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Abstract

The optimization of expensive-to-evaluate functions generally relies on metamodel-
based exploration strategies. Many deterministic global optimization algorithms used
in the field of computer experiments are based on Kriging (Gaussian process regression).
Starting with a spatial predictor including a measure of uncertainty, they proceed by
iteratively choosing the point maximizing a criterion which is a compromise between
predicted performance and uncertainty. Distributing the evaluation of such numeri-
cally expensive objective functions on many processors is an appealing idea. Here we
investigate a multi-points optimization criterion, the multipoints expected improvement
(¢-EI), aimed at choosing several points at the same time. An analytical expression
of the ¢-EI is given when ¢ = 2, and a consistent statistical estimate is given for the
general case. We then propose two classes of heuristic strategies meant to approxi-
mately optimize the ¢-EI, and apply them to Gaussian Processes and to the classical
Branin-Hoo test-case function. It is finally demonstrated within the covered example
that the latter strategies perform as good as the best Latin Hypercubes and Uniform
Designs ever found by simulation (2000 designs drawn at random for every ¢ € [1, 10]).
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1 Introduction

In many engineering applications, such as car crash tests, nuclear criticality safety, reser-
voir forecasting, the time needed to simulate the physical phenomena is so long that the
experimenter can only afford a few simulation runs. It is common to see a deterministic
simulator as a numerical black-box function

y:xeDCRY—y(x)eR (1)

y is known at a Design of Experiments X = {x!,...,x"} € (R%)?, where n € N is the number
of initial runs or experiments. We denote by Y = {y(x!),...,y(x™)} the set of observations
made by evaluating y at the points of X. The data (X,Y) provides information that help
understanding the function y with an accuracy that depends on n, the geometry of X, and
the regularity of y. This partial knowledge of y is needed to build simplified representations
of the simulator, also called surrogate models or metamodels. A metamodel can be used for
predicting values of y outside the initial design or visualizing the influence of each variable
on y ([9],[13],[18]). It may also guide further sampling decisions for various purposes, such as
refining the exploration of the input space in preferential zones or optimizing the function y
([9]).This paper proposes metamodel-based optimization algorithms that are well-suited to
parallelization since they yield several points at each iteration. The simulations associated
with these points can be distributed on different processors, which helps performing the
optimization when the simulations are calculation intensive. The algorithms are derived
from a multi-points optimization criterion, named the multi-points expected improvement.
Calculations are performed in the framework of Gaussian processes. In particular, the
metamodel considered is Ordinary Kriging (see egs. and .

2 (Gaussian processes and sequential optimization

2.1 Ordinary Kriging

Probabilistic metamodeling seems to be particularly adapted for the optimization of black-
box functions, as analyzed and illustrated in ([7]). Our work follows ([9]), where Ordinary
Kriging (OK) is used to derive a sequential optimization strategy (EGO). Kriging is an
interpolation method originally developped in geostatistics ([1],[16]). It provides a predic-
tor of spatial phenomena, with a measure of uncertainty quantifying the accuracy of the
prediction at each site (A full derivation is proposed in the appendix). Ordinary Krig-
ing is based on the assumption that y is a realization of a stationary Gaussian process Y
with unknown constant mean and known covariance structure ([4]). In Kriging-based op-
timization, one often abusively plugs in maximum likelihood covariance hyperparameters
without taking the estimation variance into account ([9]). Here we commit this abuse, and
work with the classical Ordinary Kriging equations. This has the advantage of delivering



a Gaussian posterior distribution, even if the uncertainty is slightly underestimated :
vx € D, [Y(x)/Y(X) = Y] ~ N(mok(x), s (x)) (2)

where the kriging mean and variance functions are given by the following formulae ([16]):

—e(x)Ty! n r
mow(x) =B (/Y (X) = Y] = et + (o fRn—2 ) 1] 57Y @)

1 — 179 1e(x))?
( ]le—ljl: L ] (4)

sH(x) =VarlY (x)/Y(X) =Y] = [02 —c(x)T2e(x) +

with ¢(z) = (cov(Y(x),Y(xl)),...,cov(Y(x),Y(x")))T, 2 = (cov(Y(x'),Y(x))

and 02 = Var[Y (x)] (which is not depending on x since Y is stationary).

i,7€[1,n]’

Figure 1: Ordinary Kriging of the Branin-Hoo function (function, Kriging mean value and
variance, from left to right). The design of experiments is a 3 x 3 factorial design. The
covariance is an anisotropic squared exponential with parameters estimated by gaussian
likelihood maximization ([16]).



In other terms, under the Gaussian process assumptions that have been made, the random
variable Y (x) knowing previous observations {Y (x1),..., Y (x™)} follows a normal distribu-
tion which mean and variance are mog (x) and s, (x), respectively.

A full bayesian interpretation can be found in ([18]), or more recently in ([10]). Classical
properties of Ordinary Kriging include that Vi € [1,n] mok(x') = y(x') and s2;(x") =
0, therefore [Y(x)/Y(X) = Y] is interpolating. Note that [Y(x*)/Y(X) = Y] and
[V (x%)/Y(X) = Y] are correlated random variables, where x® and x° are arbitrary points
of D (see Appendix C.2).

The OK metamodel of the Branin-Hoo function (see eq. (25))) is plotted on fig. (2.1)). The
OK interpolation (upper middle) is made only on the basis of the 9 observations (as can be
seen in eq. . Even if the shape is reasonably respected (lower middle), the contour of the
interpolator shows an artificial optimal zone (upper middle, around the point (6,2)). In
other respects, the variance is not depending on the observationsﬂ (see eq. ) Note the
particular shape of the variance, due to the strong anisotropy of the covariance function
estimated by likelihood maximization.

2.2 Kriging-based optimization criteria

Such a Gaussian process regression has been used for optimization (minimization, by de-
fault). There is a detailed review of existing optimization methods relying on a metamodel
in [7]. It analyzes and illustrates why directly optimizing a deterministic metamodel (like a
spline, a polynomial, or the kriging mean) may be dangerous, and does not even necessarily
lead to a local optimum. Kriging-based sequential optimization strategies (as developped
in [9], and commented in [7]) address the issue of converging to non (locally) optimal points,
by taking the kriging variance term into account (hence encouraging the algorithms to ex-
plore outside the already visited zones). Such optimization algorithms produce one point at
each iteration that maximizes a figure of merit (or criterion) based upon [Y (x)/Y (X) =Y].
In essence, the criteria balance kriging mean prediction and uncertainty.

2.2.1 Visiting the point with highest uncertainty: maximizing spx

The fundamental mistake of minimizing the Kriging mean (mox) when globally minimizing
a function is that no account is done of the uncertainty associated with mog. At the
extreme inverse, it is possible to define the next optimization iterate as the least known
point in D,

x' = argmarxe psox (X) (5)

This procedure defines a series of x’s which will fill the space D (it is dense in D) and,
in this sense, it will ultimately locate x*, a global optimum. Yet, since no use is made of

! phenomenon known as homoskedasticity of the Kriging variance with respect to the observations ([T6])



previously obtained Y information (look at formula (4) for s2 ), there is no bias in favor
of high performance regions. Maximizing the uncertainty is inefficient in practice.

2.2.2 Compromizing between mox and sox

The most general formulation for compromizing between the exploitation of previous sim-
ulations brought by mopx and the exploration based on spg is the two criteria problem

minye p mox (x) (6)
and maxxep Sox (X)

Let P denote the Pareto set of solutions | Finding one (or many) elements in P remains
a difficult problem since P typically contains an infinite number of points. A comparable
approach called direct ([§])), although not based on Kriging, is described in ([8]) : the
metamodel is piecewise constant and the uncertainty measure is an Euclidean distance
to already known points. The space D is discretized and the Pareto optimal set defines
areas where discretization is refined. The method becomes computationally expensive as
the number of iterations and dimensions increase. Note that ([3]) proposes a parallelized
version of direct.

2.2.3 Maximizing the probability of improvement

Among the numerous criteria presented in [7] and [12], the probability of improving the
function beyond the currently known minimum min(Y) = min{y(x!), ..., y(x")} seems to
be one of the most fundamental:

PI(x) = P(Y(x) < min(Y)/Y(X) = Y) (7)

- Stz Y00 =) =0 (LR}

min(Y) is sometimes replaced by some arbitrary target 7' € R. The PI criterion is known
to provide a very local search whenever the value of T is close to min(Y). Taking several
T’s is a remedy proposed by [7] to force global exploration.
2.2.4 Maximizing the expected improvement
An alternative solution is to maximize the expected improvement

EI(x) = E[max{0,min(Y) - Y(x)}/Y(X) = Y] 9)

that additionally takes into account the magnitude of the potential improvement. EI
measures how much improvement is expected when sampling at x. In fine, the improvement

2Definition of the Pareto front of (sox,—mok): Vz € P,3yeD: (mox (y) < mok (z) and sok (y) >
sok(z)) or (mok (y) < mok () and sok (y) > sox(x))
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Figure 2: PI and EI surfaces of the Branin-Hoo function (same design of experiments,
Kriging model, and covariance parameters as in fig. ) Maximizing PI leads to sample
near the good points (associated with low observations) whereas maximizing EI leads here
to sample between the good points. By construction, both criteria are null at the design
of experiments, but the probability of improvement is very close to % in a neighborhood of
the point(s) where the function takes its lower observed value.

will be 0 if the actual y(x) is above min(Y) and min(Y) —y(x) in the opposite case. Since
we know the conditional distribution of Y (x), it is straightforward to calculate EI in closed
form (see [9]):

EI(x) = E[(min(Y) = Y(x)) Ly (x)<min(y) /Y (X) = Y]

— (min(Y) — mog(x)) (mm(t());(;fL)OK(x)) + sor(x)é <min(i2;(:)o;<(x)>

(10)

where ¢ and ® stand for the probability density function and cumulative distribution
function of the standard normal law N(0,1). EI represents a trade-off between promising
and uncertain zones. EI has important properties for sequential exploration: it is null at the



already visited sites, and positive everywhere else with a magnitude that is increasing with
the Kriging variance and with the decreasing Kriging mean (EI maximizers are indeed
part of the Pareto front of (sox,—mox)). Such features are usually demanded from
global optimization procedures (see [8] for instance). The expected improvement and the
probability of improvement are compared in fig. (2).

2.2.5 The Stepwise Uncertainty Reduction strategy

The stepwise uncertainty reduction (SUR) strategy has been introduced in ([5]) and ex-
tended to global optimization in ([12]). By looking at possible objective functions as
conditional processes, Y (x)/Y, it is possible to define x*/Y, the random vector of the
location of the minimizer of Y (x)/Y, of density py- /v (x). The uncertainty about the loca-
tion of the optimum of Y'(x) is measured as the entropy of py- /v (x), H(x*/Y). H(x*/Y)
diminishes as the distribution of x*/Y gets more peaked. Conceptually, the SUR strategy
for global optimization chooses as next iterate the point that specifies the most the location
of the optimum,

x' = argmingepH(x*/Y,Y (x)) (11)

In practice, py«y(x) is estimated by Monte-Carlo sampling of Y'(x)/Y at a finite number
of locations in D, which may become a problem in high dimensional D’s as the number
of locations must geometrically increase with the number of dimensions to properly fill
the space. The SUR criterion is different in nature from the other criteria presented so
far in that it does not maximize an immediate (i.e. at the next iteration) payoff defined
in terms of Y but rather lays the foundation of a more delayed payoff by gaining a more
global knowledge on Y (reduce the entropy of its optima). The multi-points expected
improvement criterion introduced in the present article also uses a delayed payoff measure.

2.2.6 The Efficient Global Optimization (EGO) algorithm

The EGO algorithm ([9]) relies on the EI criterion. Starting with an initial Design X
(typically a Latin Hypercube), EGO sequentially visits the current global maximizer of
EI (say the first visited one if there is more than one global maximizer) and updates the
Kriging metamodel at each iteration, including hyperparameters re-estimation:

1. Evaluate y at X, set Y =y(X) and estimate covariance parameters of Y
by MLE (Maximum Likelihood Estimation)

2. While stopping criterion not met

(a) Compute X' = argmazrxepFI(x), set X =X U{x'} and Y =Y U {y(x')}

(b) Re-estimate covariance parameters by MLE



After having been developed and applied in [I5], EGO has been considered as a reference
and has inspired contemporary works in optimization of expensive-to-evaluate functions.
For instance, ([I1]) exposes some EGO-based methods for the optimization of noisy black-
box functions. ([14]) proposes an adaptation of EGO to multi-objective optimization.

EGO does not allow parallel evaluations of y, which is desirable for costly simulators (for
instance, a crash-test simulation run typically lasts 24 hours). Here we present a criterion
meant to choose an arbitrary number of points without intermediate evaluations of y.

3 The multi-points expected improvement

The main objective of this article is to propose and analyze a global optimization criterion,
the multi-points expected improvement or g-points EI, that yields many (say ¢) points.
Since the g-points EI is an extension of the expected improvement, all derivations are per-
formed within the framework of Ordinary Kriging. Such criterion is the first step towards
a parallelized version of the EGO algorithm [9]. It also departs, like the SUR criterion,
from other criteria that look for an immediate payoff.

The g-points EI criterion (as already defined but not developed in ([15]) under the name
"q-step EI”) is the expectation of the improvement brought by the q considered points:
EI(x"M, . x"T) = E [max { (min(Y) = Y(x"T) ", ..., (min(Y) - Y(x"T9))T} /Y(X) =
=F [(min (Y) — min (Y(x"), .., Y(x”+q)))+ /Y (X) = Y}
(12)
Hence, the g-points EI may be seen as the regular EI applied to the random variable
min(Y (x"*1), ..., Y (x""9)). We have to deal with a minimum of dependent random vari-

ables. Fortunately, classical results of multivariate statisticsﬂ provide us with the exact
joint distribution of the q unknown responses conditionally on the observations:

(Y (x"), .., Y (x")) /Y (X) = Y] ~ N((mox (x"), ..., mok (x"79)), S) (13)
where the elements of the conditional covariance matrix S, are:

(Sq)i,j :C(Xn-f—i _ Xn—i-j) _ C(Xn+i)Tz_lc(Xn+j)
o [(1 =175 e(x" ) (1 — LIS te(x17)) (14)

e 17511,

A full derivation of the joint Simple and Ordinary Kriging predictors and some overall con-
siderations about the minimum of dependent random variables are presented respectively
in the Appendix C.2.-C.4. and A.1.

3Cochran’s theorem for the projection of Gaussian vectors



3.1 Analytical calculation of 2-FT

y function 2-El
o
©
g <A
~
o
X
o™~
7 i
1-El i
@ i
< i
£ o 5
o o i
a ] i
i !
10 05 0.0 05 10

Figure 3: 1-point EI (lower left) and 2-points EI (right) functions associated with a monodi-
mensional quadratic function (y(z) = 4 x (x — 0.45)? known at X = {—1,-0.5,0,0.5,1}.
The ordinary kriging has here a cubic covariance with parameters o2 = 10, scale = 0.9).

2-EI can be derived as an expression depending on the mono- and bi-dimensional Gaussian
cdf’s. Using the following decomposition

EI(X”+1, X"+2)

= E[(min(Y) — min(Y (x""), Y (x" ")) Lyin(y (xn+1),y (xn+2)) <miny) /Y (X) = Y]
= E[(min(Y) — Y (x" ")) Ly (xn+1)<min(v) by (xn 1)<y (xn+2) /Y (X) = Y]

+ E[(min(Y) = Y(x"%)) Ly (xn+2) <min(y) By (xn+2) <y 1)/ Y (X) = Y]

= EI(x"h) + EI(x""?)

— E[(min(Y) — Y(Xn+1))1Y(xn+1)§min(Y) 1Y(x”+1)2Y(x"+2)/Y(X) =Y]

— E[(min(Y) = Y (x"*?)) Ly (xn+2) <min(y) Ly 2y 5y (xnt1) /Y (X) = Y]

one can analytically calculate EI(x"*! x"*2). A complete derivation of the 2-points EI
and some basic properties are proposed in the appendix A.2. and A.3.

fig. represents the 1-EI and the 2-EI contour plots associated with a deterministic
polynomial function known at 5 points. The 1-point EI advises here to sample between
the ”good points” of the initial design. The 2-points EI contour illustrates some general



Y function two-points El

Figure 4: 1-point EI (lower left) and 2-points EI (right) functions associated with a monodi-
mensional linear function (y(x) = 3 X z) known at X = {—1,-0.5,0,0.5,1}. The ordinary
kriging has here a cubic covariance with parameters o2 = 10, scale = 1.4).

properties: 2-EI is symmetric and its diagonal equals the 1-point EI, which can be easily
seen by coming back to the definitions. Roughly said, 2-EI is high whenever the 2 points
have high 1-EI and are reasonably distant from another (precisely, in the sense of the metric
used in kriging). Additionally, maximizing 2-EI selects here the two best local optima of
1-EI (z1 = 0.3 and x2 = 0.7). This is not a general fact. Other examples illustrate for
instance how 2-EI maximization can yield two points located around (but different from)
1-ED’s global optimum whenever 1-EI has one single peak of great magnitude (see fig. )

3.2 g-EI computation by Monte Carlo Simulations

Extrapolating the calculation of the 2-EI to the general case gives a complex expression de-
pending on g-dimensional Gaussian cdf’s. Hence, it seems that the direct computation of g-
EI when q grows large would have to rely on numerical multivariate integral approximation
techniques anyway. Therefore, directly evaluating g-EI by Monte-Carlo Simulation then
makes sense. Thanks to Eqgs. and (14)), the random vector [(V (x"*1), ..., Y (x"9))/Y]
can easily be simulated using the Mahalanobis decomposition of Gaussian vectors:

1
VE € [1,nsim], My = (mor(x™™),...,mox(x")) + [S¢ N|T, Nj ~ N(0,,1,) i.i.d. (15)

10



Computing the integral of any function (not necessarily linearly) depending on the vector
[(V(x™*1),...,Y(x"*9)) /Y] can then be done in averaging the images of the simulated vec-
tors by the considered function:

1: function Q-EI(X, Y, X"¥)

2 L = chol(Var[Y (X"")/Y(X) =7Y]) > Cholesky decomposition of S,
3 for i +— 1,ngm, do

4 N ~ N(0,1,) > Drawing a vector N at random
5: M; = mor (X"") + LN > Simulating Y at X"V
6 qLsim (1)=[min(Y) — min(M;)]*" > Simulating the improvement at X"
7 end for

8 qEsim = ﬁ Yo qleim (1) > Empirical Expected Improvement
9: end function

A straightforward application of the Law of Large Numbers yields indeed

'S Tmin(Y) — min(M;)] T
Z[ (Y) (M;)]

qE sy, = EI(x',..,x%) as. (16)

1 Nsim Ngim —>+00
1=

The Central Limit Theorem can finally be used to control the precision of the Monte Carlo
approximation as a function of ng;,, (see [2] for details concerning the variance estimation):

qEIgm — EI(xY, ..., x%)
VVar[l(x1, ..., x7)]

V1sim ( > _ " N(O, 1) in law (17)

4 Approximated ¢-EI maximization

In the last section, we presented a multi-points criterion meant to deliver a design of
experiments in one step through the optimization problem

(X’nJrl7 x/”+2, ”_7X’“+q) = argmazxepe[E1(X')] (18)

However, the computation of g-EI becomes intensive as ¢ increases. Moreover, the opti-
mization problem is of dimension d x q. Here we try to find pseudo-sequential strategies
that approach the result of problem while avoiding its numerical cost. Let us first
come back to the notations. In the following, we will use the shortcut

BIY(2) = 2](x) = E[(min(Y,Y(Z)) - Y(x))" /Y(X) = Y.Y(Z) =] (19)

where Z stands for a set of points in D and z is a vector of (true or assumed) images of Z
by y. For instance, expressing q iterations of EGO (without hyperparameter updating) in

11



this formalism yields

xntl — argmaa:xeDEI(X) = argmaacxepEI[ ](x) '
Vi€ [l,q—1], x"*! = argmazxe p BI[Y (x"7) = y(x"17), (20)
LY (XM = y(x" ) ()

Note that this formalism holds when the event ”Y (Z) = 2” is replaced by an event of the
form Y (Z)”. E.g. if Y(Z) is random, EI[Y (Z)](x) = E[(min(Y,Y(Z))-Y (x))"/Y(X) =
Y,Y(Z)] then becomes a random variable too, depending on the random variable Y (Z).
This is the basis of the following strategies.

4.1 A g-points design built with the 1-point expected improvement

Instead of searching for the globally optimal vector (X/"‘H, x 2 X/”+q), an intuitive way

of replacing it by a sequential approach is the following: first look for the best single point
x"t! = argmazxep EI(x), then feed the model and look for x"+2 = argmazxep EI[Y (x"T1)](z),
and so on. Of course, the value y(x"*!) is not known at the second step (else we would

be in a real sequential algorithm, like EGO). Nevertheless, we dispose of two pieces of
information: the site x"! has already been visited, and [V (x"™1)/Y = Y (X)] is a random
variable with known distribution. More precisely, the latter is [Y (x"*1)/Y = Y(X)] ~
N(mor (x™t1), 82 - (x"1)). Hence, the second site x"2 can be computed as:

x"2 = argmazyepE [EI[Y(X”H)](X)/Y(X) =Y] (21)

The same procedure can be applied iteratively to deliver q points, computing Vj € [1,¢—1]:

x"H = argmazgepE [EIY (x™7), .., Y (x"™))](2) /Y (X) = Y]
= ng&wxeD/ . [EI(Y (x"h), ., Y (&X"71) = u](%)] fiy i1,y xnti) v (x)=y (W)du
uchkJ

(22)

where fy (xnt1), . y(xnt+i))/v(x)=y (-) is the multi-Gaussian density of the joint kriging pre-
dictor at (x"*1,...,x"*J). Although Eq. is a sequentialized version of the g-points
expected improvement maximization, it doesn’t completely fulfill our objectives. There
is still a multi-Gaussian density to integrate, which seems to be a typical curse in such
problems dealing with dependent random vectors. We now present two classes of heuristic
strategies meant to circumvent the computational complexity encountered in eq. .

4.2 Constant Liar and Kriging Believer strategies

Lying to escape intractable calculations

12



We propose to weaken the conditional knowledge taken into account at each iteration. This
idea inspired two heuristic strategies that we expose and test in the next two subsections:
the Kriging Believer and the Constant Liar.

4.2.1 The ”kriging believer” heuristic

The Kriging Believer strategy replaces the conditional knowledge about the responses at
the sites chosen within the last iterations by deterministic values equal to the expectation
of the kriging predictor. Keeping the same notations as previously, the strategy can be
summed up as follows:

X" = argmazyxep EI(x), mby(x"™1) = E[Y (x"*)/V(X) = Y] and Vj € [1,q — 1] :
X" = argmarye p EI[Y (x"77) = m@ 7 (), V() = mig e (x" )] (2)
mig () = BY () /Y (X) = YL Y (xMH) = mGd T (),
Y () = mi e (xH)]
(23)

Algorithm 1: The Kriging Believer algorithm: a first approximate solution of the multi-
points problem (x ™1, x"t2 | x""9) = argmazxsc pe[EI(X')]

1: function KB(X, Y, ¢)

2: for i — 1,q do

3 X" = argmaryep E1(x)

1 mor (x"+) = E[Y (x"+) /Y (X) = Y]

5 X = X | J{x"*}

6 Y = Y Ufmox (x™+)}

7 end for

8: end function

This sequential strategy delivers a g-points design and is computationally affordable since
it relies on the analytically known EI, optimized in d dimensions. However, there is a risk
of failure, since believing a kriging surface that overshoots the observed data may lead to a
sequence that gets trapped in a non-optimal region for many iterations (see 4.3). We now
propose a second strategy that reduces this risk.

4.2.2 The ”constant liar” heuristic:

Now consider a sequential strategy in which the model is actualized at each iteration with
a value exogenously fixed by the user, and not necessarily connected with the Kriging
predictor. The strategy referred to as the constant liar consists in lying with the same

13



value L for every iteration: maximize the expected improvement (find x,+1), actualize the
model as if y(z,41) = L, and so on always with the same L € R:

{ x"! = argmaryepFI(x) and Vj € [1,q — 1] : (24)

X" = argmarxep EIY (x") = L, ..., Y (x""1) = L](x)

Algorithm 2: The Constant Liar algorithm: another approximate solution of the multi-
points problem (x "1 x"2  x"") = argmazxscpd[EI(X')]
1: function CL(X, Y, L, q)

2: for i — 1,q do

3: X" = argmazxe p EI(X)
4 X = X J{x"*}

5: Y =Y U{L}

6 end for

7: end function

The effect of L on the performance of the resulting optimizer is investigated in the next
section. L should logically be determined on the basis of the values taken by y at the initial
design. Three values, min{Y}, mean{Y}, and maz{Y} are considered here. The larger
L is, the more explorative the algorithm will be, and vice versa.

5 Empirical comparisons

5.1 Application to the Branin-Hoo function

The four optimization strategies presented in the last section are now compared on the the
Branin-Hoo function which is a classical test-case in global optimization ([9],[I5],[17]).

{ ypr (w1, 22) = (22 — 25?4+ Say — 6)2 + 10(1 — &)cos(z1) + 10

1 € [-5,10], 22 € [0, 15] (25)

ypy has three global minimizers (—3.14,12.27), (3.14,2.27), (9.42,2.47), and the global
minimum is approximately equal to 0.4. The variables are normalized by the transformation
ﬂ:/l = ”“1—;5 and x; = 7#. The initial design of experiments is a 3 X 3 complete factorial
design Xy (see fig. ), thus Y = ypp(Xy). Ordinary Kriging is applied with a stationary,

anisotropic, Gaussian covariance function
Vh = (h1, ha) € R, C(h1, hy) = o2 01hi—0213 (26)

where the parameters (61, 602) are fixed to their Maximum Likelihood Estimate (5.27,0.26),
and o2 is estimated within kriging, as an implicit function of (61,6s) (like in [9]). We
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build a 10-points optimization design with each strategy. We additionally estimated by
Monte Carlo simulations (ns;,; = 10*) the probability of improvement and the expected
improvement brought by the g first points of each strategy (here ¢ € {2,6,10}). The results
are gathered in Table 1.

6 iterations of CL[min(yBH(XB))] DISTRIBUTION OF THE MC-SIMULATED IMPROVEMENTS
Te _ (given by 6 iterations of CL[mln(yEH(Xg))])
* N @CunmurolyEH
Dalhh 6 o Intial Design, [ 6-EI=117.3802 6-PI=0.9458
P @ Sites visited by CL 250 T T T T T T

L L
500 600 700

Figure 5: (Left) contour of the Branin-Hoo function with the initial design Xg (small
black points) and the 6 first points given by the heuristic strategy CL[min(fpr(Xy))] (large
bullets). (Right) Histogram of 10 000 Monte Carlo simulated values of the improvement
brought by the 6-points CL[min(fpz(Xo))] strategy. The corresponding estimations of the
6-points PI and EI are given above.

The four strategies (KB and the three variants of CL) gave clearly different designs
and optimization performances. In the first case, Constant Liar (CL) sequences behaved
as if the already visited points generated a repulsion, with a magnitude increasing with
L. The tested values L = max(Y) and L = mean(Y) forced the exploration designs to
fill the space by avoiding Xg. Both strategies provided space-filling, exploratory designs
with high probabilities of improvement (10-PI near 100%) and promising q-FT values (see
Table 1). In fine, they brought respective actual improvements of 7.86 and 6.25.

Of all the tested strategies, CL[min(Y)] gave here the best results. In 6 iterations, it
visited the three locally optimal zones of ygr. In 10 iterations, it gave the best actual
improvement among the considered strategies, which is furthermore in agreement with the
10-points EI values simulated by Monte-Carlo. It seems in fact that the soft repulsion when
L = min(Y) is the right tuning for the optimization of the Branin-Hoo function, with the
initial design Xg.

In the second case, the Kriging Believer (KB) has yielded here disappointing results.
All the points (except one) were clustered around the first visited point x"*! (the same
as in CL, by construction). This can be explained by the exaggeratedly low prediction
given by Kriging at this very point: the mean predictor overshoots the data (because of
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CL[min(Y)] | CLimean(Y)] | CLimax(Y)] | KB
PI (first 2 points) 87.7% 87% 88.9% 65%
ET (first 2 points) 114.3 114 113.5 82.9
PI (first 6 points) 94.6% 95.5% 92.7% 65.5%
ET (first 6 points) 117.4 115.6 115.1 85.2
PI (first 10 points) 99.8% 99.9% 99.9% 66.5%
ET (first 10 points) 122.6 118.4 117 85.86
Improvement (first 6 points) 7.4 6.25 7.86 0
Improvement (first 10 points) 8.37 6.25 7.86 0

Table 1: Multipoints PI, EI, and actual improvements for the 2, 6, and 10 first iterations
of the heuristic strategies CL[min(Y)], CL[mean(Y)], CLmax(Y)], and Kriging Believer
(here min(Y) = min(ypr(Xy))). ¢ — PI and ¢ — EI are evaluated by Monte-Carlo simu-

lations (Eq. , Nsim = 10%).

the Gaussian covariance), and the expected improvement becomes abusively large in the
neighborhood of x"*!. Then x"*2 is then chosen near x"*!, and so on. The algorithm
gets temporarily trapped at the first visited point. KB behaves in the same way as C'L
would do with a constant L below min(Y). As can be seen in Table 1 (last column), the
phenomenon is visible on both the q-PI and g-FI criteria: they remain almost constant
when q increases. This illustrates in particular how g-points criteria can help in rejecting
unappropriate strategies.

The results shown in Table 1 highlight a major drawback of the g-points PI criterion. When
q increases, the PI associated with all 3 CL strategies quickly converges to 100%, such that
it is not possible to discriminate between the good and the very good designs. The g-points
FE1 is a more selective measure thanks to taking the magnitude of possible improvements
into account. Nevertheless, the q-FE [ criterion overevaluates the improvement associated
with all designs considered here. This effect (already pointed out in [I5]) can be explained
by considering both the high value of o2 estimated from Y and the small difference between
the minimal value reached at Xg (9.5) and the actual minimum of ypg (0.4).

We now compare CL[min|, CL[max], latin hypercubes (LHS) and uniform random designs
(UNIF) in terms of ¢-EI values, with ¢ € [1,10].For every ¢ € [1,10], we sampled 2000
g-elements designs of each type (LHS and UNIF) and compared the empirical Expected
Improvement distributions to the Expected Improvement estimates associated with the q
first points of both CL strategies. As can be seen on fig. (6), CL[max] (light bullets) and
CL[min] (dark squares) offer very good ¢-EI results compared to random designs, especially
for small values of q. By definition, the two of them start with the 1-EI global maximizer,
which ensures a ¢-EI at least equal to 83 for all ¢ > 1. Both associated ¢-EI series then seem
to converge to threshold values, almost reached for ¢ > 2 by CL[max] (which dominates
CL[min] when ¢ = 2 and ¢ = 3) and for ¢ > 4 by CL[min| (which dominates CL[max]|
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Figure 6: Comparaison of the ¢-EI associated with the ¢ first points (¢ € [1,10]) given
by the constant liar strategies (min and max), 2000 g-points designs taken uniformly at
random for every ¢, and 2000 ¢-points LHS designs taken at random for every gq.

for all 4 < ¢ < 10). Thr random designs have less promizing ¢-EI expected values. Their
¢-EI distributions are quite dispersed, which can be seen for instance by looking at the
10% — 90% interpercentiles represented on fig. @ by thin full lines (respectively dark
and light for UNIF and LHS designs). Note in particular that the ¢-EI distribution of the
LHS designs seem globally better than the one of the uniform designs. Interestingly, the
best designs ever found among the UNIF designs (dark dotted lines) and among the LHS
designs (light dotted lines) almost match with CL[max] when ¢ € {2,3} and CL[min]| when
4 < g < 10. We haven’t yet observed a design sampled at random that clearly provides
better ¢-EI values than the heuristic strategies.

5.2 Kriging-based optimization of gaussian process realizations

With the intent to produce general results, we chose to study and compare the 3 heuristics
KB, CL[min Y], and CL[max Y] presented in 2.3 in applying them to random functions.
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Figure 7: Two stationary Gaussian Process paths (both centered, with variance 10 and
exponential covariance structure with respective correlation lengths 0.2 and 0.7). This
family of Gaussian Process is often referred to as Ornstein- Uhlenbeck Process ([4])

Gaussian Process simulation is a handy way to work with such functionsﬁ We consid-
ered four experimental configurations (denoted by k € [1,4]) involving Gaussian Processes
Y*(x) and 1000 realizations {y¥(z),i € [1,1000]} of them for each configuration. For all
configurations, the outputs varied between —1 and 1 (D = [—1,1]), and the initial design
of experiments was fixed to the 3-elements set X = {—1,0,1} (see fig. (8)). The other
experimental parameters varied accordingly to the values specified in Table (/5.2)).

k | covariance | correlation length | variance | N
1 | Exponential 0.3 40 2
2 | Exponential 1 40 2
3 | Exponential 0.3 40 10
4 | Exponential 1 40 10

Table 2: Design of experiments for a comparison between the 3 heuristics

Formally, each heuristic strategy S (here S € {KB,CL[min],CL[max]}) provides a se-
quence of points X¥1(8), ..., X*Nk(S). These points are random variables since they closely

4simulating mono- or multi-dimensional Gaussian processes on a grid (having m elements) is theorically
(but not always numerically) straightforward, the cost being the inversion of an m x m covariance matrix.
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Figure 8: 5 iterations of CL[min(Y)] (left) and CL[max(Y)] (right) to one Gaussian Process
path (scale 0.7, variance 10, exponential covariance). This example clearly illustrates how
the CL strategy priveleges local search whenever L = min(Y'), and possesses a more space-
filling behaviour when L = max(Y).

depend on the process Y* which is itself random. Here we wish to study the performances
of each strategy (given a configuration) by looking at the behavior of the random variable

Ar(S) = min{Y*(X), Y*(X*L(S)), ..., YF(XFNE(S))} — HéiB[Yk(m)] >0  (27)
X
which measures how far we are from having perfectly optimized the process Yk(m) after
having ran N}, iterates of the strategy S. Hence, the closer the realizations of Ag(S) are
to 0, the better S fullfils its goals as optimizer.
We studied the experimental performances of the three algorithms applied to the 1000
realizations ran for every configuration k. We considered the realizations of Ag(S),

04(8) = min{yf (X), yf (2" (S)), - yf (2 (8))} — min[y; (z)] > 0 (28)
where the xfj (S)’s stand for the 1000 realizations of the X*+(S)’s. The results are sum-
marized in figures and . The histograms offer concentrated representations of the
0;,’s distributions, i.e. the statistical performances of each strategy in all studied configura-
tions. Values near 0 (on the extreme left of the histograms) mean succesful optimizations,
whereas right tails stand for the cases of failure (best y value observed far beyond the

19



F requency

CL{max)

Figure 9: Comparison of the heuristic strategies C'L[min], C'L[maz], KB applied to 1000
Gaussian process realizations with configurations 4. C'L[max] and K B keep their positions
of best performers, respectively at the right and left extremes. Note the particular shape
of the gg-plot between C'L[min] and CL[max|. The first one is statistically more likely to
perform very well, but also more likely to fail dramatically. Conversely to configuration 1
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(see appendix D), C'L[max] is here a good challenger for a risk averse user.
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actual minimum). The ¢-q plots aim at comparing all couples of strategy in plotting the
empirical quantiles (i.e. ranked values of the (5,’;’5) of the one against the empirical quantiles
of the other. Such kind of graphic allows a far more subtile comparison between strategies
than only scalar indexes like the mean or the median performance.

As shown on fig. , the Kriging Believer strategy does not behave pathologically anymore
when using the exponential covariance: it seems in fact to give optimization results with a
very good balance between high performances and risk covering. Even if the three strategies
roughly give comparable results within this example, C'L[min] and KB appear indeed to
provide more often extremely good results (small 0’s) than CL[max], which however has
thiner tails than C'L[min]. Note that if the comparaison between strategies is quite stable
for small values of §, this statement doesn’t hold for high quantiles since the corresponding
fluctuations are too large for samples of 1000 process realizations.

6 Conclusions

Gaussian Process regression is very convenient for metamodel-based optimization. Its prob-
abilistic frame allows to build explicit criteria accounting for the exploration/exploitation
trade-off, like the expected improvement, EI. The q-EI criterion developed here makes it
possible to get an evaluation of the ”optimization potential” given by a set of q experiments.
It can be used to analytically derive EI-optimal singletons and couples. Monte-Carlo sim-
ulations offer the opportunity to evaluate the g-EI associated with any given design of
experiment, whatever its size. Four heuristic strategies, the "Kriging Believer” and three
”Constant Liars” have been proposed and compared that aim at maximizing q-FE1 while
being numerically tractable. It has been verified that they provide higher g-FEI’s than
Latin Hypercubes and random uniform designs of experiments.
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Computer Experiments) Consortium between ARMINES, Renault, EDF, IRSN, ONERA,
and Total S.A. We wish to thank Xavier Bay, Raphael T. Haftka, Ben Smarslok, Yann
Richet, Olivier Roustant, and Victor Picheny for their help and rich comments. Special
thanks to the R project people ([6]) for developing and spreading such a useful freeware.

A More details on the 2-points Expected Improvement

A.1 Minimum of two random variables

Let us consider two real random variables U and V' defined on the same probability space. In the case
where U and V are independent, the cumulative distribution of the couple (U, V') is well known:

Vez,y e R, P(U<z,V<y)=PU<z)x P(V<y)=Fy(z) X Fv(y)
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This is the key to the distribution of m = min(U,V) since Vx € R, P(m < z) =1 - P(m > z) =
1—-PU >z,V>2)=1-PU>z)xPV>z)=1-1-PU<z)x(1-PV <z)=PU<
z)+ P(V <) — P(U < z) x P(V < z). For instance, in the case where N1, N2 ~ A (i, 0?) independently,
the distribution of their minimum is given by:

2

Vz € R, P(min(N1, N2) < z) = 2 [@(“” - “)} - [cb(“ - ”)} (29)
where @ is the gaussian cumulative distribution function. Now we consider the case of two dependent
random variables U and V. Since the last multiplicativity property doesn’t hold anymore, all we can say
is that Vo € R, P(m < z) = P(U < z,V < z) which is the cumulative distribution function of the
random vector (U, V') evaluated at (z,z). In the case where (U, V) is a dependent multigaussian vector
(N1, N2) ~ N (p,2), we have the more general expression:

Vz € R, P(min(N1, N2) <z) = P(N1 <z,N; <z)=CDF(u,3)(z, ) (30)

where CDF stands for the bi-gaussian cumulative distribution function. This is the integral of the bi-
gaussian density function (corresponding to the distribution A (p, X)) over the surface of the southwestern
quadrant delimited by (x,z). This expression is so forth considered as analytically intractable and must be
numerically approximated.

A.2 Analytical calculation of the 2-points Expected Improvement

Some classical results of conditional calculus allow us to precise this dependance and fix the notations. Let
us first give shortened notations for the means, standard deviations, and covariance of the random variables
(Yor (x') = [V(x")/Y(X) = Y], i € {1,2}):

m; = E[Y (x")/Y] = mok (x*),0: = /Var[Y (x}) /Y] = sox (x),

C1,2 = CO’U[YOK(Xl),YOK(XZ)/Y} = 012 = pP1,20102

Well-kwown results from linear regression (for instance) then give us conditional means and variances of
one response knowing the other:

2
c C
may = BY (x*) /Y, Yor(x")] = ma + %;(YOK(XI) —mi), 03/1 =05 — 017’; =03(1— pis) (31)
2
C C
mi2 = BIY (x)/Y, Yor (M) + 5 (Yor (") =ma), o1z = of = 25 = of(1 - pl) (32)

At this stage we are in position to compute EI(xl,x2). Starting here, we replace the complete notation
Yor (x") by Y; and forget the conditioning on Y for the sake of clarity.

Phase 1
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Since both terms of the last sum are similar (up to a permutation between x! and X2), we will at first
restrict our attention to the first one. Using 1y,<v, = 1 — Ly,<v; E|, we get:

E[(min(Y) — Y1)Ly, <min(v) vy <va] = E[(min(Y) — Y1) Ly; <min(y) (1 — Ly <vy )]
= EI(x") — E[(min(Y) — Y1) 1y, <min(y) Lyo <vi]
= EI(x') + B(x',x?)

where B(x',x*) = E[(Y1—min(Y))1y, <min(y)Lys<v,). Informally, B(x",x?) is the opposite of the improve-
ment brought by Y7 when Y2 < Y7 and hence that doesn’t contribute to the 2-step expected improvement.
Our aim in the next phases will be to give an explicit expression for B(x*, x?).

Phase 2
B(x",x%) = E[Yily, <min(y) Lva<yi] — min(Y) E[Ly; <min(y) Lya <vi )

At this point, it is worth noticing that Y1 = m1 + 01Ny with N; ~ A/(0,1). Substituing this decomposition
in the last expression of B(x',x?) leads to:

B(x',x%) = 01E[N11y, <min(v)Iva<vi] + (M1 — min(Y)) B[y, <min(x) Iva<vi]

The two terms of this sum require some attention. We compute both of them in detail respectively in phase
3 and phase 4.

Phase 3

Using a classical property of conditional calculus EL we have that:
E[N1ly, <min(v)lva<vi] = E[N1ly, <miny) Ellva<vi /Y1)
Using the fact that Y2/Y1 ~ N (mga/1 (Y1), sg/l(Yi)), we obtain the following:

C1,2
Yi—m Yi—mo— 5 (Y1 —mi)
Elly,<v /Y1) = ®(——L1) = @ )

S2/1 o2y/1 — p,

Back to the main term and using again the normal decomposition of Y7, we get:

mi1 —ma + (01 — p1202) N,
E[Nily, cminvylvazvi] = [Nl minw)—my B(——— (01 S 2) -)]
= 71 o2/ 1 = p1y

= E[N11n, <4, ®(a1N1 + 1)]

. )
where 7, = ) = g and ay — TL= L1202

a1 o2y/1 = piy o2/1 = piy

Finally, E[N11n,<~, ®(c1 N1 + (1)] can be computed applying an integration by parts:

Y1

/ " ubw)B(aru + Br)du = [~ p(u)@(anu + )] o + / ond(u)p(onu + Br)du

—0o0 —o0

M —uP—(agutsy)?
— sl + o)+ 55 [T H

— 00

This expression should be rigorously noted 1 — Ly,<v,. Since we work here with (continous) gaussian
random variables, it sufficies however that their correlation is different from 1 for the expression to be exact
({Y1 = Y2}) is then neglectable). We implicitely do this assumption here and in the following.

SFor all function ¢ in L*(Q), E[X¢(Y)] = E[E[X/Y]¢(Y)]
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2
2
Since u® + (a1u + B1)% = (\/(1 +af)u+ jllfiig) * Lfig%, the last integral reduces to:

2 =

~ Ve ) Vam

We conclude in using the definition of the cumulative distribution function:

dv

14+ a2

2 2
(VEme s ) e (V) e s
>/’Y16 < V1t+a? p ¢ T+a? / (1+a§)71+\/ﬁ67

J%( 32

a1 o7
1 1+oc%

) 2 01151
Jara ¢ (W”almﬂﬁﬁ

E[N1ly, <min(v)lyva<vi] = —0()@(cam + 61) +

Phase 4

We then finally compute the term:
Elly, <min(y)lva<vi] = Ellx<min(y)1z<o]

where (X, Z) = (Y1, Y2—Y1) is following a two-dimensional normal distribution of mean M = (m1, ma—ma1),
2 2
01 C1,2 — 01

and variance matrix I' = 2 2 2
Cc12—01 03+07—2c12

) . The final results rely on the fact that:
E[lx<min(y)lz<o] = CDF(M,T)(min(Y),0)
where CDF stands for the bi-gaussian cumulative distribution function.

Proposition:
EI(x',x*) = EI(x") + EI(x*) + B(x",x%) + B(x*,x") (33)

with B(x',x%) = (mox (x') — min(Y))d(x',x%) + oox (x")e(x!, x?)

e(x!,x%) = arg(

@181
151] T a3 _ 12y < min(Y) —m )
Gran) (a1~ POlar #8000 = CDEM 0, Do,

B Generalities about the g-points expected improvement

B.1 An alternative definition

After the definition of the bivariate expected improvement, it seems natural to define the multivariate
expected improvement as:

EI(x',...,x%) = Elmaz(min(Y) — min{Yox (x'), ..., Yox (x%)},0)]

Shortening again the notations, we have the equivalent definition:

q
EI(x',...x") = > E[(min(Y) = Yi) 1y, <min(y) (Mzilyi<v; )] (34)
=1

Proof of : like in phase 1, we use the property 1 = 77 | (II;£;1y,<y;) which only means that the
smallest Y; is among the Y;s!
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B.2 First bounds on ¢-EI
EIx',.,x) <Y EIXx) (35)

Proof of: Vi€ [1,q], (Tlj%ily,<y;) < 1 and hence (min(Y) — Vi) 1y, <min(y) (T2 ly, <v;) < (min(Y) —
Yi)1ly,<min(y). The property follows from

T JC[lg 1<i<gq

EI(x',..,x%) > max]EI({xi,i eJ}) > max EI(x") (36)
Proof of [36;  Be J C [1,n]. Both statements directly come from the inequality: min(Yi,i € J) >

min(Y;,i € [1,n]).

Vo €%, EIx"W, . x99 = EI(x',...,.x") (37)
Proof of[37 This follows the invariance of min by permutation.

C Joint predictions using Simple and Ordinary Kriging

Here we give some details about the calculation of the joint distribution obtained when simultaneously
predicting at different points in the cases of Simple and Ordinary Kriging (SK and OK in the following).
Let us first recall some basics about Kriging and Gaussian Processes.

C.1 Gaussian Processes for Machine Learning

A real (L?) random process (Y (x))xep is defined as a Gaussian Process (GP) whenever all its finite-
dimensional distributions are Gaussian. Consequently, for all n € N and for all set X = {x',...,x"} of n
points of D, there exists a vector mx € R™ and a symmetric positive semi-definite matrix ¥x € M, (R) such
that (Y(x1), ..., Y(x™)) is a Gaussian Vector, following a multigaussian probability distribution A/ (mx, ¥x).
More specifically, for all i € [1,n], Y(x') ~ N(E[Y(x)], Var[Y(x")]) where E[Y (x%)] is the ith coordi-
nate of mx and Var[Y(x")] is the ith diagonal term of ¥x. Furthermore, all couples (Y (x%),Y (x%))
i,j € [L,n],i # j are multigaussian with a covariance Cov[Y (x), Y (x?)] equal to the non-diagonal term of
¥x indexed by ¢ and j.

A Random Process Y is said to be first order stationary if its mean is a constant, i.e. if Vx € D, E[Y (x)] = p
where ¢ € R. Y is said to be second order stationary if there exists a positive semidefinite function
¢: D — D — R such that for all pairs (x,x’) € D?, Cov[Y(x),Y(x)] = ¢(x — x'). We then have the
following expression for the covariance matrix of the observations at X:

o? c(x1 —x2) ... c(x1—Xn)
2
Cl|X2 — X1 g C(X2 — Xn
Sx = (Covl (%), Y (<)), oy = (€ =x,)), e = | 02 7Y Bz =)
c(Xn —x1)  c(xn —X2) ... o2
(38)
where o? := ¢(0). If Y is first and second order stationary, it is said weakly stationary. A major feature

of Gaussian Processes is that their weak stationarity is equivalent to strong stationarity: if Y is a weakly
stationary GP, the law of probability of the random variable Y (x) doesn’t depend on x, and the joint
distribution of (Y'(x'), ..., Y(x™)) is the same as the distribution of (Y (x' +h), ..., Y (x™ + h) whatever the
set of points {x',...,x"} € D™ and the vector h € R" such that {x* +h,...,x" +h} € D™. To sum up, a
stationary GP is entirely defined by its mean p and its covariance function c(.). The classical framework
of Kriging for Computer Experiments is to make predictions of a costly simulator y at a new set of sites
Xopew = {x" T, ..., x"T9} (most of the time, ¢ = 1), on the basis of the collected observations at the initial
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design X = {xl, ..,X"}, and under the assumption that y is one realization of a stationary GP Y with
known covariance function (in theory) Simple Kriging (SK) assumes a known mean, p € R. In Ordinary
Kriging (OK), u is estimated.

C.2 Conditioning Gaussian Vectors

Let us consider a centered Gaussian vector V' = (V1, V2) with covariance matrix

T
EV = ]E[VVT] = ( EZVl ch::jss ) (39)
cross 0}

Key properties of Gaussian vectors include that the orthogonal projection of a Gaussian vector is still a
Gaussian vector, and that the orthogonality of two subvectors Vi, V2 of a Gaussian vector V' (i.e. cross =
E[V2V{'] = 0) is equivalent to their independance. We now express the conditional expectation E[V;/Vz].
E[V1/V2] is by definition such that Vi — E[V;/V5] is independent of Va. E[V1/V2] is thus fully characterized
as orthogonal projection on the vector space spanned by V2, solving the equation:

E[(Vi/ — E[Vi/Va])V5' ] =0 (40)

Assuming linearity of E[V1/V2] in V3, i.e. E[V1/Va] = AV, (A € M, (R)), a straightforward development of
(eq gives the matrix equation X7, ., = AX¥v,, and hence ECTMSSE;;VQ is a suitable solution provided
Yy, is full rankecﬂ We conclude that

E[Vi/Va] = 280520, Vo (41)

by uniqueness of the orthogonal projection in a Hilbert space. Using the independence between (Vi —
E[V1/V2]) and V2, we calculate the conditional covariance matrix Xy, /v, :

Svi v, = E[(Vi — E[Vi/Va])(Va — E[VA/Va])T /VA]
=E[(Vi — AVp)(Vi — AVa)"]
= EVl - AEcross - ZZ;OSSAT + szz AT

T —1
= EVI - EC’I‘DSSEVQ ECTOSS

(42)

Now consider the case of a non-centered random vector V' = (V4,V2) with mean m = (mi,m2). The
conditional distribution Vi /V2 can be obtained by coming back to the centered random vector V. — m. We
then find that E[Vi —m/Va —mg] = ZCTTOSSE;; (Vo —m2) and hence E[V;/Va] = mq + 22;0552\721(‘/2 —ma).

C.3 Simple Kriging Equations

Let us come back to our metamodeling problem and assume that y is one realization of a Gaussian Process
Y, defined as follows:

e(x) centered stationary GP with covariance function ¢(.)

where p € R is a known scalar. Now say that Y has already been observed at n locations X = {xl7 X7}
(Y(X =7Y)) and that we wish to predict Y a g new locations Xye, = {x" T, ..., x"T7}.
Since (Y (x'), ..., Y (x™), Y(x"™h), ..., Y(x"19)) is a Gaussian Vector with mean p1,4 and covariance matrix

o2 c(x1 —x2) .. (X1 —Xntq)
_ by Z)zjross _ C(X2 - Xl) 02 C(X2 - X”+‘Z)
Etot - < Ecross Enew ) - (44)
c(Xntq —X1) (Xntq —X2) .. o?

If Yy, is not invertible, the equation holds in replacing E‘;; by the pseudo-inverse 21/2.
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We can directly apply eq. and eq. to derive the Simple Kriging Equations:

[Y (Xnew)/Y(X) = Y] ~ N(msk (Xnew), Zsi (Xnew)) (45)
with msic(Xnew) = E[Y (Xnew)/Y(X) = Y] = pl, + S5, 571 (Y - i1,) and Ssxc(Xnew) = Snew
N 0ss D ' Eeross. When ¢ = 1, Zeross = ¢(x™ 1) = Cov[Y (x" 1), Y(X)] and the covariance matrix reduces
to 83 (x) = 02 — c(x"TH T te(x™ ), which is called the Kriging Variance.

When p is constant but not known in advance, it is not mathematically correct to sequentially estimate
and plug in the estimate in the Simple Kriging equations. Ordinary Kriging addresses this issue.

C.4 Ordinary Kriging Equations

Compared to Simple Kriging, Ordinary Kriging (OK) is used when the mean of the underlying random
process is constant and unknown. We give here a derivation of OK in a Bayesian framework, assuming that
u has an improper uniform prior distribution u ~ U(R). y is thus seen as a realization of a random process
Y, defined as the sum of p and a centered GP ﬂ
Y (%) = i+ e(x)
e(x) centered stationary GP with covariance function c(.) (46)
p~U(R) (prior)
Note that conditioning with respect to p actually provides SK equations. Letting p vary, we aim to find the
law of [Y (Xpew)/Y (X) = Y]. Starting with [Y(X) =Y /u] ~ N(ul,,X), we get p’s posterior distribution:

R 1"s7'y 1 :
W/ Y(X)=Y]~N (i,00) =N ( 17511 132*11(1) (posterior) (47)

We can re-write the SK equations [V (Xpew)/Y(X) =Y, u] ~ N(msk (Xnew), sk (Xnew)). Now it is very
useful to notice that the conditional random vector [(Y (Xnpew),pt)/Y (X) = Y] is Gaussian El It follows
that [V (Xnew)/Y (X) = Y] is Gaussian, and its mean and covariance matrix can finally be calculated with
the help of classical conditional calculus results. Hence using mox (Xnew) = E[Y (Xnew)/Y(X) = Y] =
E, [E[Y (Xnew)/Y (X) = Y, 1], we find that mox (Xnew) = A+5T 00 XL (Y —fil,). Similarly, Sox (Xoew)
can be obtained using that Cov[A, B] = Cov[E[A/C],E[B/C]] + E[Cov[A, B/C]] for all random variables
A,B, C such that all terms exist. We get for all couples of points (x™ % x" ) (i, € [1, q]):

Cov[Y (x"), Y (x")/Y(X) = Y]
=E [cov[y(x““), Y(x") /Y (X) = Y, ,L]] + Cov [E[Y(x"“)/Y(X) =Y, 1, E[Y (x")/,Y(X) = Y, H]]
(48)

The left term Cov[Y (x"1), Y (x" ™)/, Y(X) =Y, u] is the conditional covariance under the Simple Kriging
Model. The right term is the covariance between pu+c(x"t)7L~1 (Y —pl,) and p+c(x" )78~ (Y —pl,)
conditionally to the observations Y (X) =Y. Using eq. , we finally obtain:

CoulY (x"+), Y (") /Y (X) = Y]
=E [Couly (<), Y (") /Y (X) = Y, 1]
+CouBY (x")/Y(X) = Y, 4, EY (" ™)/, Y (X) = Y, ]
=Covsk [V (x" ), Y (x" ) /Y (X) = Y] (49)
+Cov[e(x"THTSTHY) + p(1 + c(x"T)TE71,), c(x" ) TS THY) + (1 + c(x") T8 711,)]

(14 e(x™)"S"1,)(1 + e(x"+) 21,
17x-11,

:c(x"+i — xn+j) — c(xn+i)TE_1c(x"+j) +

8The resulting random process Y is not Gaussian
9which can be proved by considering its Fourier transform

27



And the Ordinary Kriging Variance now appears as a particular case. For all x € D, we have indeed:

(1- 125 e(x))’

2 2 Tw—1
sog(x) =VarlY(x)/Y(X)=Y]=0" —c(x)" X" c(x) + - (50)
17¥-11,
. .
D More graphics to compare the KB and CL strategies
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Figure 10: Comparison of the heuristic strategies C'L[min|, C' Limazx], K B applied to 1000
Gaussian process realizations with configurations 1 (left) and 3 (right).

This figure focuses on the §%’s associated with 2 iterations of the three strategies applied to Gaussian
processes with exponential covariance and respective scales 0.3 and 1 (see. In the first case (k = 1), the
K B and CL[min] show very similar results. C'L[maz] has a slightly different right tail, and both first and
third qg-plots illustrate how it is dominated in terms of extreme risk. This effect doesn’t hold when the
scale is 1 (right side of ﬁg.). All the strategies then behave almost equally. Note that the performances
are uniformly better than with the previous configuration. This is because the realizations are more regular,
and are as such easier to optimize starting with only 3 points.

We now look at (11), where 10 iterations are considered with the same sets of covariance parameters as
previously (see This time, clearer dissimilarities appear between the strategies. In configuration 2
(scale 0.3), C'L[mazx] shows better right-tail performances than both other strategies, which almost match.
Note the dominance of KB in terms of extreme performance (near 0). These effect are amplified in
configuration 4 where C'L[maz] and KB keep their positions of best performers, respectively at the right
and left extremes. Note the particular shape of the gg-plot between CL[min] and C'L[max]. The first one
is statistically more likely to perform very well, but also more likely to fail dramatically. Conversely to
configuration 1, C'L[maz] is here a good challenger for a risk averse user.
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