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FOR GRAY-TONE IMAGE ANALYSIS
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ABSTRACT

In quantitative image analysis, Minkowski functionals arestandard parameters for topological and geometrical
measurements. Nevertheless, they are often limited to binary images and achieved in a global and monoscale
way. The use of General Adaptive Neighborhoods (GANs) enables to overcome these limitations. The GANs
are spatial neighborhoods defined around each point of the spatial support of a gray-tone image, according
to three (GAN) axiomatic criteria: a criterion function (luminance, contrast, . . . ), an homogeneity tolerance
with respect to this criterion, and an algebraic model for the image space. Thus, the GANs are simultaneously
adaptive with the analyzing scales, the spatial structuresand the image intensities.
The aim of this paper is to introduce the GAN-based Minkowskifunctionals, which allow a gray-tone image
analysis to be realized in a local, adaptive and multiscale way. The Minkowski functionals are computed
on the GAN of each point of the image, enabling to define the so-called Minkowski maps which assign the
geometrical or the topological functional to each point. The impact of the GAN characteristics, as well as the
impact of multiscale morphological transformations, is analyzed in a qualitative way through these maps. The
GAN-based Minkowski maps are illustrated on the test image ’Lena’ and also applied in the biomedical and
materials areas.

Keywords: General adaptive neighborhood, GLIP Mathematical morphology, Minkowski functionals,
Minkowski maps, Multiscale image representation, Patternanalysis.

INTRODUCTION

This paper aims to introduce a novel approach
for analyzing a gray-tone image in a local, adaptive
and multiscale way. A segmentation process, generally
used before quantitative image analysis, is not here
required. The quantitative description is directly
applied on the raw gray-tone images. Geometrical
and topological measurements, through Minkowski
functionals, are performed on spatial neighborhoods
associated to each point of the image. These
specific neighborhoods, named General Adaptive
Neighborhoods (GANs) (Debayle and Pinoli, 2006),
are simultaneously adaptive with the analyzing scales,
the spatial structures and the image intensities. It
enables to define the so-called GAN-based Minkowski
maps which assign a measurement (based on the local
Minkowski functionals) to each point of the image to
be studied.

First, this paper recalls the notions of general
adaptive neighborhood and of Minkowski functionals.
Then, the next section introduces the GAN-based
Minkowski maps. Thereafter, the impact of the GAN
axiomatic criteria (analyzing criterion, homogeneity
tolerance, algebraic model), as well as the impact of
a multiscale morphological transformation is analyzed
in a qualitative way through these maps. The GAN-
based Minkowski maps are illustrated on the test image

’Lena’ and also in both the biomedical and materials
areas.

GENERAL ADAPTIVE
NEIGHBORHOODS

The GANIP (General Adaptive Neighborhood
Image Processing) approach (Debayle and Pinoli,
2006) provides a general and operational framework
for adaptive processing and analysis of gray-tone
images. It is based on an image representation
by means of spatial neighborhoods, named General
Adaptive Neighborhoods (GANs). Indeed, GANs are
simultaneously adaptive with:

• the spatial structures: the size and the shape of the
neighborhoods are adapted to the local context of
the image,

• the analyzing scales: the scales are given by the
image itself, and nota priori fixed,

• the intensity values: the neighborhoods are defined
according to the GLIP (Generalized Linear Image
Processing) mathematical framework, enabling
to consider the physical and/or psychophysical
settings of the image class.
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For each point x of the image f , a GAN
belongs to the spatial supportD ⊆ R

2 of f . The
neighborhood ofx, denotedVh

m(x), is a connected
set and homogeneous with respect to an analyzing
criterion h (such as luminance, contrast, thickness,
. . . ) using a tolerancem7 within a GLIP (Generalized
Linear Image Processing) framework (Oppenheim,
1967; Pinoli, 1997), i.e. in a vector space with its
vector addition+7 and its scalar multiplication×7 . The
GAN of a pointx is mathematically defined as follows:

Vh
m7

(x) := Ch−1([h(x) −7m7;h(x) +7m7])(x) (1)

whereCX(x) denotes the path-connected component
(with the usual Euclidean topology onD) of X ⊆ D
holdingx.

Figure 1 illustrates the GANs of two points
computed with the luminance criterion in the CLIP
(Classical Linear Image Processing) framework (the
operations +7 and ×7 correspond to the usual
operations between images,+ and× respectively) on
a human retina image.

(a) original retina image with
two (white) pointsx andy

(b) GANs Vh
20(x) and Vh

20(y)
respectively

Fig. 1. The GANs of the two points x and y of the
original image (a) are connected and homogeneous
(b) with respect to the luminance criterion using the
tolerance value m= 20within the CLIP framework.

The General adaptive neighborhoods are
intrinsically defined by the local structures of
the image. Thus, the GANs{Vh

m7
(.)}m7

allow
a new multi-scale representation of gray-tone
images to be defined. On the contrary, the shape
and size of the classical neighborhoods{Br(.)}r

(centered homothetic isotropic discs, of radius
r), generally used as analyzing windows for
image transforms, area priori fixed (Fig. 2).

D
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Fig. 2. Classical neighborhoods Br(x) vs. general
adaptive neighborhoods Vhm7

(x).

MINKOWSKI FUNCTIONALS AND
DENSITIES

In quantitative image analysis, Minkowski
functionals are standard parameters for topological
and geometrical measurements (Minkowski, 1903). A
description of the shape of a two-dimensional pattern
is provided, using the three 2D Minkowski functionals
(up to a constant): area, perimeter, and Euler number,
denotedA, P andχ, respectively.

These functionals are defined on the class of the
nonempty compact convex sets (convex bodies) ofR

2,
and satisfy five properties (increasing, invariance under
rigid motions, homogeneity, C-additivity, continuity
vs. the Hausdorff metric). They have been extended
(excluding the properties of increasing and continuity)
to the convex ring (Mecke and Stoyan, 2000), i.e. the
set of all finite unions of convex bodies ofR

2, which
may be considered as a realistic Euclidean model for
digital planar images.

In this paper, the densities of these functionals,
i.e. the ratio of the Minkowski functionals by the
area of the spatial support of the image, will be used.
These densities are called the specific area, the specific
perimeter, and the specific Euler number, and are
denoted,AA, PA andχA, respectively.

GAN-BASED MINKOWSKI MAPS

GANs measurements enable a gray-tone image
analysis, in a local, adaptive and multiscale way to
be defined. For each pointx of the imagef , various
measurements, such as area, orientation, concavities
number, . . . (Coster and Chermant, 1985; Rivollier,
2006), of the GANVh

m7
(x), can be computed. In this
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paper, only the (densities of) Minkowski functionals
are considered.

DEFINITION

A GAN-based Minkowski map is defined in
assigning a value for each pointx which represents
the GAN Minkowski density ofVh

m7
(x). In a more

explicit way, the GAN-based Minkowski map, denoted
µh

m7
( f ), of an imagef , with respect to the Minkowski

density µ (area: µ ≡ AA, perimeter:µ ≡ PA, Euler
number:µ ≡ χA), is defined by:

µh
m7

( f ) :

{

D → R

x 7→ µ
(

Vh
m7

(x)
) (2)

whereVh
m7

(x) is the GAN of the pointx with respect
to the analyzing criterionh using the homogeneity
tolerancem7 in a GLIP framework.

The densities of the Minkowski functionals of the
GAN Vh

m7
(x) can be estimated in an efficient way

(Osher and M̈ucklich, 2001).

Figure 3 illustrates some GAN-based Minkowski
maps of the image ’Lena’ f . The GANs are
homogeneous with respect to the luminance criterion
(h≡ f ) using the tolerance valuem= 40 in the CLIP
framework. Therefore, the valueµh

m7
(x) of each point

x of the Minkowski map corresponds to the densityµ
of the GANV f

40(x).

(a) original imagef

(b) (χA)
f
40 (c) (PA)

f
40 (d) (AA)

f
40

Gray-scale lower and upper bound values

(a) 0 255
(b) −812.10−5 1.10−5

(c) 4.10−5 9686.10−5

(d) 1.10−5 42926.10−5

Fig. 3.GAN-based Minkowski maps (b-d) of the image
’Lena’ (a) with respect to the luminance criterion
h ≡ f using the homogeneity tolerance m= 40 in
the CLIP mathematical framework. Gray-scale bound
values gives the extrema of the Minkowski densities.

The GANs depend on three axiomatic criteria (eq.
1): an analyzing criterion (luminance, contrast, . . . ), an
homogeneity tolerance with respect to this criterion,
and an algebraic model for the criterion mapping
space. The following three sections of this paper will
show, from a visual point of view, the impact of these
characteristics on the Minkowski maps (eq. 2).

IMPACT OF THE
HOMOGENEITY TOLERANCE

The GANs are homogeneous regions with respect
to an analyzing criterion using a tolerancem7 within
a GLIP framework (Fig. 2).

Figure 4 illustrates the GAN-based Minkowski
maps of a brain MR imagef with respect to the
luminance criterion f using various homogeneity
tolerance values:m = 20, m = 30 andm = 40 in the
CLIP framework. This figure illustrates the fact that
the applicationm 7→ (AA) f

m(.) increases, contrary to
m 7→ (PA) f

m(.) and m 7→ (χA) f
m(.). This property can

be generalized to the others GLIP frameworks and
criterions. This is due to the tortuosity of the adaptive
neighborhood’s boundary and the number of holes of
this one.

(a) original imagef

(b) (χA)
f
20 (c) (χA)

f
30 (d) (χA)

f
40

(e) (PA)
f
20 (f) (PA)

f
30 (g) (PA)

f
40
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(h) (AA)
f
20 (i) (AA)

f
30 (j) (AA)

f
40

Gray-scale lower and upper bound values

(a) 0 255
(b-d) −955.10−5 1.10−5

(e-g) 4.10−5 14765.10−5

(h-j) 1.10−5 57701.10−5

Fig. 4. GAN-based Minkowski maps (b-j) of a brain
image (a) with respect to the luminance criterion
f using the homogeneity tolerance values m= 20
(b,e,h), m= 30 (c,f,i) and m= 40 (d,g,j) in the CLIP
framework.

IMPACT OF THE
ANALYZING CRITERION

The GANs are homogeneous with respect to a
criterion function h (such as luminance, contrast,
thickness, . . . ). For instance, the luminance criterion
is defined byh ≡ f where f is the original image. A
contrast criterion can also be used. For instance, the
image contrast, denotedc, can be defined as:

c :







D → R

x 7→
1

#N(x) ∑
y∈N(x)

| f (x)− f (y)| (3)

where N(x) is a neighborhood of the pointx (for
instance, points in the window 3×3 centered onx).

Figure 5 illustrates the GAN-based Minkowski
maps of a fibronectin imagef with respect to the
luminance criterion f and the contrast criterionc
using the homogeneity tolerancem= 10 in the CLIP
framework.

(a) original imagef (b) criterion
mappingc

(c) (χA)
f
10 (d) (χA)c

10

(e) (PA)
f
10 (f) (PA)c

10

(g) (AA)
f
10 (h) (AA)c

10

Gray-scale lower and upper bound values

(a-b) 0 255
(c-d) −970.10−5 1.10−5

(e-f) 4.10−5 23247.10−5

(g-h) 1.10−5 99213.10−5

Fig. 5. GAN-based Minkowski maps (c-h) of a
fibronectin image (a) with respect to the luminance
criterion f (c,e,g) and the contrast criterion c (d,f,h)
using the homogeneity tolerance m= 10 in the CLIP
framework.

IMPACT OF THE GLIP
MATHEMATICAL FRAMEWORK

The criterion function h is represented in a
GLIP model, i.e. a vector space with its vector
addition +7 and its scalar multiplication×7 . For
instance, the operations+7 and ×7 of the usual
CLIP (Classical Linear Image Processing) framework
correspond to the usual operations between images,
+ and × respectively. The vector addition and the
scalar multiplication of the LIP (Logarithmic Image
Processing) framework (Pinoli, 1997), denoted+△ and
×△ respectively, are defined as following:

f +△g = f +g−
f g
M

(4)

α ×△ f = M−M

(

M− f
M

)α
(5)
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where f andg are intensity gray-tone images,α ∈ R

is a scalar, andM ∈ R denotes the upper bound of
the range where intensity images are digitized and
valued. The LIP framework has been proved to be
consistent with the transmittance and the multiplicative
reflectance/transmittance image formation model, and
with several laws and characteristics of human
brightness perception (Pinoli, 1997).

Figure 6 illustrates the GAN-based Minkowski
maps of a zinc sulfide imagef acquired by scanning
electron microscopy imaging with respect to the
luminance criterionf using the homogeneity tolerance
value 50 in both the CLIP and LIP mathematical
frameworks, respectively.

(a) original imagef

(b) (χA)
f
50 (c) (χA)

f
50△

(d) (PA)
f
50 (e) (PA)

f
50△

(f) (AA)
f
50 (g) (AA)

f
50△

Gray-scale lower and upper bound values

(a) 0 255
(b-c) −656.10−5 1.10−5

(d-e) 4.10−5 13867.10−5

(f-g) 1.10−5 85569.10−5

Fig. 6. GAN-based Minkowski maps (b-g) of a zinc

sulfide image (a) with respect to the luminance
criterion f using the homogeneity tolerance m= 50
in the CLIP (b,d,f) and LIP (c,e,g) framework.

IMPACT OF A
MULTISCALE MORPHOLOGICAL
TRANSFORMATION

Mathematical morphology (Serra, 1982) is an
important and nowadays a traditional theory in image
processing, particularly used for geometrical image
analysis. The elementary morphological operators of
dilation and erosion (and thus the combined operators
of closing and opening) act on image intensities within
the use of an operational window named structuring
element.

The GAN-based Minkowski maps can be
computed on transformed images by morphological
operators. For instance, figure 7 first illustrates the
morphological tranforms using a disk of radiusr as
structuring element (dilationDr , erosionEr , closing
Cr , openingOr ) of the image ’Lena’ f . Thereafter,
the GAN-based Minkowski maps (using the area
functional) are computed with respect to the luminance
criterion f using the homogeneity tolerancem= 40 in
the CLIP framework. This figure illustrates the fact that
the applicationr 7→ (AA)

Tr ( f )
m7

(.) is non-monotonous,
contrary tor 7→ Tr( f )(.).

(a) original imagef

(b) D1( f ) (c) D2( f ) (d) D3( f )

(e) (AA)
D1( f )
40 (f) (AA)

D2( f )
40 (g) (AA)

D3( f )
40
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(h) E1( f ) (i) E2( f ) (j) E3( f )

(k) (AA)
E1( f )
40 (l) (AA)

E2( f )
40 (m) (AA)

E3( f )
40

(n) C1( f ) (o) C2( f ) (p) C3( f )

(q) (AA)
C1( f )
40 (r) (AA)

C2( f )
40 (s) (AA)

C3( f )
40

(t) O1( f ) (u) O2( f ) (v) O3( f )

(w) (AA)
O1( f )
40 (x) (AA)

O2( f )
40 (y) (AA)

O3( f )
40

Gray-scale lower and upper bound values

(a,b-d,h-j,n-p,t-v) 0 255
(e-g) 6.10−5 67316.10−5

(k-m) 6.10−5 63232.10−5

(q-s) 6.10−5 68439.10−5

(w-y) 6.10−5 45911.10−5

Fig. 7. GAN-based Minkowski maps (e-g,k-m,q-s,w-
y) of the image ’Lena’ (a) dilated (b-d), eroded (h-
j), closed (n-p), opened (t-v) with a disk of radius r,

with respect to the luminance criterion f using the
homogeneity tolerance m= 40 in the CLIP framework.

CONCLUSION

In this paper, a novel approach for analyzing
a gray-tone image in a local, adaptive and
multiscale way is proposed. The so-called GAN-
based Minkowski maps assign a geometrical or
topological measurement of a spatial neighborhood
(GAN) associated to each point of the image to be
studied.

The influence of the GAN axiomatic criteria
(analyzing criterion, homogeneity tolerance, algebraic
model), and the impact of a multiscale morphological
transformation on the image to be studied, is analyzed
in a qualitative way through these maps. Currently, the
authors investigate a quantitative analysis through the
histogram of these maps.
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