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Abstract: 
The formation of gas hydrates from water-in-oil emulsion was investigated on two different 
flow loops: a laboratory scale flow loop (Archimede flow loop: 30 m long, and 1 cm diameter, 
St-Etienne School of Mines) and a pilot scale flow loop (Lyre flow loop: 150 m long, 5 cm 
diameter, IFP Solaize). Both flow loops are equipped with a focused beam reflectance 
measurement (FBRM) probe for in situ particle size analysis. These FBRM probes were used 
to monitor chord length distribution (CLD) during the crystallization process of water-in-oil 
emulsions into gas hydrate slurries. When water droplets crystallize into hydrate particles, an 
agglomeration phenomenon is evidenced by pressure drop measurements. This 
agglomeration phenomenon is also detected by the FBRM probe and is highlighted by a sharp 
change in the mean chord length and a spread of the CLD to larger chord length. In order to 
better interpret the chord length distribution measurements, a modelling work has been 
made. This paper gives a description of the algorithm used for building 3D fractal aggregates 
and simulating CLD measurements on them. Aggregates are constructed from a 
monodisperse spherical particle. The influence of different parameters (fractal dimension, 
number of particles in the aggregate, diameter of primary particles) on the simulated CLD is 
also discussed. Some comparisons between experimental and simulated CLD are finally used 
to describe the physical properties of aggregates during an experiment. 

KKeeyywwoorrddss::  
Crystallization; Gas hydrates; Agglomeration; CLD (chord length distribution); FBRM 
(focused beam reflectance measurement) 

I. Introduction 
Gas hydrates are solid compounds made of gas molecules confined by water molecules, in 
conditions of high pressure and low temperature. In the context of offshore oil production 
lines which frequently operate under high pressure and low temperature, formation of gas 
hydrates can cause severe production disruptions. Once hydrates form in the pipeline, 
individual particles agglomerate together and form a plug in the pipeline preventing fluid flow 
(Sloan, 1998). These phenomena are linked to a viscosity increase due to particle 
agglomeration and the formation of aggregates that trap a volume of oil and therefore present 
an effective volume fraction higher than the real volume fraction of particles and droplets. 
                                                        
 
 
 
 
 
 
* Auteur à qui la correspondance devait être adressée : cameirao@emse.fr 
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These aggregates can be described as fractal objects with a fractal dimension Df which 
characterizes the compactness of the object. The number of particles N in a fractal aggregate 
can be expressed depending on the diameter of its constitutive particles Dp and the apparent 
diameter DA of the aggregate as follows (Filippov et al., 2000): 

⎛ ⎞
∝ ⎜ ⎟

⎝ ⎠

Df

A

P

DN
D

 (1) 

The more the aggregate is compact the closer is its effective volume fraction to the actual 
volume fraction of water droplets and hydrate particles. The ratios of these two quantities are 
linked to the ratio of the diameters of the aggregate and of the primary particles by the fractal 
dimension throw a power law (Camargo and Palermo, 2002): 
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Several studies have postulated that the existence of fractal aggregates could explain the fact 
that the viscosity of hydrate suspensions is higher that the classical model can predict, 
assuming a solid content directly equal to the initial water volume. In fact, as it was said just 
before, the existence of fractal agglomerates which immobilises liquid in their internal 
porosity is a way to justify that the effective solid content is higher than the sum of the volume 
of the individual solid particles. 
Following (Mills, 1985) who postulated first that the existence of fractal aggregates could 
justify unusual viscosity, (Camargo and Palermo, 2002) have retained this hypothesis to model 
the consequences on viscosity of hydrate crystallization within an emulsion of water in an 
asphaltenic crude oil which exhibited natural anti-agglomeration properties. 
The concepts of Camargo's model were re-used by (Fidel-Dufour et al. , 2006) to develop a 
kinetic model of hydrate crystallization. This model describes the crystallization process as a 
phenomenon limited by gas transfer in the oil phase due to consumption of gas dissolved in 
the oil in the neighbourhood of each water droplet. The agglomeration effects were once again 
attributed to collision between a water droplet and two other objects (either hydrate primary 
particle or hydrate aggregate). This water droplet was supposed to form a water bond between 
the two objects which lastly crystallized. So, at the end of the agglomeration, the model of 
(Camargo and Palermo, 2002), followed by (Turner et al., 2005) and (Fidel-Dufour et al., 
2006) postulates that the aggregates are fractal aggregates formed of spherical particles whose 
sizes are the sizes of the initial emulsion. 
The in situ FBRM probe is described as a robust tool as it is able to make measurements in 
opaque or dark mediums and in dense suspensions. That is why it raises a great interest in the 
field of petroleum studies. Moreover, a great advantage of the FBRM probe is that there is no 
need to sample and dilute the suspensions before making a measurement, thus allowing an on 
line, in situ follow-up. Therefore, this tool was used for different experimental studies to 
follow nucleation, growth and/or agglomeration (Richmond et al., 1998; Worlitschek, 2003). 
Moreover, in the case of hydrate crystallization, the use of an in situ probe allows to maintain 
the thermodynamic conditions (high pressure, low temperature). (Clarke and Bishnoi, 2004) 
and (Clarke and Bishnoi, 2005) recently published the monitoring of the FBRM probe in the 
case of CO2 hydrate crystallization in water. The hydrate particle nucleation was responsible 
for a steep increase of the number of chords detected per second. Then hydrate particles 
growth and agglomeration were successively evidenced with an increase of the number of 
large chord lengths detected per seconds, and consequently, of the mean chord length. (Turner 
et al., 2005) also used a Lasentec FBRM probe to study, the impact on the CLD of hydrate 
formation in crude oil under shear conditions. They evidenced that hydrate crystallization does 
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not affect the size of primary particles so that the size of the initial water droplets in the 
emulsion determines the size of primary particles constituting an aggregate. (Panchard et al., 
2007) also used a FBRM probe in order to evidence agglomeration effects due to the 
crystallization of an emulsion of water in crude oil into a hydrate suspension. Hydrate slurries 
were generated under shear condition in the pilot loop (5 cm of internal diameter, 140 m of 
length). A methodology was used in order to distinguish between the effects of agglomeration 
on the apparent viscosity of the hydrate suspension. 
Nevertheless the FBRM technique leaves many problems unsolved as it is well known that 
this probe does not provide an apparent PSD (particle size distribution) measurement but an 
apparent CLD (chord length distribution). Here, the term “apparent” refers to the fact that the 
measured size is dependent of the technology which is used (laser diffraction, turbidity, 
backscattering, visual microscopy for example). 
So, using a FBRM probe, two questions arise. The first concerns the relation between the 
apparent CLD (the CLD that is measured by the probe) and the real one (the true CLD of the 
objects), but this question concerns any technique of size characterization. The second 
question concerns the relation between the real CLD and the real PSD. Then, comparing with 
other techniques, a third question arises which is the relation between the real PSD and the 
apparent PSD that is measured by other technique. 
Concerning the first question, several authors have shown that FBRM measures a CLD 
beyond the size of the particles that have been characterised with another technique (laser 
diffraction in the case of (Heath et al., 2002) visual characterization in the case of (Greaves et 
al., 2008). In this paper (part 2.2, Figure 6) are given some elements going in the same way. 
Also, during this work experiments show that the intensity of the signal can be affected by the 
nature of the particles: a population of water droplets has not necessary the same CLD 
signature than a population of hydrate particles, a priori with the same size distribution. So, the 
issue of the interpretation of the apparent CLD in a real CLD is a question by itself which is 
not discussed in the paper. 
This paper discusses in a first part the general item of the relation between a true CLD and a 
true PSD. Experimental results are discussed assuming that the apparent CLD is closed to the 
true one, with the reserves that have been made previously. But, the experimental results 
compared to the model are very encouraging. 
The relationship between the true PSD and the true CLD has been the topic of many papers 
and discussions. The first work to calculate the CLD from PSD for 2-dimensional spherical 
particles is given using the probability apportioning method or Bayes’ theorem (Langston, 
2002; Langston and Jones, 2001; Simmons et al., 1999; Wynn, 2003; Li and Wilkinson, 
2005). Then the analytical solution to calculate the CLD from PSD for 2-dimensional 
ellipsoidal particles is given using the probability apportioning method (Liu and Clark, 1995; 
Liu et al., 1997; Tadayyon and Rohani, 1998; Li and Wilkinson, 2005). The calculation of 
CLD from PSD for non-ellipsoidal 2-dimensional has been well developed by (Langston and 
Jones, 2001) and (Ruf et al., 2000). The CLD is determined by randomly cutting simulation. 
According to (Li and Wilkinson, 2005), the chord probability distribution for a given PSD of 
non-spherical particle is determined by randomly cutting simulation, which is not accurate and 
depends strongly on the assumption made in the calculation. 
In the last three years, (Li and Wilkinson, 2005) proposed a general model to translate a PSD 
into its corresponding CLD given for different shapes including spherical, ellipsoidal and 
general non-spherical but regular particles. 
For a 3-dimensional particle, (Worlitschek, 2003) adopts a 3D representation of the solid 
particles. The shape of the particle is simply defined in 3D space by an ellipsoid equation. The 
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chord probability distribution is developed by its 2-dimensional projections at every 
orientation. 
However, in none of these studies the case of aggregates was studied. Therefore, in this paper, 
a new algorithm is proposed to build a random aggregate and calculate its CLD. 

II. Experimental devices and procedure 
IIII..11..  MMaatteerriiaallss  

The organic liquid phase is a C10–C13 cut which is delivered by TOTAL-Solvents under the 
commercial denomination: Kerdane. As this oil does not present any natural emulsifying 
property, an anti-agglomerant additive (IPE 202, patented by IFP) is added to the organic 
phase. 
For tests performed on the Archimede loop, the gas phase is pure methane (99.99%) from AIR 
LIQUIDE. For tests performed on the Lyre loop, the gas phase is network natural gas. Its 
average composition is given in Table 1. 
TTaabbllee  11..  ::  NNeettwwoorrkk  nnaattuurraall  ggaass  ccoommppoossiittiioonn..  

Compound CH4 C2H6 C3H8 C4+ N2 CO2 
%mol 96 2 0.5 0.2 1 0.3 

IIII..22..  AAppppaarraattuuss  

Crystallization of water-in-oil emulsions to hydrate slurries under shear was studied with the 
same model fluids on two flow loops. On both loops, hydrate particle agglomeration is studied 
through the pressure drop induced by the mixture and the signal provided by the FBRM probe. 
This paragraph gives descriptions of both loops, of the FBRM probe and the experimental 
procedures. 
Archimede flow loop description:  
The Archimede flow loop is located at Saint-Etienne School of Mines. A schema of the 
apparatus is given in Figure 1.  

 

FFiigguurree  11::  AArrcchhiimmeeddee  ffllooww  lloooopp..  

It was built to reproduce some of the thermodynamic conditions of deep-sea pipelines. Its 
working pressures are in the range of 1–10 MPa, and temperature can be controlled within the 
range of 273–283 K. The test section is instrumented with a FBRM probe, several temperature 
probes, differential pressure probes and a Coriolis flow-meter providing a mass flow rate. The 
particularity of this loop is that the fluid is motioned throw a gas-lift system. This system can 



Chemical Engineering Science, 2010, 65(3), 1185-1200, doi:10.1016/j.ces.2009.09.074  
 

5 

only work in laminar flow because his maximum flow rate is 150 L h−1. More details on this 
equipment can be found in (Fidel-Dufour et al., 2006). 
Lyre flow loop description:  
The Lyre loop is located at IFP-Lyon, it is a multiphase flow loop dedicated to Flow 
Assurance studies. A simplified schema of the flow loop is given in Figure 2. The test section 
is entirely temperature-controlled between 273 and 323 K. The test section is instrumented 
with a FBRM probe, several temperature probes, differential pressure probes and a Coriolis 
flow-meter providing a mass flow rate and the mixture density. This experimental device 
allows experiments both in laminar and turbulent flow regimes using a Moineau pump and a 
flow-rate regulation system. More details on this equipment can be found in (Panchard et al., 
2007. 

 
 

FFiigguurree  22::  LLyyrree  ffllooww  lloooopp..  

FBRM probe principle:  
The FBRM probe is an in situ particle size analyzer provided by Lasentec. This apparatus 
consists of an infrared LASER, with a wavelength of 785 nm and a scan speed from 2 to 
8 m s−1. When analysing a suspension, the laser emitted from the probe is reflected as it 
encounters a particle and scans across it, as show Figure 3.  

 

FFiigguurree  33::  FFBBRRMM  pprroobbee  ddeessccrriippttiioonn  ((ffrroomm  LLaasseenntteecc®®))..  
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The chord length is deduced from the reflection time multiplied by the laser scan speed (scan 
speed in this work is 2 m s−1). A chord length is a straight line between any two points on the 
edge of a particle or particle structure (agglomerate). The probe is capable of measuring chord 
lengths between 0.5 and 1000 μm. Typically, for concentrated slurries thousands of chords 
are measured per second. After each measurement duration (set 20 s in this work), the probe 
provides an average CLD (chord length distribution), giving the number of chord lengths 
counted for each size range. For more information on the probe and the technique the reader 
is referred to the FBRM User's Manual (Mettler-Toledo Lasentec®, 2001). 

 

FFiigguurree  44::  EExxaammpplleess  ooff  cchhoorrdd  lleennggtthhss  ((ffrroomm  LLaasseenntteecc®®))..  

Figure 4 provides examples of chord lengths that could be measured on different objects. An 
important remark is that for a given object, chord lengths can be measured in the range 
between 0 and Dmax, where Dmax is the maximal size of this object. As an illustration, Figure 5 
presents the theoretical CLD, calculated for one sphere (Li and Wilkinson, 2005). In the case 
of a monodispersed population (Dp=5 μm) and in the case of a polydisperse population 
described with a normal law (Dp=5 μm, σ=0.3 μm), FBRM can see D greater than Dmax 
because it cannot distinguish between two particles side-by-side (Greaves et al., 2008). 
Indeed, in the case of spheres, there is an analytical law giving the probability of measuring a 
chord length within a given range (Li and Wilkinson, 2005). In the case of more complex 
particle shapes (i.e. agglomerates), the theoretical CLD can be calculated numerically with an 
algorithm that was developed during this work. 

 

FFiigguurree  55::  TThheeoorreettiiccaall  CCLLDD  ffoorr  ttwwoo  sspphheerreess  ppooppuullaattiioonnss  ((DDpp==55  μμmm;;  σσ==00..55  μμmm))..  

The mathematical expressions of the un-weighted and square-weighted mean chord lengths are 
given below:  
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where M is the number of intervals, li is the centre of the ith interval and f(i) the probability of 
measuring a chord included in the ith interval. 
To have a representative sampling of the population of particles, probes were installed on 
straight pipes (vertical pipe for the Archimede loop and horizontal pipe for the Lyre loop). The 
sapphire window of these probes cut the streamlines with an angle of 45° to the centre of the 
pipes. 
A preliminary work (Le Ba, 2006) was done using FBRM to measure chord length of samples 
of ceramic particles with a known size. For that a 1L batch reactor was used stirred by a four-
bladed paddle stirrer at 400 rpm. Two sizes of ceramic particles were used: particles with sizes 
equal to 10 and 100 μm. The suspensions were prepared with 2%wt of particles in 200 ml of 
water. First a sample of each size was measured by FBRM separately, and after that a mixture 
of 10%wt of 10 μm and 90%wt of 100 μm. The measured CLD are in Figure 6. 
Some interesting points can be discussed from these curves. Firstly, the FBRM show a 
bimodal population. Also, for the population with average diameter of about 100 μm, the 
apparent PSD was measured using the laser diffraction (Mastersizer 2000S). From this PSD, 
and assuming it is the true PSD, the true CLD was calculated (using the algorithm which is 
explained in detail later), and clearly the CLD calculated from the PSD is different from the 
CLD that is measured experimentally. Two explanations can be given: firstly, the apparent 
PSD measured from the laser diffraction is different from the true one, and/or, the apparent 
CLD is different from the true one. 
IIII..33..  EEmmuullssiioonn  pprrooppeerrttiieess  

The emulsions are created adding ultra pure water (Type 1) into the organic phase (Kerdane) 
which already contains the chemical additive (IPE202). The way emulsions are created is 
different depending on the experimental flow loop. In the case of tests performed on the 
Archimede loop, emulsions are created in a reactor with an Ultra-Turrax impeller during 3 min 
at 8000 rpm. Three measures of the CLD were made: before circulation in the loop, after 5 h 
of circulation in the loop and after 24 h without circulation. The results of the three CLD 
measurements were the same which evidenced the stability of the emulsion. In the case of tests 
performed on the Lyre loop, emulsions are created in the flow loop, maintaining the flow at 
constant high velocity (2 m s−1, Re ~35 000) during 24 h. As the system is highly sheared, and 
with the help of a chemical additive, the emulsion obtained was fine and stable. The difference 
between the procedures to do the emulsion has a consequence in the size of the droplets: for 
the Lyre loop they are between 4 and 7 μm and for the Archimede loop between 7 and 10 μm. 
This evidence was confirmed by observing the fresh made emulsion with an optical 
microscope (see Figure 7). 
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FFiigguurree  66::  ((aa))  FFBBRRMM  mmeeaassuurreemmeennttss  aarree  ccaarrrriieedd  oouutt  aatt  22%%  vvoolluummeettrriicc  cceerraammiicc  ccoonncceennttrraattiioonn  iinn  wwaatteerr  
aanndd  ((bb))  ccoommppaarriissoonn  ooff  tthhee  ppaarrttiiccllee  ssiizzee  ddiissttrriibbuuttiioonn  ffrroomm  tthhee  llaasseerr  ddiiffffrraaccttiioonn  aanndd  tthhee  cchhoorrdd  lleennggtthh  
ddiissttrriibbuuttiioonn  ooff  tthhee  FFBBRRMM..  

IIII..44..  EExxppeerriimmeennttaall  pprroocceedduurree  

For both experimental flow loops, the first step is the formation of the emulsion and/or loading 
the loop with it. 
After that in the Archimede loop, the emulsion is first cooled down and once the temperature 
target reached the methane is injected until 8 MPa. The gas dissolution in the oil phase induces 
a pressure loss compensated with a second gas injection until the same pressure. Then the 
pressure decreases to a constant value and the hydrate crystallization begins. 
In the Lyre loop, the natural gas phase is loaded (Figure 2) until the working pressure 7 MPa at 
303 K. The pressure decreases when natural gas is dissolved in the oil phase but in this loop a 
gas injection system maintains the pressure constant. Then the temperature is progressively 
decreased until 277 K. 
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FFiigguurree  77::  MMiiccrroossccooppee  iimmaaggee  ooff  tthhee  wwaatteerr--iinn--ooiill  eemmuullssiioonn  ((2200%%  vvooll..  ooff  wwaatteerr))::  ((aa))  eemmuullssiioonn  iinn  
AArrcchhiimmeeddee  lloooopp  aanndd  ((bb))  eemmuullssiioonn  iinn  LLyyrree  lloooopp..  

III. Modelling 
To interpret the measures made with the FBRM probe a model was developed. This model 
starts by the construction of an aggregate with three given characteristics, after that the 
aggregate is scanned as the FBRM probe does and the CLD is calculated. 
IIIIII..11..  33DD  AAggggrreeggaattee  ccoonnssttrruuccttiioonn  

The first step is to build the 3D aggregate in a way as close as possible to the real hydrate 
aggregate. The first assumption concerns the primary particles, as they form from water 
droplets in the emulsion, their shape can be considered as spherical with the same size that 
water droplets (Camargo and Palermo, 2002; Turner et al., 2005; Fidel-Dufour et al., 2006). 
This is confirmed by Figures 19 and 23, where in both loops, after the beginning of 
crystallization the average size remains constant. 
The second assumption is to consider that hydrate aggregates are fractal-like objects, like in 
the previous works (Camargo and Palermo, 2002; Fidel-Dufour et al., 2006). In this case, they 
can be characterised by a fractal dimension Df, a number of droplets Np of individual radius r 
(r=Dp/2) and a radius of gyration Rg. Those characteristics are related through the following 
statistical scaling relationship (Equation (1)) (Filippov et al., 2000) with a structure factor kf: 

fD

g
p f

R
N k

r

⎛ ⎞
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⎝ ⎠
 (5) 
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The structure factor was taken equal to 1. This is the limiting case (Equation (5)) for one 
sphere, when Rg=r at wathever Df, then kf must be equal to 1. 
The gyration radius Rg is defined as the mean square of the distances between the primary 
spherical particles and the geometrical mass centre of the aggregate: 

( )
2

2
0

1

1 pN

g i
ip

R O O
N =

= −∑  (6) 

With 0
1

1 pN

i
ip

O O
N =

= ∑  (7) 

where Oi and O0 are, respectively, the locations of the centres of the ith spherical particle and 
of the aggregate. 
The third and last assumption concerns the structure of these aggregates. Two different 
mechanisms can be found in the literature: the PCA (particle–cluster aggregation) and the 
CCA (cluster–cluster aggregation). The first describes the agglomeration between a single 
particle and an aggregate; whereas the second describes the agglomeration between two 
aggregates. These two mechanisms were simulated to build numerical aggregates: in the PCA 
algorithm, a new particle is randomly added to the aggregate until Np primary particles 
whereas the CCA algorithm corresponds to the random aggregation of several smaller 
aggregates. In reality agglomeration is the result of the collision between aggregates and the 
agglomeration between primary particles mainly in the very early times of the agglomeration. 
The PCA mechanism is described in details by (Mackowski, 1995 Filippov et al., 2000) and a 
generalization of the tunable cluster-cluster aggregation (CCA) method of (Thouy and Jullien, 
1994; Filippov et al., 2000) is also given. In this paper, a new algorithm is proposed to build a 
random aggregate following PCA and CCA mechanisms. The main difference of this new 
algorithm for PCA and CCA is the way the new sphere is added randomly to the aggregate. 
The position of the new sphere is determined by the “Cartesian coordinates” (Equation (8)) 
(see below). 
The PCA and CCA algorithms used in this study are detailed step by step below. For each 
algorithm the inlet parameters are the primary particles diameter, the structure factor, the 
fractal dimension of the aggregate and the total number of particles in the aggregate. 

III.1.1 PCA algorithm of aggregate construction 

The inputs of the algorithm are the number of spheres Np with a radius r (r=Dp/2) from which 
the aggregates will be constructed a set of Np spheres and a common value of the radius r for 
all the spheres.  

 Fix randomly a position of the space (x0, y0, z0) which will be the centre of the first 
sphere. 

 Make a random pull of two angles θ and φ (0≤θ≤2π, 0≤ φ ≤π). These two angles will 
fix the direction of a new sphere, stucked on the previous one. The coordinates of this 
new sphere will be: 

0

0

0

2 cos sin
2 sin sin
2 cos

θ φ
θ φ
φ

= +
= +
= +

i

i

i

x x r
y y r
z z r

 (8) 

 Check that the new sphere does not occupy a space already occupied by a sphere 

generated previously: verifying that , 2∀ ≥i jij O O r . Also verify that Df obeys the 

scaling relationship (Equation (5)) with kf equal to 1. 
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 Choose randomly a sphere of the aggregate which will become the new centre of the 
aggregate with coordinates (x0, y0, z0) and continue from step 2. 

Figure 8 shows an example of an aggregate constructed with 100 primary particles or spheres 
using PCA algorithm as described above. The fractal dimension value was set equal to 2.2. 

 

FFiigguurree  88::  EExxaammppllee  ooff  aann  aaggggrreeggaattee  ooff  110000  sspphheerreess  wwiitthh  DDff  eeqquuaall  ttoo  22..22  ggeenneerraatteedd  bbyy  PPCCAA  aallggoorriitthhmm  
((NNpp==110000,,  DDff==22..22,,  kkff==11..00,,  DDpp==55  μμmm))..  

IIIIII..11..22  CCCCAA  aallggoorriitthhmm  ooff  aaggggrreeggaattee  ccoonnssttrruuccttiioonn  

As for the PCA algorithm, the number Np of spheres with radius r from which the aggregate 
will be constructed are fixed and followed by: 

 Build an aggregate (called initial aggregate) by the PCA algorithm for which the 
number of particles Np1 is randomly chosen (Np1≤Np) with prescribed values of Df and 
kf=1 (Lee et al., 2000). 

 Choose randomly a particle of the initial aggregate in which some space is sufficient 
for sticking a new particle. This new particle will become (x0, y0, z0) to pursue the 
construction of a new containing aggregate Np2 particle (Np2≤Np−Np1). 

 Check that all spheres of the new aggregate are not intersected by the spheres of the 

initial aggregate. That consists in verifying that , 2∀ ≥i jij O O r  and that Df obeys to 

the scaling relationship (Equation (5)). 

Figure 9 illustrates the principle of CCA algorithm. 

Figure 10 shows an aggregate of 100 particles generated with CCA algorithm. The fractal 
dimension and structure factor values were set to Df=2.2 and kf=1.0. 
In the further modelling only CCA mechanism was used because in real systems from 
experiments the agglomeration mechanism observed is mostly by CCA. 
IIIIII..22..  CCLLDD  ccaallccuullaattiioonn  ffrroomm  tthhee  ccoonnssttrruucctteedd  aaggggrreeggaattee  
In order to calculate the CLD of the aggregates constructed before an algorithm was 
constructed. The aggregate constructed is projected in a plan and scanned as the FBRM does. 
The chord lengths measured by this way are then organised in a chord length distribution. 
The same aggregate is then rotated and projected again in the same plan and the CLD 
calculated. 
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FFiigguurree  99::  CCCCAA  aallggoorriitthhmm..  

 

FFiigguurree  1100::  EExxaammppllee  ooff  aann  aaggggrreeggaattee  ooff  110000  sspphheerreess  wwiitthh  DDff==22..22  ggeenneerraatteedd  bbyy  CCCCAA  aallggoorriitthhmm  
((NNpp==110000,,  DDff==22..22,,  kkff==11..00,,  DDpp==55  μμmm))..  

This procedure is repeated and an average CLD is calculated. The input parameters are the 
number of rotations of the aggregate and the number of scans N (see Figure 11). The algorithm 
steps are detailed below:  

1. Random rotation of the aggregate and a projection on the plan (x0y), P1=1. 

• Select three random rotation angles and compute the new coordinates of the Np 
particle centres after rotation by the Euler theorem. 

• Project the aggregate on the plan (x0y) (as illustrated in Figure 11). 

2. Calculation of the CLD. 

• Determine xmin and xmax (see Figure 10). 

• For xi=xmin+i(xmax−xmin)/N) where N=(xmax−xmin)/Δx, I∈[0, N], compute y+ and y− 
(intersection of each projected circle with x=xi). 

• Account for possible overlapping of the projected particles in order to obtain the 
largest couple (y+, y−) such that a continuous chord symbolizes a chord length li (see 
Figure 11). 
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3. Pn=Pn-1+1; while P<Pmax return to (1). 

The distributed chord lengths generated through the previous algorithm were stored into 38 
or 90 logarithmically spaced channels, which correspond to the output of the 
Lasentec/Mettler Toledo FBRM probe (Model 600DL). 

 

FFiigguurree  1111::  PPrriinncciippllee  ooff  tthhee  ccoommppuuttaattiioonn  ooff  tthhee  cchhoorrdd  lleennggtthhss  ll11,,  ll22  aanndd  ll33  oonn  aa  rraannddoomm  22DD--pprroojjeeccttiioonn  ooff  
aa  ssiimmuullaatteedd  aaggggrreeggaattee..  

Figure 12 shows an algorithm for calculating the number of primary particles and the fractal 
dimension of an aggregate. 
 

 

FFiigguurree  1122::  AAllggoorriitthhmm  ffoorr  ccaallccuullaattiinngg  tthhee  nnuummbbeerr  ooff  pprriimmaarryy  ppaarrttiicclleess  aanndd  tthhee  ffrraaccttaall  ddiimmeennssiioonn  ooff  aann  
aaggggrreeggaattee..  

A study was made on the influence of the number of projections on the CLD. Figure 13 
displays the CLD of the same aggregate (Np=30, Df=2.5) but with varying numbers of 
projections P. 
It should be noted that the simulated CLD profile becomes stabilized after 50–200 random 
rotations and projections (Figure 13). The number of projections is therefore set to 200. 
To test the construction of random aggregates and his influence on the CLD two aggregates 
with the same parameters (Np, Df, kf, Dp,) were constructed and then the CLDs calculated. 
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FFiigguurree  1133::  SSiimmuullaatteedd  CCLLDD  wwiitthh  ddiiffffeerreenntt  nnuummbbeerr  ooff  pprroojjeeccttiioonnss  ((NNpp==110000,,  DDff==22..22,,  kkff==11..00,,  DDpp==110000  μμmm))..  

Figures 14, 15 and 16 display the comparison between CLDs of two different CCA aggregates 
characterized by the same Np, Df, kf and Dp. From Figures 14, 15 and 16, is presented the effect 
of Df on the aggregate compactness and on the CLD shape. 

 

FFiigguurree  1144::  CCLLDD  ooff  ttwwoo  rraannddoomm  aaggggrreeggaatteess  mmaaddee  ooff  3300  sspphheerriiccaall  pprriimmaarryy  ppaarrttiicclleess  wwiitthh  DDff  eeqquuaall  ttoo  
11..88  ((NNpp==3300,,  DDff==11..88,,  kkff==11..00,,  DDpp==88  μμmm))..  

For Figures 14, 15 and 16, even if they look rather different, the aggregates with the same 
fractal dimension have a similar CLD. 
Consequently, the fractal dimension Df of aggregates which is a measure of the compactness 
of the aggregate is a relevant parameter for the CLD shape. 
First simulations turn out that, in general, a well defined and rather sharp peak is obtained on 
each CLD which is clearly associated to the size of the primary particles. 
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FFiigguurree  1155::  CCLLDD  ooff  ttwwoo  rraannddoomm  aaggggrreeggaatteess  mmaaddee  ooff  3300  sspphheerriiccaall  pprriimmaarryy  ppaarrttiicclleess  wwiitthh  DDff  eeqquuaall  ttoo  
22..22  ((NNpp==3300,,  DDff==22..22,,  kkff==11..00,,  DDpp==88  μμmm))..  

 

FFiigguurree  1166::  CCLLDD  ooff  ttwwoo  rraannddoomm  aaggggrreeggaatteess  mmaaddee  ooff  3300  sspphheerriiccaall  pprriimmaarryy  ppaarrttiicclleess  wwiitthh  DDff  eeqquuaall  ttoo  
22..66  ((NNpp==3300,,  DDff==22..66,,  kkff==11..00,,  DDpp==88  μμmm))..  

Furthermore, a second rather wide and irregular distribution of counts is found to be associated 
to aggregates of several particles. As Df increases, the peaks at higher chords lengths increase. 
The compactness of the aggregates has an influence on the probability of measuring chord 
lengths cutting more than two primary particles as illustrated on Figure 17, more compact 
aggregates (i.e. characterized by larger values of Df) can be characterized through the 
displacement of the larger modes towards increasing chords lengths and by an increasing of 
the height of peaks at this lengths. 
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FFiigguurree  1177::  SScchheemmaattiicc  ddeeccoommppoossiittiioonn  ooff  tthhee  CCLLDD..  

IV. Experimental results and discussion 
IIVV..11..  HHyyddrraattee  ccrryyssttaalllliizzaattiioonn  iinn  tthhee  AArrcchhiimmeeddee  ffllooww  lloooopp  

In the Archimede flow loop a test was performed with an emulsion of 30% volume of water in 
the liquid phase, and 0.5% (wt/wt water) of additive of methane hydrates crystallization at 
277 K and 7 MPa pressure. 
Figure 18 presents the evolution of temperature and pressure during the test performed on the 
Archimede loop, under a laminar flow (Re~210 at the beginning of the test). 

 

FFiigguurree  1188::  PPrreessssuurree  aanndd  tteemmppeerraattuurree  eevvoolluuttiioonn  dduurriinngg  aa  tteesstt  oonn  tthhee  AArrcchhiimmeeddee  lloooopp  ((AArrcchhiimmeeddee,,  
TT==227777  KK,,  PP==77  MMPPaa,,  3300%%  wwaatteerr  ((VVwwaatteerr  //VV)),,  00..55%%  aadddd  ((wwtt//wwtt  wwaatteerr))))..  

As the emulsion is placed under subcooling conditions, the exothermic crystallization of 
hydrate is evidenced by a temperature increase. This temperature increase is associated to a 
pressure decrease because of gas transfer from the emulsion into the hydrate phase. On this 
figure the beginning of hydrate crystallization is detected at t~100 min. 
The evolution of the friction coefficient is compared to the mean chord length given by the 
FBRM probe in Figure 19. The friction coefficient is related to the linear pressure drop (ΔP/L) 
and to the fluid velocity (u) through the following equation (Bird et al., 1960): 

22ρΔ
=

P u
f

L D
 (9) 
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where ΔP is the measured pressure drop across a length L, u is the measured velocity, D is the 
internal diameter of the flow loop, and ρ is the density of the fluid. 

 

FFiigguurree  1199::  MMeeaann  cchhoorrdd  lleennggtthh  mmeeaassuurreedd  dduurriinngg  tthhee  AArrcchhiimmeeddee  lloooopp  tteesstt  ((
2
meanL iiss  ssqquuaarree  wweeiigghhtteedd,,  

LLmmeeaann  iiss  uunnwweeiigghhtteedd))  ((AArrcchhiimmeeddee,,  TT==227777  KK,,  PP==77  MMPPaa,,  3300%%  vvooll..  wwaatteerr,,  00..55%%  aadddd..  ((wwtt//wwtt  wwaatteerr))))..  

Two different mean chord lengths (Equations (3) and (4)), calculated at each step of time are 
proposed. Lmean stands for the number average value of the CLD, 2

meanL is a surface average 
value, i.e., weighted by the square value of the chord length. 
The interest of using such weighted average value is to emphasize changes among the largest 
chord length (Heath et al., 2002), which have lower probability of being measured. 
Figure 19 shows that before hydrate crystallization, the mean chord length measured on the 
emulsion is constant. Because of the polydispersity of the emulsion the un-weighted and 
square weighted mean chord lengths are different ( 12meanL µm≈ , 2 28meanL µm≈ ). 
About 50 min after the beginning (at t=150 min) of the conversion of water into hydrate, the 
FBRM probe detects a change of the mean size of objects carried in the loop. The square-
weighted mean chord length increases in a way comparable to the increase of the friction 
coefficient. This observation confirms the assumption of hydrate particle agglomeration and 
its effect on pressure drop. 
It is interesting to notice that the viscosity of the mixture increases without any change on the 
size of the particles detected by the FBRM probe. This observation is discussed hereafter. 
Figure 20 gives examples of three instantaneous CLD, respectively, obtained for the emulsion, 
and for the suspension of hydrate particles. 
On the emulsion CLD (t=80 min) one can see that the mode corresponds to the mean chord 
length (Lmean) and it can be associated to the average diameter of water droplets in the initial 
emulsion. 
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FFiigguurree  2200::  EExxaammpplleess  ooff  uunnwweeiigghhtteedd  CCLLDDss  mmeeaassuurreedd  dduurriinngg  tthhee  AArrcchhiimmeeddee  lloooopp  tteesstt  ((AArrcchhiimmeeddee,,  
TT==227777  KK,,  PP==77  MMPPaa,,  3300%%  vvooll..  wwaatteerr,,  00..55%%  aadddd  ((wwtt//wwtt  wwaatteerr))))..  

At t=170 and 220 min, one can see the influence of agglomeration on the CLD measurement: 
The intensity of the initial mode tends to decrease while peaks in larger chords lengths are 
detected and increase. The unevenness of the CLDs obtained for the hydrate slurry are 
probably linked to the low velocity of the flow on the Archimede loop (<0.2 m s−1), and a 
number of aggregates scanned per second not high enough to obtain a smooth statistical 
distribution. 

 

FFiigguurree  2211::  EEvvoolluuttiioonn  wwiitthh  ttiimmee  ooff  tthhee  nnuummbbeerr  ooff  cchhoorrddss  sshhoorrtteerr  aanndd  llaarrggeerr  tthhaann  4400  μμmm  mmeeaassuurreedd  ppeerr  
sseeccoonndd,,  aanndd  ooff  tthhee  ffrriiccttiioonn  ccooeeffffiicciieenntt  dduurriinngg  tthhee  AArrcchhiimmeeddee  tteesstt  ((AArrcchhiimmeeddee,,  TT==227777  KK,,  PP==77  MMPPaa,,  3300%%  
vvooll..  wwaatteerr,,  00..55%%  aadddd..  ((wwtt//wwtt  wwaatteerr))))..  

Figure 21 presents a comparison between the evolution with time of the friction coefficient 
and the evolution with time of the number of chords measured per second within two ranges 
gathering all the chords detected during this test: number of chords ×10−2 s−1 (0–40 μm) and 
number of chords s−1 (40–100 μm). As it can be seen in Figure 21, the range (0–40 μm) 
contains almost all the chords measured in the initial emulsion. Larger chords (40–100 μm) are 
detected after the beginning of hydrate particles agglomeration. At t=120 min, the number of 
chords measured within both ranges decreases. As discussed above, this can be attributed to 
the mean velocity decrease (through a decrease of the volume of fluid scanned per second). 
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After t=160 min, the number of chords larger than 40 μm measured per second steeply 
increases whereas the number of small chords remains at a low value. This observation 
confirms agglomeration and justifies the steep increase of the viscosity followed by plug of the 
pipe. 
IIVV..22..  HHyyddrraattee  ccrryyssttaalllliizzaattiioonn  iinn  tthhee  LLyyrree  lloooopp  

In the Lyre flow loop a test was performed with an emulsion of 30% volume of water in liquid 
phase and 0.5%wt of additive (in water) of methane hydrates crystallization at 277 K and 
7 MPa.  
Figure 22 presents the temperature and the calculated friction coefficient from the measured 
pressure drop (Equation (7)) evolution during a test in the Lyre loop under turbulent flow 
regime (Re~8500 at the beginning of the test) at constant pressure equal to 7 MPa. 

 

FFiigguurree  2222::  TTeemmppeerraattuurree  aanndd  ffrriiccttiioonn  ccooeeffffiicciieenntt  eevvoolluuttiioonn  dduurriinngg  tthhee  tteesstt  oonn  tthhee  LLyyrree  lloooopp  ((LLyyrree,,  
TT==227777  KK,,  PP==77  MMPPaa,,  3300%%  vvooll..  wwaatteerr,,  00..55%%  aadddd..  ((wwtt//wwtt  wwaatteerr))))  

Once again, hydrate formation is evidenced with a temporarily temperature increase (at 
t=70 min). This is associated to a steep increase of the friction coefficient that reaches a 
maximum value before coming down to a lower constant value.  

 

FFiigguurree  2233::  MMeeaann  vveelloocciittyy  ((uu)),,  ffrriiccttiioonn  ccooeeffffiicciieenntt  ((ff))  aanndd  mmeeaann  cchhoorrdd  lleennggtthh  eevvoolluuttiioonn  dduurriinngg  tthhee  tteesstt  
oonn  tthhee  LLyyrree  lloooopp  ((LLyyrree,,  TT==227777  KK,,  PP==77  MMPPaa,,  3300%%  vvooll..  wwaatteerr,,  00..55%%  aadddd..  ((wwtt//wwtt  wwaatteerr))))..    
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The conversion of the water-in-oil emulsion into a hydrate suspension increases twice the 
friction coefficient at the end of the experiment. This steep increase of the friction coefficient 
is characteristic of turbulent/laminar transition due to the viscosity increase of the slurry. 
Figure 23 provides a comparison of the friction coefficient to the mean chord length measured 
by the FBRM probe along this experiment. 
One can see that the initial mean chord length of the emulsion is 5 μm (Figures 23 and 24). At 
t~50 min, the mean chord length momentarily increases and then decreases and tends to a 
constant value. On Figure 23, the first peak on Lmean is not due to agglomeration, but to 
bubbles that are sucked in the gas separator in reason of a transient behaviour as the hydrates 
form.

 

FFiigguurree  2244::  MMeeaann  vveelloocciittyy  ((uu)),,  ffrriiccttiioonn  ccooeeffffiicciieenntt  ((ff))  aanndd  mmeeaann  cchhoorrdd  lleennggtthh  eevvoolluuttiioonn  dduurriinngg  tthhee  tteesstt  
oonn  tthhee  LLyyrree  lloooopp  ((LLyyrree,,  TT==227777  KK,,  PP==77  MMPPaa,,  3300%%  vvooll..  wwaatteerr,,  00..55%%  aadddd..  ((wwtt//wwtt  wwaatteerr))))..  

So both the experiments from Lyre Loop and Archimede loop present the same behaviour: 
crystallization occurs without effect on the mean chord length, that means that particles do not 
agglomerate, but with an influence on the pressure drop. In Figure 23, the pressure drop is 
modified because of the important methane consumption in the oil phase, and as a result, the 
viscosity of the oil phase increases. As the oil is re-saturated, the pressure drop (proportional 
to the friction coefficient f) returns to a constant value, higher than the initial one in reason of 
the agglomerates. The appearance of such a peak on the friction coefficient is dependent on 
the intensity of the crystallization. It can be observed, or not, on the Archimede flow loop and 
Lyre flow loop. Figure 19 presents an experiment on the Archimede loop with a moderate 
crystallization rate, and Figure 23 present an experiment on the Lyre loop with a high 
crystallization level. In other experiments, opposite behaviour is observed. 
After the crystallization started, on both Archimede and Lyre loops, the mean chord length 
remains constant; which indicate that particles do not significantly agglomerate. After that, 
results obtained on both loops are similar, as the mean chord length increases. The flow on the 
Archimede loop stops because there is not enough available pressure induced by the gas lift, 
whereas the flow in the Lyre loop continues because of its Moineau pump. 
Looking at the long term time evolution on the Lyre loop, one can see that the mean chord 
length significantly increases until a maximum value of 18 μm and then decreases back to a 
lower average value (~12 μm). That can be attributed to the breaking of aggregates. 
In order to better understand what happens during the first minutes after hydrate 
crystallization, Figure 24 provides a comparison between CLDs measured at four different 
instants between the beginning of the friction coefficient increase and the beginning of the 
mean chord length increase. All these distributions are square-weighted CLDs in order to 
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emphasize the effect of hydrate particle agglomeration on the CLD, which are not detected on 
Lmean. 
The CLD measured for the initial emulsion is quite narrow, with a mode around 5 μm 
corresponding to the primary particles diameter constituting the aggregates and also to the 
remaining water droplets or free hydrate particles. After hydrate crystallization and 
agglomeration, the shape of the CLD becomes very different from the emulsion CLD. The 
peak corresponding to primary particles decreases of about 60%. Hydrate particle 
agglomeration is evidenced through an increase of the spreading of the measured chord 
lengths until lengths of 100 μm, an increase in the proportion of chords measured between 
50 μm and 100 μm. 
From Figure 24 it seems that the strong modification of the friction coefficient is actually 
linked to agglomeration effects even if the average value of the chord length remains 
unchanged. 
For instants later than 105 min, the number of agglomerates in the slurry is high enough to 
have an influence on the mean chord length, and its value keeps on increasing until t=200 min. 
Figure 25 presents four un-weighted CLDs measured at different instants of the Lyre loop test. 

 

FFiigguurree  2255::  CCoommppaarriissoonn  ooff  uunn--wweeiigghhtteedd  CCLLDDss  mmeeaassuurreedd  aatt  ddiiffffeerreenntt  iinnssttaannttss  ooff  tthhee  LLyyrree  lloooopp  tteesstt  
((LLyyrree,,  TT==227777  KK,,  PP==77  MMPPaa,,  3300%%  vvooll..  wwaatteerr,,  00..55%%  aadddd..  ((wwtt//wwtt  wwaatteerr))))..  

The shape of the CLD for each time can be interpreted as follows:  
 t=86 min: Emulsion CLD: presents a single mode distribution at 4 μm which 

corresponds to the mean size of water droplets (primary particles size). 

 t=180 min: Slurry CLD during the growth phase of agglomerates presents the mode 
corresponding to the primary particles diameter that is still predominant but its 
relative weight has decreased (35%). Chords larger than 10 m (280 m) appears 
corresponding to particles agglomeration. 

 t=240 min: Slurry CLD during attrition phase of CLD agglomerates has the largest 
chord at (210 μm). 

 t=320 min: Slurry CLD at the end of attrition phase where the largest chord detected 
is smaller again (140 μm). 

Contrarily to the test presented before on the Archimede loop, during this test, a constant 
mean velocity was maintained, despite the pressure drop increase, preventing the plug of the 
pipe. 
After agglomeration the highest chord lengths are obtained and after they decrease because 
shear becomes predominant. 
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Another interesting observation is that for all CLDs measured during the test, the mode 
corresponding to the initial emulsion remains but its relative weight has decreased 
(approximately 35%). Three different phenomena can justify this observation. The first one is 
that some water droplets or isolated hydrate particles keep the size of the primary particles and 
also in aggregates made up of these primary particles the probability of measuring a chord 
corresponding to the primary particle constituting the aggregate remains high (Turner et al., 
2005) as illustrated in Figure 26. 

 

FFiigguurree  2266::  CCLLDD  mmeeaassuurreemmeenntt  ffoorr  aann  aaggggrreeggaattee  ooff  sspphheerriiccaall  ppaarrttiicclleess..  

Lastly, agglomeration leads to a decrease of the number concentration of particles increasing 
the probability of measuring the largest chords of an aggregate. 

V. Comparison between simulation and experimental results 
In this section calculated results are compared with experiment. Remember that CLD are 
calculated from aggregates constructed by CCA with a given fractal dimension, number of 
particles and primary particles diameter. 
From experiment the emulsion CLD has a single peak whose mode corresponds to the water 
droplets diameter that is considered the same of hydrates primary particles diameter. This 
diameter is measured to each experiment and used to calculate the CLD for each experiment in 
Part IV by fitting the number of primary particles and the fractal dimension. 
The fractal dimension (Df) was initially set to 2.5 following the work of (Camargo and 
Palermo, 2002). 
The criteria to fit calculated CLD with experiments CLD was the maximum chord length and 
the mean intensity of the shouldering corresponding to aggregates without taking into account 
all the secondary peaks. 
This procedure was followed to calculate de CLD during crystallization in the Archimede flow 
loop. 
In Figure 20 the mode of the main peak corresponding to the diameter of water droplets in the 
emulsion is located at 7 μm. So, the primary particles diameter is chosen equal to 7 μm and 
with the fractal dimension (Df) equal to 2.5 as Camargo, the primary particles number was 
fitted equal to 50 in Figure 27 to CLD at 140 min. 
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FFiigguurree  2277::  SSiimmuullaatteedd  CCLLDD  ((NNpp==5500;;  DDff==22..55;;  kkff==11,,  DDpp==77  μμmm))  aanndd  eexxppeerriimmeennttaall  CCLLDD  ((tt==114400  mmiinn))  
((AArrcchhiimmeeddee,,  TT==227777  KK,,  PP==77  MMPPaa,,  3300%%  vvooll..  wwaatteerr,,  00..55%%  aadddd..  ((wwtt//wwtt  wwaatteerr))))..  

In Figures 28 and 29 the size interval of experimental CLD with an adjustable parameter Np is 
well described by the model, nevertheless the main peak has the same mode (7 μm) their 
probability is different probably because aggregates are made from a monodispersed 
population and do not take into account a certain emulsion polydispersity. 

 

FFiigguurree  2288::  SSiimmuullaatteedd  CCLLDD  ((NNpp==5500;;  DDff==22..55;;  kkff==11,,  DDpp==77  μμmm))  aanndd  eexxppeerriimmeennttaall  CCLLDD  ((tt==117700  mmiinn))..  
((AArrcchhiimmeeddee,,  TT==227777  KK,,  PP==77  MMPPaa,,  3300%%  vvooll..  wwaatteerr,,  00..55%%  aadddd..  ((wwtt//wwtt  wwaatteerr))))..  

The same procedure was followed for the experimental chord length distribution at 170 min, 
and the results are shown in Figure 28. 
Figure 29 shows that the same fractal dimension and the same number of primary particles 
used for modelling at 140 min give a chord length distribution which does not describe the 
peaks at larger chord lengths. The increase in the fractal dimension describes better these 
peaks, particularly around chord lengths of 30 μm. This proves that the fractal dimension 
allows taking into account the evolution of the aggregate compactness along a crystallization 
and agglomeration process under flow conditions. 
The same procedure was used for experiments in Lyre flow loop. Figure 24 presents the CLD 
of the emulsion at 80 min with a main peak with a mode at 4 μm corresponding to the water 
droplets in the emulsion. Consequently, the primary particles diameter chosen for the 
aggregate construction was 4 μm. The fractal dimension (Df ) was arbitrarily set to 2.5 
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following the work of (Camargo and Palermo, 2002). Once agglomerates have been 
constructed with CCA, CLD was calculated and fitted in with the experimental CLD by 
changing the number of primary particles in the agglomerate which plays a role on the 
maximum chord length obtained. 

 

FFiigguurree  2299::  SSiimmuullaatteedd  CCLLDD  ((NNpp==5500;;  DDff==22..77;;  kkff==11,,  DDpp==77  μμmm))  aanndd  eexxppeerriimmeennttaall  CCLLDD  ((tt==117700  mmiinn))..  
((AArrcchhiimmeeddee,,  TT==227777  KK,,  PP==77  MMPPaa,,  3300%%  vvooll..  wwaatteerr,,  00..55%%  aadddd..  ((wwtt//wwtt  wwaatteerr))))..  

Figure 30 shows the superposition between the experimental and the simulated CLD. 

 

FFiigguurree  3300::  SSiimmuullaatteedd  CCLLDD  ((NNpp==220000;;  DDff==22..55;;  kkff==11,,  DDpp==44  μμmm))  aanndd  eexxppeerriimmeennttaall  CCLLDD  ((LLyyrree,,  TT==227777  KK,,  
PP==77  MMPPaa,,  3300%%vvooll..,,  00,,55%%wwtt..  aadddd..))  aatt  tt==9977  aanndd  110055  mmiinn..  

The simulated CLD was obtained for an aggregate with 200 primary particles. Both 
distributions have the same mode and the same chord lengths interval between 1 and 50 μm, 
but they do not have the same probability for each range of chord lengths because calculated 
CLD do not take into account the emulsion polydispersity. The same procedure is (Figures 32, 
32 and 33) applied at different times of the crystallization and reported in Table 2. 
TTaabbllee  22..  ::  NNuummbbeerr  ooff  ppaarrttiicclleess  iinn  ssiimmuullaatteedd  aaggggrreeggaattee  tthhaatt  ggiivvee  eexxppeerriimmeenntteedd  CCLLDD  ccoommppaarraabbllee  ttoo  
ssiimmuullaatteedd  CCLLDD  ((DDpp==44  μμmm,,  kkff==11,,  DDff==22..55))..  

t (min) 97 105 180 240 320 
Np 200 200 1500 1200 1000 
Lyre, T=277 K, P=7 MPa, 30%vol. water, 0.5% wt/water add.  
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FFiigguurree  3311::  SSiimmuullaatteedd  CCLLDD  ((NNpp==11550000;;  DDff==22..55;;  DDpp==44  μμmm))  aanndd  eexxppeerriimmeennttaall  CCLLDD  ((tt==118800  mmiinn))..  

 

FFiigguurree  3322::  SSiimmuullaatteedd  CCLLDD  ((NNpp==11220000;;  DDff==22..55;;  DDpp==44  μμmm))  aanndd  eexxppeerriimmeennttaall  CCLLDD  ((tt==224400  mmiinn))..  

 

FFiigguurree  3333::  SSiimmuullaatteedd  CCLLDD  ((NNpp==11220000;;  DDff==22..55;;  DDpp==44  μμmm))  aanndd  eexxppeerriimmeennttaall  CCLLDD  ((tt==224400  mmiinn))..  
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The fitted number of primary particles increases until 180 min and then decreases. This puts 
into evidence the formation of fractal aggregates until 180 min. Then shear effects become 
predominant on agglomeration effects and aggregates tend to be eroded, and their size 
decreases (Camargo and Palermo, 2002).The comparison between simulated and experimental 
CLD is in Figures 31, 32 and 33. 
In Figures 31, 32 and 33 calculated CLD are different from the experimental ones. The main 
difference concerns the smallest chord lengths and the amplitude of primary particles peak. 

VI. Conclusions 
A study was carried out in order to model the CLD and assess the possibility of estimating the 
physical characteristics of gas hydrate aggregates circulating in a pressurized loop from 
measures with a FBRM probe. A new CCA algorithm was created and used to construct 
random aggregates characterized by their fractal dimension, the diameter of primary particles 
and their number of primary particles. The corresponding CLD distributions were then 
calculated and analysed. 
The diameter of primary particles was found to be related to the sharp peak of the calculated 
chord length distributions corresponding to the mode of the peak obtained in the smallest 
detected chord lengths. The shape of the shoulder, located at larger chord lengths appeared to 
be indicative of the compactness of aggregate (characterised by its fractal dimension), and 
lastly, the maximum measured chord length is linked to the number of primary particles in 
each agglomerate. 
The calculated CLDs from aggregated constructed from a monodispersed population of 
spheres were fitted to the experimental CLDs with a single fitted parameter: the number of 
primary particles. In a second time, it was shown that the fractal dimension can also be an 
interesting fitting parameter, if the compactness of the aggregates varies along an experiment. 
Further developments could be done in order to improve the agreement between the 
experimental and the calculated CLDs. As an example, using a polydispersed population from 
whose agglomerates will be built can be interesting to have a better agreement between the 
main peak of the CLD from model and experiments. 

Notations 
DA  

Df i 

Dmax  
Dp 
f 
kf  

Lmean 
L²mean 
N 
Np 
Oi 

O0 

P 

ΔP/L  
Re 
Rg 

T 
u 

equivalent diameter of an aggregate, m  
fractal dimension of an aggregate  
maximal dimension of a particle, m  
primary particle diameter, m  
friction coefficient  
structure factor  
un-weighted mean chord length, μm  
square-weighted mean chord length, μm  
number of scans  
number of primary particles  
centre of sphere  
centre of aggregate  
number of rotations  
linear pressure drop, Pa m−1  
Reynolds number  
gyration radius, m  
time, min  
mean velocity, m s−1 
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