar may be adapted to other goodness-of-fit statistics, such as Cramér-

Von Mises (see section 2), which corresponds to the discrepancy L2 for a projection onto a 

coordinate axis. For instance, we repeated the examples 1 to 3 with the corresponding radar. 

As expected, the conclusions are the same because the Kolmogorov-Smirnov and Cramér-

Von Mises tests do not present any clear-cut difference in terms of power. Interestingly, the 

main difference is graphic. The curve of the radar defined with the Cramér-Von Mises 

statistic is smoother, which is due to the norm L2, and introduces sometimes large scale 
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variations from one design to another, while these differences are attenuated by the norm L∞ 

in the examples given here. For this reason, the L∞ radar may be preferred because the 

conclusions are more apparent. 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Uniformity radar with the Cramér-Von Mises statistic for examples 1 and  3. 
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APPENDICES 
 

Distribution of a linear combination for uniformly distributed independent variables. 

The final result demonstrated by Ostrowski (1952) often uses very technical methods. 

However, Elias et al. (1987) propose a simpler operational computational method that we 

apply to our special case.  

Let 1 1. ... d dZ X a X a X a= = + + . This is, therefore, a sum of independent random variables of 

uniform distribution on [ ], , 1,...,i ia a i d− = . As a result, it admits the density given by 

[ ] [ ]( )1 1, ,
1

1 1 1
2 d d

d

Z a a a a
jj

f
a − −

=

⎛ ⎞
= × ∗ ∗⎜ ⎟⎜ ⎟

⎝ ⎠
∏ L , where ∗  designates the convolution product. To 

calculate this product of convolutions, Elias et Shiu (1987) suggest using translations. Let 

( ) ( ) ( )aT f x f x a= + , the translation of the function f from -a. Then we can write (with the 

convention 0 0, 0α α= ∀ ≥ ): 

( ) ( )
( ) ( )

( )( )

0 0
,

0 0

0

1 ( )

( ) ( )

( )

j j

j j

j j

j ja a

a a

a a

x x a x a

T x x T x x

T T x x

⎡ ⎤− + +⎣ ⎦

+ − +

− +

= + − −

= −

= −

  

And, therefore, ( )( ) ( )( )( )1 1

0 0

1

1( )
2 d d

d

Z a a a a
jj

f x T T x T T x
a − + − +

=

⎛ ⎞
= × − ∗ ∗ −⎜ ⎟⎜ ⎟

⎝ ⎠
∏ L . 

The proof follows from two basic lemmas. 

 

Lemma 1. The translation commutes with the convolution. 

( ) ( ) ( )1 2 1 2 1 2 1 2( ) ( ) ,a x x x a x a x xT f f f T f T f f x x∗ = ∗ = ∗ ∀ ∈�  

Lemma 2. 

( )
1

, ,
! ! 1 !

m n m nx x x n m x
m n m n

+ +
+ + +∗ = ∀ ∈ ∀ ∈

+ +
� �  

 

By applying lemma 1, we obtain: 

( ) ( )( ) ( )1 1

0 0

1

1( )
2 d d

d

Z a a a a
jj

d fois

f x T T T T x x
a − − + +

=

⎛ ⎞
⎛ ⎞ ⎜ ⎟

= × − − ∗ ∗⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟⎝ ⎠
⎝ ⎠

∏ L L
1442443

. 
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Then by applying lemma 2: 

( )( ) ( )1 1 2 2

1

1

1( ) ...
2 ( 1)!d d

dd

Z a a a a a a
jj

xf x T T T T T T
a d

−
+

− − −
=

⎛ ⎞ ⎛ ⎞
= × − − −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ −⎝ ⎠⎝ ⎠

∏ . 

and  

{ }
( )1 1

1

1
1 1,1

1( )
2 ( 1)!d dd

dd

Z d s a s a
jj s

xf x s s T T
a d

−
+

= ∈ −

⎛ ⎞⎛ ⎞
⎜ ⎟= ×⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

∑∏ L L . 

Finally,  

1

1

( . )1( ) ( )
2 ( 1)!

dd

Z
j sj

x s af x s
a d

ε
−

+

=

⎛ ⎞ ⎛ ⎞+
= ×⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ −⎝ ⎠⎝ ⎠

∑∏ .  

The announced result is obtained by integrating this relation �  
 

Continuity and differentiability of the radar. 

For the sake of simplicity, we give only the proofs in 2 dimensions. However, the result is 

also valid in 3 dimensions. Let ( ) ( )
11 ,...,

[0,1]
ˆ, , sup

N

U
N z z

z
D z z F z z

∈
= −K , the Kolmogorov-

Smirnov statistic for the uniform distribution over [ ]0,1 .  

 

Proposition. 

(i) UD  is continuous.  

(ii) UD  admits partial derivatives with respect to all the , 1,...,ix i N=  in ( )1,..., Nz z  if and 

only if the supremum of ( )
1 ,...,ˆ

Nz zF z z−  is attained at only one { }, 1,...,jz j N∈ . 

 

Proof.  Let 

( ) ( ) ( )( )1 1cos sin , , cos sinU
N N ND D F x y F x yθ θθ θ θ θ θ= + +K  

where ( ) ( )
11 ,...,

[0,1]
ˆ, , sup

N

U
N z z

z
D z z F z z

∈
= −K  is the Kolmogorov-Smirnov statistic for the 

uniform distribution over [ ]0,1 . By using the expression of Fθ  , we prove that 

( ) ( ), p F pθθ a  is continuous (cf. formula (2.1)). Thus, the problem reduces to demonstrate 

the continuity of ( ) { }1
1

1,..., sup 1
i

N
N t t

t i
t t t

N >
=

−∑a  with respect to all variables. If the values 

of  it  are perturbed by  iη , the supremum varies at most by the sum of the iη , thereby 
guaranteeing continuity. 
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For differentiability, the problem can be reduced to the existence of partial derivatives of UD . 

• Let us assume that the supremum is attained for only one jz  where { }1,...,j N∈ . 

In this case, the partial derivatives related to iz , i j≠ , exist and are equal to 0 because any 

local perturbation in iz  would not change the supremum. Let us now prove the existence of 

U

j

D
z

∂
∂

. Let us assume, for example, that: 
[0,1]

ˆ ˆsup ( ) ( ) 0N N j j
z

F z z F z z
∈

− = − > . We choose ε  

such that ˆ ˆ, ( ) ( )N j j N i ii j F z z F z z ε∀ ≠ − > − +  et ˆ ( )N j jF z z ε− > . Then :  

( ) ( )1 1,..., ,..., ,...,U U
j N jD z z z D z zε ε+ = −  et ( ) ( )1 1,..., ,..., ,...,U U

j N jD z z z D z zε ε− = +  

Therefore, ( )1,...,
U

N
j

D z z
z

∂
∂

 exists in ( )1,..., Nz z  and is equal to -1.  

Similarly, if ( )
[0,1]

ˆ ˆsup ( )N j N j
z

F z z z F z
∈

− = − , we prove that 
U

j

D
z

∂
∂

 exists and is equal to 1. 

 Let us assume that the supremum is attained at jz  and at least at another kz  for 

{ }, 1,...,j k N∈ . Now, we are going to prove that the partial derivative in jz  does not exist. 

Assume, for example, that ˆ ( ) 0N j jF z z− >  and 0ε > , ˆ ( )N j jF z z ε− > . Then we have the 

following case. 

 The supremum is at jz  and kz , j k≠  where j kz z= .  

Then ( ) ( )1 1,..., ,..., ,...,U U
j N ND z z z D z zε ε+ = − ,  

but ( ) ( )1 1,..., ,..., ,...,U U
j N ND z z z D z zε− = . Therefore, the right-hand derivative is 

different from the left-hand derivative. 

• Otherwise, for all kz , where k j≠  at which the supremum is attained, j kz z≠ . Thus 

( ) ( )1 1,..., ,..., ,...,U U
j N ND z z z D z zε ε− = +   

but ( ) ( )1 1,..., ,..., ,...,U U
j N ND z z z D z zε+ =  because the local perturbation in jz  does 

not change the value of the supremum, which is still attained at kz . , the right-hand 

derivative is therefore also different from the left-hand derivative.�  
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Table of the statistic of NG  : values of Ng  such that ( )N NP P G g= < . 

N P=0,80 P=0,85 P=0,90 P=0,95 P=0,99 
1 1,94 1,97 1,98 1,99 1,99 
2 2,52 2,82 3,08 3,33 3,47 
3 2,68 3,00 3,30 3,63 3,84 
4 2,80 3,12 3,42 3,80 4,07 
5 2,86 3,19 3,50 3,88 4,12 
6 2,89 3,25 3,58 3,97 4,26 
7 2,93 3,28 3,59 4,01 4,28 
8 2,94 3,29 3,64 4,03 4,31 
9 2,95 3,30 3,61 4,00 4,35 

10 2,97 3,34 3,66 4,06 4,33 
11 2,98 3,34 3,68 4,13 4,46 
12 2,99 3,33 3,67 4,08 4,34 
13 3,00 3,36 3,70 4,11 4,40 
14 3,00 3,36 3,72 4,11 4,41 
15 3,00 3,34 3,68 4,12 4,43 
16 3,00 3,36 3,70 4,10 4,43 
17 3,03 3,38 3,70 4,13 4,49 
18 3,01 3,35 3,68 4,07 4,39 
19 3,04 3,41 3,75 4,15 4,50 
20 3,04 3,41 3,74 4,15 4,47 
21 3,04 3,40 3,73 4,17 4,48 
22 3,05 3,41 3,74 4,12 4,42 
23 3,05 3,39 3,73 4,16 4,47 
24 3,06 3,42 3,73 4,16 4,42 
25 3,05 3,40 3,72 4,15 4,48 
26 3,06 3,43 3,74 4,11 4,46 
27 3,05 3,40 3,72 4,11 4,44 
28 3,06 3,41 3,76 4,18 4,49 
29 3,06 3,43 3,75 4,17 4,47 
30 3,05 3,42 3,76 4,18 4,49 
31 3,06 3,40 3,72 4,11 4,41 
32 3,07 3,44 3,79 4,27 4,58 
33 3,06 3,40 3,71 4,12 4,43 
34 3,05 3,40 3,71 4,13 4,41 
35 3,07 3,42 3,76 4,17 4,42 
36 3,08 3,43 3,76 4,16 4,47 
37 3,09 3,46 3,78 4,21 4,53 
38 3,08 3,45 3,78 4,16 4,47 
39 3,07 3,44 3,77 4,23 4,53 
40 3,06 3,42 3,75 4,17 4,45 
41 3,08 3,43 3,76 4,16 4,53 
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42 3,09 3,43 3,76 4,18 4,47 
43 3,08 3,44 3,75 4,21 4,53 
44 3,10 3,45 3,76 4,15 4,51 
45 3,09 3,44 3,77 4,17 4,44 
46 3,07 3,43 3,75 4,15 4,52 
47 3,07 3,43 3,78 4,22 4,51 
48 3,07 3,42 3,75 4,15 4,41 
49 3,10 3,44 3,78 4,21 4,50 
50 3,08 3,44 3,77 4,21 4,53 
51 3,09 3,43 3,77 4,18 4,47 
52 3,11 3,45 3,79 4,22 4,54 
53 3,09 3,46 3,78 4,15 4,48 
54 3,10 3,45 3,81 4,24 4,54 
55 3,09 3,44 3,76 4,20 4,50 
56 3,10 3,44 3,79 4,19 4,52 
57 3,09 3,46 3,79 4,19 4,48 
58 3,09 3,45 3,78 4,20 4,49 
59 3,11 3,44 3,78 4,18 4,52 
60 3,08 3,44 3,76 4,17 4,45 
61 3,11 3,47 3,82 4,20 4,54 
62 3,10 3,47 3,80 4,19 4,48 
63 3,09 3,45 3,78 4,19 4,46 
64 3,09 3,47 3,79 4,23 4,53 
65 3,10 3,47 3,80 4,22 4,54 
66 3,11 3,46 3,78 4,16 4,45 
67 3,10 3,45 3,79 4,23 4,52 
68 3,09 3,43 3,77 4,15 4,44 
69 3,09 3,44 3,77 4,18 4,44 
70 3,10 3,46 3,78 4,21 4,50 
71 3,11 3,46 3,77 4,17 4,49 
72 3,10 3,44 3,78 4,18 4,42 
73 3,09 3,45 3,79 4,18 4,54 
74 3,11 3,47 3,80 4,17 4,46 
75 3,10 3,44 3,77 4,21 4,47 
76 3,11 3,48 3,80 4,22 4,51 
77 3,09 3,43 3,78 4,19 4,44 
78 3,11 3,45 3,78 4,21 4,48 
79 3,08 3,44 3,78 4,20 4,46 
80 3,10 3,46 3,80 4,21 4,52 
81 3,11 3,48 3,79 4,19 4,52 
82 3,11 3,49 3,83 4,25 4,51 
83 3,11 3,46 3,78 4,17 4,44 
84 3,11 3,45 3,77 4,18 4,51 
85 3,09 3,46 3,77 4,23 4,55 
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86 3,10 3,46 3,78 4,18 4,49 
87 3,08 3,44 3,76 4,15 4,44 
88 3,11 3,47 3,77 4,21 4,48 
89 3,10 3,47 3,79 4,17 4,46 
90 3,08 3,43 3,74 4,15 4,44 
91 3,07 3,43 3,76 4,14 4,43 
92 3,09 3,46 3,78 4,19 4,52 
93 3,09 3,46 3,81 4,23 4,53 
94 3,08 3,43 3,74 4,18 4,52 
95 3,09 3,44 3,77 4,21 4,54 
96 3,11 3,45 3,76 4,19 4,52 
97 3,12 3,45 3,78 4,20 4,47 
98 3,08 3,44 3,79 4,21 4,46 
99 3,09 3,45 3,77 4,21 4,50 

100 3,10 3,44 3,79 4,23 4,51 
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