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Abstract

Until now, most cryptography implementations on par-
allel architectures have focused on adapting the software to
SIMD architectures initially meant for media applications.
In this paper, we review some of the most significant contri-
butions in this area. We then propose a vector architecture
to efficiently implement long precision modular multiplica-
tions. Having such a data level parallel hardware provides
a circuit whose decode and schedule units are at least of the
same complexity as those of a scalar processor. The excess
transistors are mainly found in the data path. Moreover, the
vector approach gives a very modular architecture where
resources can be easily redefined. We built a functional sim-
ulator onto which we performed a quantitative analysis to
study how the resizing of those resources affects the perfor-
mance of the modular multiplication operation. Hence we
not only propose a vector architecture for our Public Key
cryptographic operations but also show how we can analyze
the impact of design choices on performance. The proposed
architecture is also flexible in the sense that the software
running on it would offer room for the implementation of
counter-measures against side-channel or fault attacks.

1 Introduction

The use of sophisticated cryptography has been widely
deployed in our everyday life. In ‘conventional’ comput-
ers (i.e. in the non-embedded world) crypto-oriented hard-
ware is a rare commodity unlike media applications for
which dedicated parallel architectures have been developed
(e.g., the MMX architecture [21] for the Pentium family or

the AltiVec co-processor for the PowerPC). A rare counter-
example to this is the Sparc processor [9] where special in-
structions have been deployed.

On the other hand, for the embedded world (particu-
larly for smart-cards), given the constraints of speed, power,
size and security, special cryptographic accelerators have
been deployed. Most of those Public Key (PK) crypto-
accelerators propose very elaborate arithmetic processors
that work on long precision numbers of fixed lengths, re-
sulting in complicated, bulky and inflexible architectures.
Others have been trying to have a more general approach
by enhancing the instruction set of general purpose scalar
processors [13]. However, none of those approaches have
embraced a hardware-software co-design approach for data
level parallel techniques to enhance cryptographic compu-
tations.

We begin this paper by performing an extensive study
about how cryptography has been implemented on SIMD
(Single Instruction Multiple Data) architectures. We then
give a rapid description of the vector architecture presented
in [12]. We show how a design-to-cost approach can be
adopted by doing a quantitative analysis on the functional
simulation of a modular multiplication operation. We fi-
nally summarize our results and compare our work to pre-
vious contributions in the field of cryptography.

2 Parallel implementations of cryptography

In the ‘conventional’ or non-embedded computing
world, most of the research has concentrated around par-
allelizing the cryptographic operations in order to take ad-
vantage of the SIMD architecture originally developed for
media applications:



• In [20], the authors implement a long precision mod-
ular multiplication on a Pentium4 using the SSE2
(Streaming SIMD Extensions 2) instructions. The au-
thors execute four exponentiations in parallel, each
exponentiation being implemented using a Redundant
Representation of Montgomery’s multiplication. The
authors report that a 1024-bit modular multiplication
takes 60µs, which roughly corresponds to 120000
clock cycles for a 2GHz Pentium4 processor.

• Crandall and Klivington illustrate in [7] how the Veloc-
ity Engine of the PowerPC can be used to implement
long precision multiplications for RSA. Based on the
figure given in the paper, we can infer that a 1024-bit
multiplication takes about 3600 clock cycles with their
approach. However, no figures were reported for a full
modular multiplication.

• The AltiVec [8] extension to the PowerPC was origi-
nally developed to target media applications. This vec-
tor extension is made of 32 128-bit vector registers.
AltiVec also offers some superscalar capabilities since
instructions belonging to different ‘classes’ can be ex-
ecuted in parallel. Galois Field arithmetics has been
implemented on the AltiVec in [2]. In the latter paper,
the authors show how the Rijndael algorithm [19] can
be made to execute in 162 clock cycles on the AltiVec
or, even better, in only 100 clock cycles if a bit-sliced
approach is used.

For embedded applications, studies around the use of
SIMD architectures for cryptography are even more scarce:

• In the embedded world, Data Parallel architectures
are mostly deployed in DSPs (Digital Signal Pro-
cessors) for signal processing. In [15], the au-
thors present how modular multiplication based on
Montgomery’s method [18] can be implemented on
a TMS320C6201 [26]. With their approach, a 1024-
bit RSA verification (with e = 216 + 1) takes 1.2ms.
If we agree that we need approximately 17 modular
multiplications for this, then, with a processor clock at
200MHz, we can infer that the one 1024-bit modular
multiplication takes about 14000 clock cycles. Apply-
ing the same reasoning to other data given in the paper,
we find out that one 2048-bit modular multiplication
takes 53000 clock cycles on this architecture.

• In the fascinating world of smart-cards, the only exam-
ples where parallel approaches have been reported are
in [16, 10]. In both papers, the authors focus on fast el-
liptic curve multiplications. In [16], the authors show
how, with a projective coordinates representation [3],
calculations can be parallelized on the Crypto2000. On

the other hand Fisher et al [10] focus more on ellip-
tic curve implementations resistant to side channel at-
tacks.

3 Our vector approach

In all the work reported in Section 2, we have seen
how long precision modular multiplications were adapted
to SIMD architectures. However, none of those approaches
actually studies how a data parallel hardware could be tai-
lored for cryptographic operations. In the example given
in [16, 10], even if there are two units working in parallel,
the data itself is not decomposed, nor is it very clear whether
the underlying architecture is flexible.

The vector architecture illustrated in this paper is de-
signed to offer a scalable, power efficient, high performance
and software-flexible architecture for the implementation of
long precision modular multiplications.

3.1 Choice of a data parallel approach

We are looking at high performance parallel architec-
tures for cryptography. To reduce circuit complexity, we
avoid multiple instruction schemes and instruction parallel
ones. In the latter architectures, the instruction decoders and
issuers consume a lot of power as shown in [11] where for
a superscalar microprocessor, one quarter of the total power
is consumed by the instruction issue and queue logic while
another quarter is taken by the instruction reorder buffers.

A Data Level Parallel approach is a better fit for cryp-
tographic applications because the data in such applications
can be decomposed into a vector of shorter data onto which
operations can be applied in parallel, the instruction decod-
ing is simpler (as illustrated in [17]) and in terms of secu-
rity, working on data in parallel is expected to reduce the
relative contribution of each data piece in the side channel
leakages [4, 5].

3.2 The proposed vector architecture

The theory of vector processing and its application to
micro-processors is given in Appendix A of [14]. Vector
Processor techniques have been widely used from super-
computers like the Cray machine [23] to Digital Signal Pro-
cessing applications like in Intel’s MMX or in embedded
media architectures like VIRAM [17], but never for cryp-
tography. In our architecture we use a scalar MIPS to pro-
vide good scalar performance. To keep instruction decode
simple, we delegate both vector and scalar instruction fetch
and decode to the MIPS core. To suit the MIPS ‘load-store’
architecture and to avoid complex memory accesses, we
chose a Register-to-Register vector architecture. With this
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approach we reduce memory-register transfers, which are
also the privileged attack paths for side channel analysis.

Details about the vector architecture implemented for the
analysis done in this paper are given in [12]. In order to un-
derstand the analysis performed in Section 4, we need to
highlight some of the vector processor’s architectural de-
tails.

The architecture of the vector register file is illustrated in
Figure 1. Six architectural parameters influence the struc-
ture of our vector register file:

• m: The size of each element of the vector registers
(m = 32).

• q: The number of vector registers.

• p: The number of elements, called depth, in each vec-
tor register.

• r: The number of lanes which correspond to the num-
ber of Vector Processing Units (VPUs). This notion
is borrowed from [1]. Ideally we would have r = p,
allowing us to work on all p elements in parallel. How-
ever, in some cases, for size and power constraints we
won’t have p VPUs. We leave r as a parameter to allow
us to analyse the best performance to size trade-off.
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Figure 1. Distribution of the Vector Register
File across Vector Processing Units (VPUs)

A vector instruction is meant to replace a “software
loop” where the data being operated on are independent
from each other and where the calculation of each it-
eration of the loop is independent from the calculation
of the ‘adjacent’ iterations. By looking at some of the
instructions in Appendix A1, we can see that operations
like VADDU do not obey this rule. For such instruc-
tions, we take advantage of the fact that the calculation
on each element of the vector is only ‘partially’ inde-
pendent from that of its neighbors. We hence define
the GIVI (Genuinely Independent Vector

1Appendix A only describes the vector instructions needed for the mod-
ular multiplication.

Instruction), PIVI (Partially Independent
Vector Instruction) and the MAVI (Memory
Accessing Vector Instruction) as described
in [12]. For example, for PIVI instructions like VADDU,
each VPU has a 32-bit Carry Select Adder (CSA) such that
each execution of the instruction is decomposed into two
pipelined stages as illustrated in Figure 2:

• a first stage (the EXM stage) where the CSA performs
two addition operations in parallel: one for an incom-
ing 0 carry and one for an incoming 1 carry.

• a second stage (the EXC stage) where the correct result
is chosen as a function of the correct incoming carry.
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Figure 2. Execution of VADDU instruction

For our analysis, a functional model of the vector archi-
tecture was built using the ArchC tool [24]. An architec-
tural instruction simulator was built based on a language
description implementing the target architecture and a sim-
ulator generator built out of SystemC. The simulator gen-
erates a series of basic statistics among which the number of
“cycle-counts” giving our “instruction cycles”. The vector
code was compiled using modified GCC tools.

3.3 Public key cryptography on the vector
architecture

In [12], we have been looking at vector implementations
of AES and modular multiplications in fields of characteris-
tic 2 for Elliptic Curves Cryptography (ECC). In this section
we concentrate on the modular multiplication for RSA [22]
because the latter is used for our quantitative analysis in
Section 4.

Modular Multiplication is implemented based on Mon-
togomery’s method [18]. Efficient implementations of the
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latter algorithm are given in [6, 25]. We first implemented
the CIOS (Coarsely Integrated Operand Scanning) method
as described in [6]. To calculate R = A × B mod N we
use Montgomery’s method which yields R′ = A × B ×
r−1 mod N where N is long precision modulus of length l
bits and r can be chosen such that r = 2l. Suppose that each
l-bit data Y can be decomposed into a linear combination of
32-bit integers denoted by Yi such that

Y = YM−1.232(M−1) + . . . + Y1.232 + Y0 (1)

with M = � l
32�. We then have the algorithm in Fig-

ure 3 for the RSA’s modular multiplication where J0 is pre-
calculated as the multiplicative inverse of N0 modulo 232.

Input : A, B, N, M and J0

Output : R′ = A.B.2−32M mod N

1. R′ ← 0

2. for j = 0 to M − 1 do

3. R′ ← R′ + Aj ·B
4. J ← R′

0 · J0 mod 232

5. R′ ← R′ + J ·N
6. R′ ← R′/232

7. endfor

8. return R′

Figure 3. Modular multiplication for RSA on a
32-bit machine

The algorithm is implemented in assembly language us-
ing the vector instructions given in Appendix A. On the
functional simulator, the code takes 4095 instruction cycles.
We also investigated the FIOS (Finely Integrated Operand
Scanning) approach [6]. This improvement reduces the in-
struction cycle count to 3296. This 19.5% gain in perfor-
mance is achieved at the expense of one additional vector
register. These results seem to be in contradiction to those
shown in [6] where the CIOS method outperforms the FIOS
one by around 7.6%. This is because in the latter paper,
even if there are less loops in the FIOS method, the potential
gain is counterbalanced by the higher number of memory
reads and writes. In our vector architecture, this increase in
memory accesses has less impact because of the architec-
ture of our vector register file.

4 Quantitative study of the modular multipli-
cation

In this section, we show how a quantitative analysis is
carried on a functional simulator of our vector architecture.

We look at the performance of the modular multiplication
between two long precision numbers for RSA. We change
the depth p of each vector register and the number of lanes r
to see how performance is affected by those design param-
eters. Future cycle-accurate models (in synthesizable Ver-
ilog) will incorporate other parameters such as gate count
and power estimations. The measurements are done for
some characteristic values of data length l, register depth
p and number of lanes r.

4.1 Varying data size

We first varied the size of the data used. We performed
measurements for data sizes of 512, 1024, 2048 and 4096
bits. In theory, based on the algorithm in Figure 3, every
time we double the size of the key, we expect the number of
clock cycles to be multiplied by 4 (or even more according
to [6]).
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Figure 4. Number of cycles versus data size
(Vector Depth= 32)

In Figure 4, the “upper” curve represents what is ex-
pected and the “lower” one represents what is actually mea-
sured. We see that the performance penalty decreases as the
size of the data increases. Note that this observation is in
line that made in [7] where the authors show that the timing
on the vector processor is “more linear with size” than on
scalar architectures.

4.2 Changing depth of vector registers

We repeated the above experiment but this time for dif-
ferent values of the depth p.
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4.2.1 The vectorization effect on varying data sizes

From the graphs in Figures 5 to 8 we see that as p de-
creases, the measured variation in performance gets closer
and closer to the expected theoretical behaviour. When
p = 1, the practical results match the theoretical ones. The
case of p = 1 is the limit where our vector architecture
becomes a scalar one. This supports the fact that with the
vector architecture, we can work on larger data sizes with
a performance penalty which is less than the expected one.
This can be viewed as a relative gain in efficiency. This
behavior could be due to the register-to-register vector ar-
chitecture where large data words are loaded at once, thus
reducing the accesses to external memory.
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Figure 5. Number of cycles v/s key size: p = 1
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Figure 6. Number of cycles v/s key size: p = 4
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Figure 7. Number of cycles v/s key size: p = 16
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Figure 8. Number of cycles v/s key size: p = 32

4.2.2 Profiling the rate of performance change with in-
creasing depth

The other interesting aspect of the collected figures is to see
how, for a given data size, the performance of the modular
multiplication routine is affected by changing p. Figure 9
shows such profiles for two key lengths (we use a semi-
logarithmic scale). From those figures, we can infer that the
number of cycles decreases exponentially with the depth p.
We also found that beyond what seems to be the critical
value p = 16, the number of cycles decreases asymptoti-
cally. Typically, for a hardware designer, this would mean
that beyond 16, increasing p will result in negligible perfor-
mance gain.

5



0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5
x 10

4

Log2(p)

# 
of

 in
st

ru
ct

io
n 

cy
cl

es

1024−bit mod mult

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5
x 10

5

Log2(p)

# 
of

 in
st

ru
ct

io
n 

cy
cl

es

4096−bit mod mult

Figure 9. Number of cycles versus Vector
Depth (Log2 scale)

4.3 Varying the number of lanes

We also looked at the effect of varying the number of
vector processor lanes. The curves in Figure 10 show how
the number of cycles for a 1024-bit modular multiplication
varies when increasing the number of lanes. For each value
of p, we increase r from 1 to p, doubling the value of r ev-
ery time. We then ‘interpolated’ in between the measured
points to obtain the ‘trend’. We see that as r gets larger,
increasing r provides a gain in performance which tends to
decrease: the reduced gain in performance is more or less
linear. In [17], the authors already observed that for me-
dia applications, the “efficiency” of the vector architecture
decreases as we increase the number of lanes.
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4.4 Summary of results

The quantitative analysis made on the RSA’s modular
multiplication allows us to draw the following conclusions:

1. As data size gets bigger, the rate of increase in in-
struction count gets smaller than the theoretical values.
Actually the rate of increase of instruction cycles de-
creases as the data sizes get bigger.

2. The above difference between the theoretical and ex-
perimental behaviors gets more important as p in-
creases.

3. For a given length of data, increasing p decreases the
number of instruction cycles logarithmically. From
p = 1 to p = 16 the rate of loss in performance de-
creases more or less linearly but beyond p = 16 there
seems to be a more important loss.

4. Increasing the number of lanes decreases the number
of instruction cycles logarithmically. For a given p, the
more lanes we have, the smaller is the relative gain in
performance.

In terms of performance, a fair comparison (for a given
data size, say 1024 bits) between our work and the previous
publications enumerated in Section 2 wouldn’t be justified.
All of those hardware architectures could be considered to
be multiple instructions issue architectures while ours is a
single instruction issue one. Moreover, our architecture is
designed to be scalable and favor design-to-cost approaches
where one design can be resized to suit performance, size
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and power consumption constraints. Even so, if we wanted
to compare figures, we would note that our implementa-
tion for 1024-bit data ideally takes 3296 cycles, that on the
Power PC’s Velocity Engine [7] takes 3600 cycles and the
one on a DSP [15] takes 14000 cycles. These figures indi-
cate that a relatively simple to implement vector processor
like ours is able to achieve good performance without the
complexities of multiple instruction issue.

5 Conclusions and future work

In this paper, we showed that high performance can be
achieved through parallel computation of cryptography on
a vector architecture. It is well known that instruction level
parallelism is very expensive in terms of hardware and in
particular very complex in terms of instruction decoding
and scheduling. On the other hand, taking a vector approach
is a relatively cheap way of achieving high performance par-
allelism as most of the logic goes into the data path and not
in the control path. The latter point also renders our vector
architecture very modular. We showed how this modular-
ity can be exploited to provide a range of speed and area
choices for RSA cryptography.

Our vector approach provides a new vision of parallel ex-
ecutions of cryptography compared to previous work, spe-
cially for embedded applications where designers are per-
manently seeking for performance, size and power trade-
offs. Our modular design approach gives us a quantitative
tool to build a cryptographic PK coprocessor based on such
a design-to-cost philosophy. There are two other parame-
ters missing: gate count and power consumption. We are
currently constructing a synthesisable Verilog RTL model
which will allow us to obtain cycle accurate performance
figures, gate count and power consumption estimations.
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A Vector Instruction Set

The VeMICry is composed of q vector registers each
of p words of 32 bits . The p–bits wide Vector Condition
Register (VCR) is used for conditional vector instructions.
The Carry Register (CAR) stores the ‘carry words’. Vi

designates the ith vector register, Rj is the jth scalar
register and n is a 16-bit immediate value.

VADDU Vl, Vj , Vk

Does the unsigned addition between the ith elements of
Vj and Vk, writing the result as the ith element of Vl. The
carry is propagated and added to the i + 1st element of Vl.
The carry from the addition of the corresponding pth words
is added to CAR.

VLOAD Vl, Ri, n
Loads in Vl the n consecutive 32-bit words from memory
starting from address stored in Ri in steps of 1.

VEXTRACT Ri, Vj , n
Copies the value of the Vj [n− 1] into Ri. If n = 0, CAR is
written to Ri.

VSAMULT Vl, Vj , Rk

Vector-Scalar-Arithmetic-Multiplication: multiplies Rk by
Vj [p]|| . . . ||Vj [1]||Vj [0] with carry propagation, writing the
result into Vl. The most significant carry bits are written to
CAR.

VSMOVE Vl, Rk, n
Copies the value in register Rk to the first n words of Vl. If
n is zero, then Rk is copied to every word of Vl.

VSTORE Vl, Rk, n
Stores the first n consecutive 32-bit words from register Vl

to memory starting from address stored in Rk in steps of 1.

VSPMULT Vl, Vj , Rk

Vector-Scalar-Polynomial-Multiplication: does the polyno-
mial multiplication of Rk by Vj [p]||Vj [p − 1]|| . . . ||Vj [0]
and writes the result to Vl. The resulting p + 1st word is
written to CAR.

VXOR Vl, Vj , Vk

XORs corresponding words between Vj and Vk and stores
the result in Vl

VWSHL Vl, Vj , n
Vector-Word-Shift-Left shifts the contents of vector Vj by
n positions to the left inserting zeros to the right. The re-
sulting vector is written to Vl and the outgoing word to CAR

VWSHR Vl, Vj , n
Vector-Word-Shift-Right shifts the contents of vector Vj

by n word position to the right inserting the data stored in
CAR to the left. The resulting vector is written to Vl.

MTVCR Rj

Writes to VCR the value contained in the scalar register
Rj .

MFVCR Rj

Copies the value contained in VCR to the scalar register Rj .
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