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aUniversité d’Avignon et des Pays de Vaucluse,

Laboratoire d’Informatique d’Avignon

F-84911 Avignon Cedex 9, France
bLAAS CNRS, Université de Toulouse
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Abstract

The Generalized Traveling Salesman Problem (GTSP) is a generalization of the

well-known Traveling Salesman Problem (TSP), in which the set of cities is

divided into mutually exclusive clusters. The objective of the GTSP consists

in visiting each cluster exactly once in a tour, while minimizing the sum of the

routing costs. This paper addresses the solution of the GTSP using a Memetic

Algorithm. The originality of our approach rests on the crossover procedure

that uses a large neighborhood search. This algorithm is compared with other

algorithms on a set of 54 standard test problems with up to 217 clusters and

1084 cities. Results demonstrate the efficiency of our algorithm in both solution

quality and computation time.
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1. Introduction

In this paper, we propose a solution method for the Generalized Traveling

Salesman Problem (GTSP) based on a Memetic Algorithm (Genetic Algorithm

plus Local Search, see [1] or [2] for further details). The GTSP is a generalization

of the well-known Traveling Salesman Problem (TSP). The main contribution

of the paper stands in the crossover operator based on the exploration of a large

neighborhood around the father and mother individuals.

The GTSP can be described as follows. Let G = (V, E) be a complete

undirected graph, V = {v1, . . . , vn} a set of cities and W = {W1, . . . , Wm} a

set of clusters, with 0 < m ≤ n. Each city vi ∈ V belongs to exactly one

cluster (note that from this definition the clusters are mutually disjoint). Let

cij denote the routing costs for vi, vj ∈ V . The objective is to find a tour visiting

exactly once each cluster while minimizing the sum of the routing costs. In this

work, we only consider symmetric cost matrices (cij = cji), but the algorithm

could easily be generalized to the asymmetric case. In particular, the crossover

operator can be indifferently applied on symmetric or asymmetric instances.

The GTSP is NP-hard in the strong sense since it generalizes the TSP.

Indeed, the special case where m = n (a city per cluster) is a TSP: the problem

resorts to find a tour visiting each city at a minimum cost.

In Section 2, we review the literature on the GTSP. Section 3 presents a

new Memetic Algorithm developed for the GTSP. The main characteristic of

this algorithm is its Large Neighborhood Search crossover procedure (see [3] for

a recent work on Large Neighborhood Search techniques). Section 4 provides a

computational evaluation of our algorithm through benchmark instances from

the GTSPLIB [4].

2. State of the art

The GTSP was first introduced by Srivastava et al. [5] and Henry-Labordere

[6], each one proposing to solve it through dynamic programming. Laporte and

Norbert [7] and Laporte et al. [8] developed integer programming formulation,
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permitting to solve exactly the GTSP with Branch & Bound techniques. More

recently, an efficient Branch & Cut solution scheme was proposed by Fischetti

et al. [9], who provide optimal solutions for instances with up to 89 clusters and

442 cities.

Many attempts have been done to transform efficiently the GTSP into the

TSP [10, 11, 12, 13, 14]. Some of the resulting TSP instances have nearly

the same number of nodes as the original GTSP instances. Moreover, some

transformations of the GTSP into the TSP [11] have an important property: an

optimal solution to the related TSP can be converted to an optimal solution to

the GTSP. Unfortunately, a feasible non-optimal solution for the TSP may be

not feasible for the GTSP. Furthermore, well-known heuristics for the TSP may

not perform well for the GTSP.

Two approximation algorithms have been published for the GTSP. Slav́ık

[15] presented a 3ρ/2-approximation algorithm for the GTSP, where ρ is the

number of cities in the largest cluster (ρ = maxi=1,...,m(| Wi |). Unfortunately,

the worst-case bound may be relatively weak, as ρ may be quite large. Garg et al.

[16] proposed an approximation algorithm for the group Steiner tree problem,

which provided an O(log2(n) log(log(n)) log(m))-approximation algorithm for

the GTSP. In both cases, the triangle inequality must be satisfied.

In [17], Noon proposed several heuristics, including an adaptation of the

nearest-neighbor heuristic developed for the TSP. Similar adaptations have been

implemented by Fischetti et al. [9], such as farthest-insertion, nearest-insertion

and cheapest-insertion. More recently, Renaud and Boctor [18] proposed an

heuristic called GI3 (Generalized Initialization, Insertion and Improvement),

which is a generalization of the I3 heuristic presented in [19] for the TSP. This

heuristic consists of three phases: an initialization during which a partial tour

is constructed, an insertion phase which completes the tour by inserting at the

cheapest cost cities from unvisited clusters and an improvement phase based

on 2-opt and 3-opt moves between clusters, called here G2-opt and G3-opt.

The authors also explain how the cheapest sequence of cities visiting the set of

clusters in a given order can be determined in polynomial time. They present a
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procedure called ST algorithm (for Shortest Tour).

Snyder and Daskin [20] proposed to solve the GTSP with a Genetic Algo-

rithm using a random-key encoding which assures that solutions constructed by

crossover or mutations are feasible. The Genetic Algorithm was coupled with

local search improvement, namely a swap procedure and a 2-opt neighborhood

search, yielding a Memetic Algorithm. Computational results show the effi-

ciency of their algorithm, in terms of solution quality and computation time. A

Particle Swarm Optimization based algorithm was also recently developed by

Shi et al. [21].

Finally, Silberholz and Golden [22] very recently proposed a Genetic Algo-

rithm with several new features, including isolated initial populations and a new

reproduction mechanism, based upon the TSP ordered crossover operator. This

new mechanism was called mrOX, for modified rotational ordered crossover.

Local improvement procedures combined with this mechanism, yielding again a

Memetic Algorithm, permit to obtain very good results on large new instances.

This algorithm can be considered as the most competitive algorithm published

to date.

3. A new Memetic Algorithm

A Genetic Algorithm is a search technique widely used to find approximate

solutions of optimization problems (see, e.g., [23, 24, 25]). Genetic Algorithms

are categorized as metaheuristics and are a particular class of evolutionary algo-

rithms that use techniques inspired by evolutionary biology such as inheritance,

mutation, selection, and crossover. Genetic Algorithms maintain a large num-

ber of solutions during the solution process. The set of solutions is called the

population. Each solution is called an individual. At each iteration of a Genetic

Algorithm, a new population is generated using several operators: reproduction,

crossover and mutation.

Genetic algorithms paired with local search techniques are categorized as

Memetic Algorithms [2, 26, 1]. In this section, we present a new Memetic

Algorithm. We particularly insist on the crossover operator, which is our main
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contribution. Moreover, to clearly evaluate the impact of this operator, we

voluntarily adopt a very standard implementation for the rest of the algorithm.

3.1. Basic components of the algorithm

3.1.1. Individuals

Each individual (a solution of the problem) is represented by an ordered

list of clusters, where the first and last clusters are identical. From this repre-

sentation, a city tour can be derived, defined as the optimal tour maintaining

the visiting order of clusters. The cost of the individual is the cost of this city

tour. It is obtained using the Shortest Tour algorithm developed by Renaud

and Boctor [18].

The principle of the Shortest Tour algorithm is the following. A succession

of clusters defines a sequence of sets of cities, where cities from one cluster can

only be attained from cities belonging to the preceding cluster. Representing

cities by nodes, we obtain a directed acyclic graph. In this graph, the subset of

paths having identical starting and ending nodes exactly corresponds to the set

of GTSP solutions respecting the order defined by the cluster sequence. The

best of these solutions coincides with the shortest path of this subset. Seeing

that calculating the shortest path in an acyclic graph can be done in polynomial

time with a simple recursion, the best city tour can easily be obtained. One

just has to successively consider each city of the first (and last) cluster and

compute the shortest path constrained to start and end with this city. The

optimal city tour is the best path found during this process. The Shortest Tour

procedure is computationally cheap and, consequently, can be called very often

(more precisely, its complexity is O(n3/m3) – see [18]).

3.1.2. Initial population

Our initial population contains N individuals. Individuals are constructed

through randomly generated cluster lists. The Shortest Tour algorithm is ap-

plied to determine the optimal city tour and the cost for each individual. In

order to avoid symmetries, the first (and last) cluster is identical for all indi-

viduals; in order to limit the computation time of the Shortest Tour procedure,
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the cluster containing the fewest cities is chosen.

3.1.3. Population renewal

At each generation, two individuals are randomly chosen through Roulette

Wheel Selection and paired for crossover. These two parents breed two children.

This operation is repeated k times. The children are then added to the popula-

tion and only the N best individuals are kept. A mutation procedure is applied

to improve the population diversity and avoid premature convergence. Each in-

dividual has a probability µ of being selected for mutation (in our experiments

µ = 0.05). The mutation consists in swapping two randomly chosen clusters

and applying the Shortest Tour algorithm to compute the optimal city tour and

the new individual cost. The heuristic stops when N1 generations have been

computed or when no improvement has been performed during N2 generations.

3.1.4. Memetic Algorithm

The proposed Memetic Algorithm associates all the elements described above,

plus the crossover operator and the local search procedures presented in the next

sections. Figure 1 presents a synthetic view of the algorithm.

Algorithm 1 Memetic Algorithm

Compute an initial population of N random individuals
Apply local search on these individuals
while the number of iterations is lower than N1 and an improvement has
occurred since less than N2 iterations do

for i = 1 to k do

Choose 2 individuals randomly
Construct 2 children with crossover
Apply local search on both children
Add children to the population

end for

Keep the N best individuals in the population
Apply mutation with a probability µ to every individual of the population.

end while

3.2. Crossover operator

The crossover operator is very important in a Genetic or a Memetic Algo-

rithm. This operator allows constructing new solutions from existing solutions
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and plays a great part in the behavior of the algorithm.

A crossover, or reproduction, is the equivalent of two parents mating and

producing two children. These children bear a resemblance to each parent.

Several crossover operators have been proposed for the TSP or for TSP-like

problems: e.g., the maximal preservative crossover (MPX, [27]) or the modified

rotational ordered crossover (mrOX) proposed by Silberholz and Golden [22].

A comparison of different crossovers used for the TSP is presented in [28].

The crossover procedure we propose here is inspired from the dropstar pro-

cedure used in Bontoux and Feillet [29]; shortly, in that paper, the context was

the solution of the Traveling Purchaser Problem and dropstar was used as a lo-

cal search operator determining the best subsequence from a sequence of cities.

It is noteworthy saying that this operator is also inspired from the algorithm

used by Prins in [30].

Let Wi′
1
, . . . , Wi′m

and vi1 , . . . , vim
respectively be the cluster tour and the

derived city tour of an individual, called the father. Let Wj′
1
, . . . , Wj′m

and

vj1 , . . . , vjm
respectively be these tours for another individual, called the mother.

A new individual - a child - is built by the following procedure. Note that once

a child has been constructed, the roles of the two parents are reversed and a

second child is obtained using the same procedure.

Every city of the mother individual is progressively inserted into the father

city tour. The order in which cities are inserted is the order of the mother city

tour. We determine the insertion position of a city vjk
as follows: we consider

every insertion position of vjk
between cities vil

and vil+1
of the father such that

Wi′
l
6= Wj′

k
and Wi′

l+1
6= Wj′

k
(thus avoiding that two identical clusters follow);

among these possibilities, the one minimizing insertion cost ciljk
+cjkil+1

−cilil+1

is chosen.

Once every city of the mother individual is inserted, we derive a cluster

sequence in which every cluster appears twice. This sequence is called the

redundant-sequence. The next step is to determine an optimal feasible subse-

quence, i.e., where every cluster is visited exactly once.

The search is computed through a dynamic programming algorithm, applied

7



to a graph obtained from the redundant-sequence. This graph is built by the

following procedure. A vertex is inserted for every city of every cluster, once for

every appearance of the cluster in the sequence. Basically, an arc is added for

every pair of vertices issued from different cluster position in the sequence, in the

direction of the sequence (see Figure 1 for an aggregated vision of the graph and

Figure 2 for an extract of the real graph). Some graph reductions will however

be defined subsequently (see Section 3.3). The objective is to find the shortest

path in the graph between the two extreme clusters, with the constraints that

every cluster must be visited exactly once and that the solution must be a cycle.

Before giving more details on the dynamic programming algorithm, let us

illustrate the behavior of this crossover operator on a simple example. Consider

a set of clusters W = {W1, . . . , W5}. The father and mother cluster tours are:

father: W4 W3 W1 W5 W2 W4

mother: W4 W1 W3 W5 W2 W4

The insertion procedure defines a redundant-sequence of clusters of the form:

child: W4 W1 W3 W1 W5 W2 W3 W2 W5 W4

where the clusters from the father node are underlined and the insertion posi-

tions are defined using the city tours of the individuals.

The graph represented by Figures 1 and 2 is then implicitly defined. From

this graph, the dynamic programming algorithm determines an optimal city

tour, from which the cluster sequence defining the new individual is derived.

The implementation of this algorithm is detailed in Section 3.3.

The main advantage of this operator is to span a very large solution space.

Indeed, the number of feasible cluster subsequences of the redundant-sequence

is O(2m). Furthermore, for a given subsequence, the number of city tours is

O((n/m)m) (it can be easily seen that the largest space is obtained when every

cluster has the same size n/m). As a consequence, the solution defined by the

crossover operator is the best among O(2m(n/m)m) solutions. In our sense, it

both allows high diversification and populations of good quality. However, of
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W4 W1 W3 W1 W5 W2 W3 W2 W5 W4

Figure 1: Graph obtained from the redundant-sequence: aggregated view of clusters

v5

v12

cluster W1

v11

v9

v8

cluster W3

v5

v12

cluster W1

Figure 2: Graph obtained from the redundant-sequence: precise view (extract)

course, the price to pay is a high computation cost compared to classic crossover

operators. The objective of this work is to evaluate whether this price is worth

being paid or not.
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3.3. Detailed implementaion of the crossover operator

3.3.1. Dynamic programming algorithm

The dynamic programming algorithm used to find the shortest path in the

graph defined in the previous section is inspired from the algorithm developed

in Feillet et al. [31] for the Elementary Shortest Path Problem with Resource

Constraints. This algorithm is an extension of the classical Bellman’s labelling

algorithm [32]. Our algorithm starts with initial labels associated to every vertex

of the first cluster. Labels are then extended iteratively with the constraint that

every cluster has to be visited exactly once. This constraint is treated like the

elementary path constraint in [31]. The graph being acyclic, extending the labels

in the topological order of the vertices provides the optimal path.

In the following, we denote each label by L = (C, δ1, . . . , δm), where C is

the cost of the partial path represented by L and δi ∈ {0, 1} indicates whether

cluster Wi is present in the path or not. The extension of a label through an

arc is feasible when δi = 0 for the cluster Wi of the destination city, except

when this cluster is the last cluster of the sequence. In this case, the feasibility

conditions are that the destination city is the first city of the partial path and

that δi = 1 for 1 ≤ i ≤ m.

A label L1 dominates a label L2, which is noted L1 < L2, when the two

partial paths represented by these labels lead to the same vertex and one can be

sure that any extension of L1 is going to be cheaper than the identical extension

for L2. Here, L1 < L2 when C1 ≤ C2, δ1
i ≥ δ2

i for 1 ≤ i ≤ m and the first and

last cities of the two partial paths are identical. Under these conditions, L2 can

be deleted.

3.3.2. Lower bound

Every time a new label L = (C, δ1, . . . , δm) is extended, a lower bound on

the cost of any path that could be obtained from this label, is computed. This

lower bound is compared with an upper bound initially defined as the value of

the father. This upper bound is valid seeing that the city tour of the father

exists in the graph. The upper bound is updated each time a new best solution
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is found by the algorithm. When the lower bound is greater than the upper

bound, L is deleted.

The lower bound LB(L) is given by the following formula:

LB(L) = C +
∑

{1≤j≤m,δj=0}

Clj

where l is the position in the redundant-sequence of the cluster to which L has

just been extended and Clj is the minimal cost incurred by the future visit of

cluster Wj .

Clj is computed as the minimum arc cost among arcs whose:

1. destination is one of the cities of the last occurence of Wj in the redundant-

sequence,

2. origin is one of the cities located between the cluster in position l (in-

cluded) and the last occurence of Wj in the redundant-sequence.

Values Clj are computed in a pre-processing phase, as soon as the redundant-

sequence is set, for every position l of the sequence and for every cluster Wj .

The time complexity of this computation is O(nm).

Note that, it might happens that the last occurence of Wj precedes position

l. In this case Clj is set to a large value and the label is automatically deleted

if δj = 0 since cluster Wj is unreachable.

3.3.3. Graph reduction

Since every cluster has to be visited, edges skipping all occurrences of a

cluster can be removed. Moreover, two occurrences of a cluster do not need

to be connected. Finally, a cluster only needs to be connected to the first

occurrence of any other cluster located after him in the redundant-sequence.

Figure 3 presents the graph obtained applying these rules from the graph of

Figure 1.

3.3.4. Heuristic speed-ups

In order to limit the time consumed by the crossover operator, we have

implemented two simple heuristic speed-ups.
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W4 W1 W3 W1 W5 W2 W3 W2 W5 W4

Figure 3: Reduced graph obtained from the redundant-sequence: aggregated view of clusters

Limitation of the size of the label lists. Throughout the dynamic program-

ming algorithm, a list of labels is associated with every city. Despite the

dominance rule, these lists may be significantly long. The purpose here is

to limit their size. A unique limit is set (100 in our experiments). An eval-

uation rule is defined to determine which labels should be removed when

the size of a list exceeds the limit. The labels removed are those with the

greatest evaluations. The evaluation eval(L) of a label L = (C, δ1, . . . , δm)

is:

eval(L) = C +
UB0∑

{1≤j≤m} C1j

∑

{1≤j≤m,δj=0}

Clj

where UB0 is the cost of the father individual and l is the position of the

label in the redundant-sequence.
∑

{1≤j≤m} C1j is the lower bound cost

of an empty label (whose cost is equal to 0),
∑

{1≤j≤m,δj=0} Clj is the

lower bound of the extension of the label L towards the clusters which

have not been visited yet. The formula aims to balance the actual cost of

the label and an evaluation of the extension cost (as proposed in Section

3.3.2). The two terms are normalized so that the evaluations of an initial

label (with a cost equal to 0) and of the label corresponding to the father

city tour have an identical value UB0.

Reduction of the clusters. The purpose here is to limit the size of the graph,

by removing some cities from the different clusters. A measure is defined to
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evaluate the attractiveness of a city. The less attractive cities are removed

for each cluster of the redundant-sequence. The measure quantifying the

interest of city vk of the cluster at position l of the sequence is:

eval(k, l) =
∑

vi∈Γ−(l)

∑

vj∈Γ+(l)

cik + ckj − cij

where Γ−(l) (respectively, Γ+(l)) is the set of cities belonging to the two

clusters preceding (respectively, following) position l in the redundant-

sequence. This measure gives a tendency on the insertion cost of city vk

in a solution. Based on this measure, the maximum size of a cluster Wi is

set to ⌈|Wi|
ρ
⌉, where ρ is a parameter (0.8 in our experiments). Note that

with this formula the percentage of cities removed from a cluster increases

with its size.

3.3.5. Complexity of the dynamic programming algorithm

It is interesting to note that the algorithm described in section 3.3.1 does not

achieve a polynomial time complexity. The objective of this section is to give

some more insights into this complexity. In this analysis, we do not consider

the two heuristic speed-ups described above.

A state is defined for every vertex of the graph and for every value of re-

sources {δ1, . . . , δm}. The graph contains 2n cities. Resources δi are binary.

Hence the number of states is O(n2m). The label associated with a state is

extended toward a maximum of n other states. Every new label is inserted in

a label list of maximal size 2m. The insertion consists in the comparison with

every label of the list. Each comparison has a complexity O(m). The cost of

inserting a new label in a list is then O(m2m) and the cost of extending a label

O(nm2m)

One can deduce that the worst case complexity of the algorithm is O(n2m22m).

Obviously, one can expect that the number of operations is significantly reduced

in practice. Note also that with the limitation of the size of the label lists, the

complexity becomes O(n2m).
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3.4. Local search heuristics

The local search procedures presented here are applied in order to improve

the quality of the individuals, both for the initial population and for every new

child obtained from crossover. We first present the set of local search operators

included in the Memetic Algorithm and then explain how they are managed.

3.4.1. 2-opt

This procedure is well-known in the context of the TSP (see [33] for more

details). A 2-opt move consists in choosing two arcs in the city tour, permuting

the circulation between the ending vertices of these arcs and reconnecting the

tour. The complexity of a move is O(m2) where m is the number of clusters.

2-opt moves are repeated as long as improvements are achieved.

3.4.2. 3-opt

Similar to the 2-opt, the 3-opt (presented also in [33]) chooses three arcs in

the tour and de-interlace the path between the ending cities of these arcs. The

complexity of the procedure is O(m3). Again, moves are repeated as long as

improvements are achieved.

3.4.3. Lin-Kernighan

The Lin-Kernighan algorithm [34] is one of the best heuristics for Euclidean

Traveling Salesman Problems. Briefly, it involves swapping pairs of subtours

to make a new tour. It is a generalization of 2-opt and 3-opt We use the

implementation of this heuristic available on the Concorde website1.

3.4.4. Move

The Move operator considers the cluster sequence of the individual, selects

a cluster and determine the best position for this cluster in the sequence. This

move is applied once for every cluster. To determine the best position for a

given cluster Wi, a redundant-sequence is created where Wi is first removed

and then re-inserted between every pair of clusters. The dynamic programming

1http://www.tsp.gatech.edu/concorde/DOC/index.html
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presented in Sections 3.2 and 3.3 is then applied to recover the best feasible city

tour.

The Move operator can be illustrated with the following example. Let W4

W3 W1 W5 W2 W4 be the cluster tour of an individual. When applying the

operator to cluster W1, redundant-sequence W4 W1 W3 W1 W5 W1 W2 W1 W4

is obtained. A best city tour is then computed in the corresponding graph (see

Figure 4).

W4 W1 W3 W1 W5 W1 W2 W1 W4

Figure 4: Graph obtained from the redundant-sequence (Move operator): aggregated view of
clusters

The neighborhood defined by the Move operator has a size O(m(n/m)m)

(computed as explained in Section 3.2 for the crossover operator). In the dy-

namic programming algorithm a label L is defined by a pair (C, δi). The number

of states is thus O(n) and the complexity of the procedure is O(nm).

3.4.5. Control of the local search operators

The call to the previous operators is controled in the following fashion.

When a new individual is introduced into the population during the initializa-

tion phase, 2-opt, 3-opt and Lin-Kernighan procedures are successively applied,

in this order.

When a new child is computed with the crossover operator, one of the two

following local search schemes is applied with a probability 0.5:

• apply 2-opt, 3-opt and Move, in this order,

• apply Lin-Kernighan.
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4. Computational Results

The algorithm was coded in C++ and run on an Intel Pentium IV 2.00 Ghz

and 2.0 GB RAM under Linux/Debian. Instances used are part of the GTSPLIB

library2 which proposes a set of 65 instances. Among these instances, we have

selected 54 instances defined in [9] and used for comparison in most previous

papers ([20, 18, 9, 22]). In these instances, clusters contain cities, generally 5,

located in a same geographical area. The number of clusters varies between 10

and 217.

The optimal solutions is always known (provided by the Branch & Cut algo-

rithm from Fischetti et al. [9]) for the selected instances with 10 ≤ m ≤ 89. For

the remaining instances (99 ≤ m ≤ 217), Silberholz and Golden [22] provide

best known results, which in fact are the average results on 5 trials for their

algorithm and Snyder and Daskin’s algorithm. It is important to note that the

value of the best solution found by these algorithms for these instances is not

available.

For all experiments, we set the number of individuals per population (N) to

50, the number of crossovers (2 × k) to 30, the maximum number of iterations

(N1) to 100 and the maximum number of iterations without improving the best

solution (N2) to 10 and the probability of mutation (µ) to 0.05 (which is the

value found in [22]). The computational results presented are the mean results

obtained through 5 attempts for each instance.

Table 1 evaluates the performances of our algorithm regarding the gap with

optimal solutions or best known solutions. The column headings are defined as

follows:

• instance: the name of the test problem; the digits at the beginning of the

name give the number of clusters, those at the end give the number of

nodes;

• best: the optimal objective value when known or the best known averaged

2GTSPLIB is available at the address http://www.cs.rhul.ac.uk/home/zvero/GTSPLIB/
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solution value;

• value : the value of our algorithm for one trial;

• CPU : the CPU time in seconds for one execution of our algorithm;

• ♯opt: the number of trials, out of five, for which our algorithm found the

optimal solution (when known);

• mean gap: the mean gap of our algorithm above the optimum or the best

known averaged solution (percentage);

• min gap: the minimal gap of our algorithm above the optimum or the best

known averaged solution (percentage);

• max gap: the maximal gap of our algorithm above the optimum or the

best known averaged solution (percentage);

• CPU time: the mean CPU time in seconds for one execution of the algo-

rithm.

Results written in bold represent cases for which the solution we found is

equal to the optimal one or improve the best known averaged solution.

Table 1: Experimental results: quality of the solutions

instance best value CPU ♯opt mean gap min gap max gap CPU

10att48.gtsp 5394 5394 0.57 5 0.00 0.00 0.00 0.76
10gr48.gtsp 1834 1834 0.97 5 0.00 0.00 0.00 0.79
10hk48.gtsp 6386 6386 0.58 5 0.00 0.00 0.00 0.50
11eil51.gtsp 174 174 0.84 5 0.00 0.00 0.00 0.81
12brazil58.gtsp 15332 15332 0.85 5 0.00 0.00 0.00 0.65
14st70.gtsp 316 316 1.02 5 0.00 0.00 0.00 0.93
16eil76.gtsp 209 209 1.18 5 0.00 0.00 0.00 1.00
16pr76.gtsp 64925 64925 1.27 5 0.00 0.00 0.00 1.17
20kroA100.gtsp 9711 9711 1.98 5 0.00 0.00 0.00 1.81
20kroB100.gtsp 10328 10328 2.01 5 0.00 0.00 0.00 2.17
20kroC100.gtsp 9554 9554 1.84 5 0.00 0.00 0.00 1.85
20kroD100.gtsp 9450 9450 2.93 5 0.00 0.00 0.00 2.77
20kroE100.gtsp 9523 9523 1.87 5 0.00 0.00 0.00 1.81
20rat99.gtsp 497 497 3.52 5 0.00 0.00 0.00 3.89
20rd100.gtsp 3650 3650 2.93 5 0.00 0.00 0.00 2.91
21eil101.gtsp 249 249 2.07 5 0.00 0.00 0.00 2.09
21lin105.gtsp 8213 8213 3.25 5 0.00 0.00 0.00 3.18
22pr107.gtsp 27898 27898 4.67 5 0.00 0.00 0.00 4.78
24gr120.gtsp 2769 2769 2.30 5 0.00 0.00 0.00 2.34
25pr124.gtsp 36605 36605 2.89 5 0.00 0.00 0.00 2.84
26bier127.gtsp 72418 72418 3.02 5 0.00 0.00 0.00 3.35
28pr136.gtsp 42570 42570 4.17 5 0.00 0.00 0.00 4.23

17



Table 1: Experimental results: quality of the solutions

instance best value CPU ♯opt mean gap min gap max gap CPU
29pr144.gtsp 45886 45886 5.38 5 0.00 0.00 0.00 5.42
30kroA150.gtsp 11018 11018 5.27 5 0.00 0.00 0.00 5.95
30kroB150.gtsp 12196 12196 4.61 5 0.00 0.00 0.00 5.02
31pr152.gtsp 51576 51576 4.45 5 0.00 0.00 0.00 5.24
32u159.gtsp 22664 22664 5.53 5 0.00 0.00 0.00 5.58
39rat195.gtsp 854 854 10.42 5 0.00 0.00 0.00 11.01
40d198.gtsp 10557 10557 8.72 5 0.00 0.00 0.00 10.15
40kroA200.gtsp 13406 13406 6.74 5 0.00 0.00 0.00 10.41
40kroB200.gtsp 13111 13111 8.78 5 0.00 0.00 0.00 10.81
45ts225.gtsp 68340 68340 35.31 3 0.04 0.00 0.09 31.45
46pr226.gtsp 64007 64007 6.92 5 0.00 0.00 0.00 8.25
53gil262.gtsp 1013 1013 25.12 2 0.14 0.00 0.3 24.34
53pr264.gtsp 29549 29549 16.64 5 0.00 0.00 0.00 18.27
60pr299.gtsp 22615 22615 20.19 5 0.00 0.00 0.00 21.25
64lin318.gtsp 20765 20765 24.89 5 0.00 0.00 0.00 26.33
80rd400.gtsp 6361 6361 38.33 1 0.42 0.00 0.75 32.21
84fl417.gtsp 9651 9651 21.9 5 0.00 0.00 0.00 31.63
88pr439.gtsp 60099 60099 56.46 5 0.00 0.00 0.00 42.55
89pcb442.gtsp 21657 21673 76.64 1 0.19 0.00 0.38 62.53
99d493.gtsp 20117.2 20073 115.08 -0.03 -0.28 0.23 166.11
107att532.gtsp 13510.8 13470 67.08 -0.30 -0.34 -0.17 137.54
107si535.gtsp 13513.2 13502 69.49 -0.01 -0.08 0.06 90.98
113pa561.gtsp 1051.2 1046 165.64 -0.84 -1.26 -0.21 149.43
115rat575.gtsp 2414.8 2408 155.97 0.04 -0.45 0.09 157.01
131p654.gtsp 27439 27428 74.81 -0.03 -0.04 0.00 144.95
132d657.gtsp 22599 22533 234.68 -0.15 -0.43 0.28 259.11
145u724.gtsp 17370.6 17448 214.98 0.45 0.24 0.66 218.66
157rat783.gtsp 3300.2 3290 462.74 -0.07 -0.58 0.12 391.79
201pr1002.gtsp 114582.2 114751 415.69 0.03 -0.18 0.16 513.48
207si1032.gtsp 22388.8 22348 680.95 -0.26 -0.33 -0.17 616.28
212u1060.gtsp 108390.4 107395 663.44 -0.92 -1.58 0.19 762.86
217vm1084.gtsp 131884.6 131345 613.76 -0.26 -0.65 0.09 583.44

Table 1 shows that, with 5 attempts, 41 instances out of 41 are optimally

solved and that for 37 of these instances, the optimal solution is found at each

run of the Memetic Algorithm. The difference between the best and the worst so-

lution returned from the 5 trials always remains small (never exceeding 0.75%),

which tends to indicate that our algorithm is robust.

For larger instances, the table shows that the mean results of our algorithm

outperform the best known averaged solutions for 10 instances out of 13. For 3

instances, solutions are even improved by our worst result. In the worst case, the

results produced by our algorithm never exceeds a gap equal to 0.66% with the

best known averaged results, which confirms the robustness of the algorithm.

Table 2 presents our best results within five trials for twelve instances for

which the best known averaged solution value is improved.
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Table 2: Experimental results: Best solutions found

instance best this paper

99d493.gtsp 20117.2 20061
107att532.gtsp 13510.8 13464
107si535.gtsp 13513.2 13502
113pa561.gtsp 1051.2 1038
115rat575.gtsp 2414.8 2404
131p654.gtsp 27439 27428
132d657.gtsp 22599 22502
157rat783.gtsp 3300.2 3281
201pr1002.gtsp 114582.2 114374
207si1032.gtsp 22388.8 22315
212u1060.gtsp 108390.4 106677
217vm1084.gtsp 131884.6 131028

In order to measure more precisely the efficiency of the crossover procedure

proposed in this paper, we have also implemented a simpler and more classic

crossover procedure, namely the one-point crossover (Goldberg [35]). The pa-

rameters are left unchanged for both crossover procedures. Table 3 compares

these crossovers and the results of our algorithm without the mutation operator.

In this table, the crossover based on large neighborhood search is called LNS

crossover and our algorithm without the mutation operator “LNS w/o Muta-

tion”. The results presented are the mean results obtained through 5 attempts

for each instance. The column headings are as follows:

• instance: the name of the test problem;

• best: the optimal objective value when known or the best known averaged

solution value;

• gap: the mean gap of the algorithm above the optimal solution or the best

known averaged solution (percentage);

• CPU: the CPU time in seconds.

Table 3: Experimental results : comparisons between our algorithms

LNS One-Point LNS w/o Mutation
instance best gap CPU gap CPU gap CPU

10att48.gtsp 5394 0.00 0.76 0.00 0.15 0.00 0.94
10gr48.gtsp 1834 0.00 0.79 0.00 0.14 0.00 0.84
10hk48.gtsp 6386 0.00 0.5 0.00 0.17 0.00 0.49
11eil51.gtsp 174 0.00 0.81 0.00 0.15 0.00 0.73
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Table 3: Experimental results : comparisons between our algorithms

LNS One-Point LNS w/o Mutation
name best gap CPU gap CPU gap CPU
12brazil58.gtsp 15332 0.00 0.65 0.00 0.24 0.00 0.52
14st70.gtsp 316 0.00 0.93 0.00 0.2 0.00 0.75
16eil76.gtsp 209 0.00 1 0.00 0.17 0.00 0.96
16pr76.gtsp 64925 0.00 1.17 0.00 0.25 0.00 0.82
20kroA100.gtsp 9711 0.00 1.81 0.00 0.27 0.00 1.65
20kroB100.gtsp 10328 0.00 2.17 0.00 0.27 0.00 2.17
20kroC100.gtsp 9554 0.00 1.85 0.00 0.27 0.00 1.7
20kroD100.gtsp 9450 0.00 2.77 0.00 0.27 0.00 2.63
20kroE100.gtsp 9523 0.00 1.81 0.00 0.53 0.00 1.79
20rat99.gtsp 497 0.00 3.89 0.00 0.44 0.00 4.21
20rd100.gtsp 3650 0.00 2.91 0.36 0.4 0.00 2.61
21eil101.gtsp 249 0.00 2.09 0.56 0.61 0.00 2.23
21lin105.gtsp 8213 0.00 3.18 0.00 0.36 0.00 2.75
22pr107.gtsp 27898 0.00 4.78 0.08 0.33 0.00 4.65
24gr120.gtsp 2769 0.00 2.34 0.62 0.07 0.00 2.58
25pr124.gtsp 36605 0.00 2.84 0.00 0.44 0.00 2.47
26bier127.gtsp 72418 0.00 3.35 0.00 0.42 0.00 2.52
28pr136.gtsp 42570 0.00 4.23 0.72 0.86 0.00 5.61
29pr144.gtsp 45886 0.00 5.42 0.00 0.54 0.00 5.54
30kroA150.gtsp 11018 0.00 5.95 0.01 1.14 0.00 6.2
30kroB150.gtsp 12196 0.00 5.02 0.33 1.45 0.00 4.56
31pr152.gtsp 51576 0.00 5.24 0.00 0.68 0.00 3.36
32u159.gtsp 22664 0.00 5.58 0.43 0.83 0.00 6.1
39rat195.gtsp 854 0.00 11.01 1.05 1.63 0.00 10.36
40d198.gtsp 10557 0.00 10.15 0.07 1.41 0.17 8.4
40kroA200.gtsp 13406 0.00 10.41 0.21 1.65 0.00 7.7
40kroB200.gtsp 13111 0.00 10.81 0.15 2.09 0.00 9.75
45ts225.gtsp 68340 0.04 31.45 0.29 1.91 0.00 33.42
46pr226.gtsp 64007 0.00 8.25 0.00 1.03 0.00 7.15
53gil262.gtsp 1013 0.14 26.34 1.8 2.35 0.89 16.44
53pr264.gtsp 29549 0.00 18.27 0.46 2.43 0.00 18
60pr299.gtsp 22615 0.00 21.25 0.2 5.79 0.00 27.84
64lin318.gtsp 20765 0.00 26.33 0.59 4.67 3.33 31.67
80rd400.gtsp 6361 0.42 32.21 1.45 10.12 1.56 36.45
84fl417.gtsp 9651 0.00 31.63 0.00 3.41 0.00 29.75
88pr439.gtsp 60099 0.00 42.65 0.09 10.56 0.2 33.87
89pcb442.gtsp 21657 0.19 62.53 1.26 11.22 0.38 108.9
99d493.gtsp 20117.2 -0.03 166.11 0.03 12.1 0.82 122.73
107att532.gtsp 13510.8 -0.30 121.54 0.21 18.73 -0.01 91.29
107si535.gtsp 13513.2 -0.01 90.98 0.01 10.58 0.07 103.33
113pa561.gtsp 1051.2 -0.84 149.43 1.58 11.66 0.27 131.53
115rat575.gtsp 2414.8 0.04 157.01 5.01 17.99 2.78 151.88
131p654.gtsp 27439 -0.03 144.95 -0.01 10.95 -0.03 91.52
132d657.gtsp 22599 -0.15 259.11 1.15 27.2 2.66 203.8
145u724.gtsp 17370 0.45 218.66 2.76 45.31 1.08 241.83
157rat783.gtsp 3300.2 -0.07 391.79 3.68 42.76 1.08 527.74
201pr1002.gtsp 114582.2 0.03 513.48 1.49 76.54 1.67 345.26
207si1032.gtsp 22388.8 -0.26 616.28 0.33 75 -0.04 619.99
212u1060.gtsp 108390.4 -0.92 762.86 -0.28 88.6 0.78 697.36
217vm1084.gtsp 131884.6 -0.26 583.44 0.3 89.87 1.16 462.46

The LNS crossover shows a significant advantage in solution quality over the

one-point crossover. For the smaller instances (for which the optimal solution is

known), the average gap of the one-point crossover is equal to 0.26%, whereas

the average gap is reduced to 0.02% with the LNS crossover. The runtimes of
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the algorithms using the LNS crossover and the one-point crossover are however

significantly different, the one-point crossover being six times faster.

For larger instances, the LNS crossover produces much better solutions than

the one-point crossover, keeping the same differences between runtimes. The

mutation operator permits to avoid premature convergence.

Table 4 finally compare our algorithm LNS (for one trial) with the mean re-

sults of our algorithm LNS (through 5 attempts), the Genetic Algorithm mrOX

proposed by Silberholz and Golden [22], the Memetic Algorithm from Snyder

and Daskin[20], the GI3 algorithm of Renaud et al. [18] and the Branch & Cut

algorithm from Fischetti et al. [9]. These comparisons are only given for the

instances where the optimal solution is known.

The results have been obtained on the following computers:

• mrOX and Snyder and Daskin: Pentium IV 3.0 GHz processor and 1 GB

RAM.

• GI3: Sun Sparc Station LX.

• B& C.: HP 9000/720.

For each algorithm, two columns are presented in the table:

• gap: the mean gap of the algorithm above the optimal solution (percent-

age);

• CPU: the CPU time in seconds.

The average behavior of the different algorithms is given at the end of the table.

Table 4: Comparison with several algorithms

LNS - 1 trial LNS - 5 trials mrOX Snyder GI BC
instance value CPU gap CPU gap CPU gap CPU gap CPU CPU

10att48 5394 0.57 0 0.76 0 0.36 0 0.18 * * 2.1
10gr48 1834 0.97 0 0.79 0 0.32 0 0.08 * * 1.9
10hk48 6386 0.58 0 0.5 0 0.31 0 0.08 * * 3.8
11eil51 174 0.84 0 0.81 0 0.26 0 0.08 0 0.3 2.9
12brazil58 15332 0.85 0 0.65 0 0.78 0 0.1 * * 3
14st70 316 1.02 0 0.93 0 0.35 0 0.07 0 1.7 7.3
16eil76 209 1.18 0 1 0 0.37 0 0.11 0 2.2 9.4
16pr76 64925 1.27 0 1.17 0 0.45 0 0.16 0 2.5 12.9
20kroA100 9711 1.98 0 1.81 0 0.5 0 0.24 0 5 51.5
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Table 4: Results for several algorithms

LNS - 1 trial LNS - 5 trials mrOX Snyder GI BC
instance value CPU gap CPU gap CPU gap CPU gap CPU CPU
20kroB100 10328 2.01 0 2.17 0 0.63 0 0.25 0 6.8 18.4
20kroC100 9554 1.84 0 1.85 0 0.6 0 0.22 0 6.4 22.2
20kroD100 9450 2.93 0 2.77 0 0.62 0 0.23 0 6.5 14.4
20kroE100 9523 1.87 0 1.81 0 0.67 0 0.43 0 8.6 14.3
20rat99 497 3.52 0 3.89 0 0.58 0 0.15 0 6.7 13
20rd100 3650 2.93 0 2.91 0 0.51 0 0.29 0.08 7.3 16.6
21eil101 249 2.07 0 2.09 0 0.48 0 0.18 0.4 5.2 25.6
21lin105 8213 3.25 0 3.18 0 0.6 0 0.33 0 14.4 16.4
22pr107 27898 4.67 0 4.78 0 0.53 0 0.2 0 8.7 7.4
24gr120 2769 2.30 0 2.34 0 0.66 0 0.32 * * 41.9
25pr124 36605 2.89 0 2.84 0 0.68 0 0.26 0.43 12.2 25.9
26bier127 72418 3.02 0 3.35 0 0.78 0 0.28 5.55 36.1 23.6
28pr136 42570 4.17 0 4.23 0 0.79 0.16 0.36 1.28 12.5 43
29pr144 45886 5.38 0 5.42 0 1 0 0.44 0 16.3 8.2
30kroA150 11018 5.27 0 5.95 0 0.98 0 0.32 0 17.8 100.3
30kroB150 12196 4.61 0 5.02 0 0.98 0 0.71 0 14.2 60.6
31pr152 51576 4.45 0 5.24 0 0.97 0 0.38 0.47 17.6 94.8
32u159 22664 5.53 0 5.58 0 0.98 0 0.55 2.6 18.5 146.4
39rat195 854 10.42 0 11.01 0 1.37 0 1.33 0 37.2 245.9
40d198 10557 8.72 0 10.15 0 1.63 0.07 1.47 0.6 60.4 763.1
40kroA200 13406 6.74 0 10.41 0 1.66 0 0.95 0 29.7 187.4
40kroB200 13111 8.78 0 10.81 0.05 1.63 0.01 1.29 0 35.8 268.5
45ts225 68340 35.31 0.04 31.45 0.14 1.71 0.28 1.09 0.61 89 37875.9
46pr226 64007 6.92 0 8.25 0 1.54 0 1.09 0 25.5 106.9
53gil262 1013 25.12 0.14 24.34 0.45 3.64 0.55 3.05 5.03 115.4 6624.1
53pr264 29549 16.64 0 18.27 0 2.36 0.09 2.72 0.36 64.4 337
60pr299 22615 20.19 0 21.25 0.05 4.59 0.16 4.08 2.23 90.3 812.8
64lin318 20765 24.89 0 26.33 0 8.08 0.54 5.39 4.59 206.8 1671.9
80rd400 6361 38.33 0.42 32.21 0.58 14.58 0.72 10.27 1.23 403.5 7021.4
84fl417 9651 21.9 0 31.63 0.04 8.15 0.06 6.18 0.48 427.1 16719.4
88pr439 60099 56.46 0 42.55 0 19.06 0.83 15.09 3.52 611 5422.8
89pcb442 21673 76.64 0.19 62.53 0.01 23.43 1.23 11.74 5.91 567.7 58770.5
Averages 0.001 9.12 0.02 10.12 0.03 2.69 0.11 1.77 0.98 83.09 3356.47
Trials 1 5 5 5 1 1

Table 4 shows that our algorithm produces in average the better solution,

compared to the other heuristics. The average gap with optimal solutions is

only 0.02%.

Runtime comparisons with other heuristics are difficult because different

computers with various computing powers were used. The table however shows

that our algorithm is much slower than mrOX algorithm (which runs on a

faster computer), for a limited improvement in terms of quality, or the Snyder

and Daskin’s algorithm, for a more significant improvement. Note however that

the presence of many easy instances solved optimally by all algorithms tends to

tighten the gaps.
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5. Conclusions

In this paper, we proposed to solve the GTSP using a Memetic Algorithm

where the crossover operator relies on large neighborhood search. Our main

contribution is the originality of our crossover procedure. Experimental results

show that our algorithm is robust and presents a good balance between CPU

time and quality of the solutions. 41 out of the 41 problems for which the

optimal solution is known are solved optimally. 10 out of 13 best known averaged

solution values are improved. Among all the executions of the algorithm the

worst solution returned exhibits a gap of 0.66 % with the best known solution.
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