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Abstract 
Cement based materials are porous, may contain organic adjuvants, and thus possesses an 
important primary bioreceptivity. To preserve constructions from fungal colonization and to 
act efficiently against fungal biodeterioration, it is necessary to have a better understanding of 
biodeterioration mechanisms and its effects on materials properties. An accelerated 
laboratory test which allows us to compare the growth of three fungal strains and the aesthetic 
biodeterioration of a cementitious matrix was developed. As the surface pH of the fresh 
cement specimen is too high to allow fungal growth (pH ~12), accelerating weathering of the 
matrix, consisting of the combination of carbonation and leaching, was performed to reduce 
the matrix alkalinity. XRD analyses and SEM observations pointed out that the matrix surface 
is progressively covered by a calcium carbonate layer as the weathering increases. Results 
point out that the microbial growth occurs on matrix with a surface composition more like a 
limestone than a cementitious one.  

KKeeyywwoorrddss::  
Biodeterioration ; Cement paste ; Carbonation ; Leaching ; Accelerated weathering ; 
Microbial growth 

I. Introduction 
Micro-organisms—bacteria, cyanobacteria, fungi, algae, and lichens—are liable to grow on 
building materials. Biological activity contributes to deterioration of building material, and its 
interaction with physico-chemical mechanisms is considered central to understanding the 
long term deterioration [47]. Physical, chemical, and biological agents act in co-association, 
ranging from synergistic to antagonistic, to deteriorate stone [63].  
In Civil Engineering the most widely used material is concrete for different kind of 
application: bridge construction, sewer pipes, buildings and in some case during restoration 
of Cultural Heritage Monuments. Cement plays an essential role in concrete works behaviour, 
because it provides its mechanical resistance [32]. Cement based materials are porous, may 
contain organic adjuvants, and thus possess an important primary bioreceptivity.  
Bioreceptivity, as defined by Guillitte [31], is the totality of materials properties that 
contribute to the establishment, anchorage and development of fauna and/or flora. Primary 
bioreceptivity is the initial potential of colonisation [31].  
                                                        
 
 
 
 
* Corresponding author: grosseau@emse.fr 

http://www.springerlink.com/content/t5n8376600x45t13/fulltext.html#CR47
http://www.springerlink.com/content/t5n8376600x45t13/fulltext.html#CR63
http://www.springerlink.com/content/t5n8376600x45t13/fulltext.html#CR32
http://www.springerlink.com/content/t5n8376600x45t13/fulltext.html#CR31
http://www.springerlink.com/content/t5n8376600x45t13/fulltext.html#CR31


Materials and Structures, 2010, doi: 10.1617/s11527-010-9653-1 
 

2 

Fungi are among the most harmful organisms associated to biodeterioration of organic and 
inorganic materials [58]. Their occurrence on the stones is reported to be combined not only 
with aesthetic spoiling of the monuments, due to colour changes and black spots, but also 
there is strong evidence that these organisms can colonize deeper cracks, cause crater shaped 
lesions, chipping and exfoliation of the rock surface combined with the loss of materials [58, 
65].  
In general, two main groups of fungi are usually isolated from rock surfaces [8]: (i) one group 
includes species of the genera of Hyphomycetes and Coelomycetes among which are included 
those that do not produce melanin, like Fusarium, Penicillium, Aspergillus, Phoma and those 
that are black pigmented like Alternaria, Ulocladium, Cladosporium melanin producers. 
They are fast growing fungi. (ii) The second group includes the so-called black yeasts and 
meristematic fungi. They are a wide and heterogeneous group of black pigmented fungi that 
share common characteristics such as the presence of melanins within the cells (swollen 
cells), hyphae and/or spores. The production of melanin and the meristematic development 
allow them to survive in stressed environmental conditions like low humidity and high sun 
irradiation [6]. For this group of fungi is also used the term of rock-inhabiting fungi to 
underline the exclusive isolation of many of them from rock surface [8]. The black fungi have 
the capacity to: (i) settle on the rocks surface, (ii) attach firmly to the surface and (iii) 
penetrate deeper into the rock. The major aesthetic damage, however, may occur when 
environmental conditions do not force fungi into the crevices, but due to favourable 
conditions for fungal growth they spread over the rock surface [14].  
To preserve constructions from fungal colonisation and to act efficiently against fungal 
biodeterioration, it is necessary to have a better understanding of biodeterioration 
mechanisms and its effects on materials properties. Synthetic stone such as concrete, 
brickwork and mortar show microbial colonisation once their initial highly alkaline pH (>12) 
falls after a period of weathering (<10) [1]. At the moment, tests to study biodeterioration of 
building materials exist. Some of them were developed without accelerated weathering of the 
matrix and so lead to experiment time ranging from 7 to 15 months [46, 56]. On the other 
hand, accelerated weathering of the matrix may reduce the duration of the experiment by 
increasing matrix bioreceptivity. Whereas accelerated weathering of the matrix to enhance its 
bioreceptivity is not truly innovative in biodeterioration study [3, 10, 11, 18, 19, 45, 49], only 
very few studies [10, 49] focus on the accelerated test for fungal biodeterioration.  
An accelerated laboratory test which allows us to compare the growth of three fungal strains 
and the biodeterioration involved on a cementitious matrix was developed. We paid particular 
attention to accelerate the matrix weathering so as to not exceed 3 months of experiment. 
Three fungal strains were selected for the test in order to represent main kind of fungi 
involved in biodeterioration in natural environment [7, 24, 51, 55, 57, 63, 65]: Alternaria 
alternata to represent a melanin producer Hyphomycete, Exophiala sp. for yeast like fungi, 
and Coniosporium uncinatum (MC 557) as meristematic fungi. Aesthetical and physical 
biodeterioration was expected from the development of Alternaria alternata, Exophiala sp., 
Coniosporium uncinatum with hyphae penetration inside the matrix.  
The aim of this paper is to present the accelerated weathering operation which promotes 
fungal development on hardened cement paste: carbonation and leaching operations are 
performed to reduce matrix surface pH. The specimens (weathered and non-weathered) are 
first physico-chemically characterized, and then influence of the matrix weathering on the 
fungal development is studied.  

II. Background 
Once the cement based material has been made, leaching and ageing, and more specifically 
carbonation, start changing the original characteristics of the material. In nature, carbonation 
and leaching occur intermittently and alternately during the life cycle of the material [62]. 
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IIII..11..  CCaarrbboonnaattiioonn    
Carbonation is considered the most common chemical reaction influencing the performance 
of cement based materials in natural environment scenarios [38].  
The penetration of gaseous carbon dioxide within partially saturated concrete usually initiates 
a series of reactions with both ions dissolved in the pore solutions and the hydrated cement 
paste. The whole process can be summarized as a series of different steps [27, 29, 54]: 
Gaseous carbon dioxide first penetrates the material. It then dissolves in pore solution mainly 
as HCO3 − and CO3 2−. The CO3 2− species then reacts with dissolved calcium to precipitate 
calcite, CaCO3, as well as other CO2-based solid phases. The pH drop associated with reactions 
leads to the dissolution of portlandite. Because carbonation products have higher molar 
volumes than the parent hydrates Ca(OH)2 and C–S–H, a decrease of porosity is expected [27, 
60].  
Progressive carbonation eventually leads to depletion of portlandite and subsequently 
decalcification of C–S–H to provide new portlandite for the carbonation reaction [27]. This 
decomposition of C–S–H is reported to increase [27] or decrease [44] porosity.  
Since carbonation process in natural environments may be very slow, laboratory 
experimentation has been conducted under a variety of carbon dioxide levels. Many of the 
studies used low levels of CO2 (i.e. 4–5% CO2) [2, 13]. Accelerated carbonation studies using 
100% CO2 [2, 21, 36, 37, 59]; allow the characterization of carbonation processes in much 
shorter times.  

IIII..22..  LLeeaacchhiinngg    
The leaching of ions (mainly calcium and hydroxide) from the pore solution to the external 
environment is responsible for the dissolution of portlandite and C–S–H [29]. The leaching of 
calcium is a coupled dissolution/diffusion process. Leaching by deionized water induces 
calcium and hydroxide concentration gradients which continuously decrease from the sound 
zone to the exposed surface of the material. This causes the diffusion of calcium and 
hydroxide ions from the pore solution to the aggressive solution, and thus lowers the amount 
of calcium concentration in the pore solution [29]. Loss of calcium leads to the dissolution of 
portlandite and secondary precipitations of AFm, ettringite and calcite [22, 23, 29].  
The degraded zone induced by water exposure is characterized by a decalcification of C–S–H 
inducing a silicate polymerization. The Ca/Si ratio of the C–S–H gradually decreases between 
sound and leached zone [29, 34, 39].  
Other factors affecting the rate and amount of leaching include the type and amount of 
constituent investigated, the alkalinity of the matrix, and the chemical properties of the pore 
water and leachant (pH, ionic strength, etc,...) [62].  
Alteration of the chemical behaviour of the matrix resulting from carbonation influences the 
release of species from the matrix during leaching [25]. Carbonation and leaching are widely 
investigated together in studies for the use of hazardous wastes in cementitious matrix. Many 
studies have investigated the effect of carbonation on the leaching of heavy metals [25, 37, 48, 
59, 61, 62]. In these studies, the carbonation is mainly performed during the cement 
hydration. Few focuses on the leaching of carbonated specimens after the curing period, from 
microstructural point of view. With respect to the effect on pore size distribution, both 
leaching and carbonation decrease the amount of smaller pores [62].  
The research presented here was carried out to evaluate the changes undergone by the 
cementitious matrix as a result of accelerated weathering. The specific objectives were (i) to 
characterize the cementitious matrix after each weathering step (carbonation and leaching), 
and (ii) to evaluate the influence of the matrix accelerated weathering on the fungal growth.  
The microstructure of the cementitious matrix is investigated by X-ray diffraction (DRX), 
Fourier Transform Infrared spectroscopy (FT-IR), Scanning Electron Microscopy with X-ray 
microanalyses (SEM/EDS). 

http://www.springerlink.com/content/t5n8376600x45t13/fulltext.html#CR38
http://www.springerlink.com/content/t5n8376600x45t13/fulltext.html#CR27
http://www.springerlink.com/content/t5n8376600x45t13/fulltext.html#CR29
http://www.springerlink.com/content/t5n8376600x45t13/fulltext.html#CR54
http://www.springerlink.com/content/t5n8376600x45t13/fulltext.html#CR27
http://www.springerlink.com/content/t5n8376600x45t13/fulltext.html#CR60
http://www.springerlink.com/content/t5n8376600x45t13/fulltext.html#CR27
http://www.springerlink.com/content/t5n8376600x45t13/fulltext.html#CR27
http://www.springerlink.com/content/t5n8376600x45t13/fulltext.html#CR44
http://www.springerlink.com/content/t5n8376600x45t13/fulltext.html#CR2
http://www.springerlink.com/content/t5n8376600x45t13/fulltext.html#CR13
http://www.springerlink.com/content/t5n8376600x45t13/fulltext.html#CR2
http://www.springerlink.com/content/t5n8376600x45t13/fulltext.html#CR21
http://www.springerlink.com/content/t5n8376600x45t13/fulltext.html#CR36
http://www.springerlink.com/content/t5n8376600x45t13/fulltext.html#CR37
http://www.springerlink.com/content/t5n8376600x45t13/fulltext.html#CR59
http://www.springerlink.com/content/t5n8376600x45t13/fulltext.html#CR29
http://www.springerlink.com/content/t5n8376600x45t13/fulltext.html#CR29
http://www.springerlink.com/content/t5n8376600x45t13/fulltext.html#CR22
http://www.springerlink.com/content/t5n8376600x45t13/fulltext.html#CR23
http://www.springerlink.com/content/t5n8376600x45t13/fulltext.html#CR29
http://www.springerlink.com/content/t5n8376600x45t13/fulltext.html#CR29
http://www.springerlink.com/content/t5n8376600x45t13/fulltext.html#CR34
http://www.springerlink.com/content/t5n8376600x45t13/fulltext.html#CR39
http://www.springerlink.com/content/t5n8376600x45t13/fulltext.html#CR62
http://www.springerlink.com/content/t5n8376600x45t13/fulltext.html#CR25
http://www.springerlink.com/content/t5n8376600x45t13/fulltext.html#CR25
http://www.springerlink.com/content/t5n8376600x45t13/fulltext.html#CR37
http://www.springerlink.com/content/t5n8376600x45t13/fulltext.html#CR48
http://www.springerlink.com/content/t5n8376600x45t13/fulltext.html#CR59
http://www.springerlink.com/content/t5n8376600x45t13/fulltext.html#CR61
http://www.springerlink.com/content/t5n8376600x45t13/fulltext.html#CR62
http://www.springerlink.com/content/t5n8376600x45t13/fulltext.html#CR62


Materials and Structures, 2010, doi: 10.1617/s11527-010-9653-1 
 

4 

III. Materials and methods 
IIIIII..11..  MMaattrriixx  pprreeppaarraattiioonn    
The study was conducted with ordinary white Portland cement CEM I 52.5 R. The 
Water/Cement ratio determines the capillary porosity of the cement paste: the higher this 
ratio, the higher the capillary porosity, but also the higher is the bleeding effect. A higher 
porosity favours microbial development [31]. The best compromise between bleeding effect 
and capillary porosity is obtained in our case with a W/C mass ratio of 0.55. Hardened cement 
paste samples are prisms, 1 × 2.5 × 8.5 cm. Samples were demolded 24 h after production and 
stored 28 days at 100% relative humidity, at room temperature. Accelerated weathering is 
performed with carbonation for 48 h, or carbonation (48 h) and leaching operation (28 days) 
as described by Wiktor et al. [64]. Briefly, specimens are exposed to pure CO2 flow under 
controlled relative humidity (65% HR) for carbonation. Then, the carbonated specimens are 
dived into deionized water which is totally renewed in 24 h. Specimens were exposed 
overnight to UV light for sterilization.  

IIIIII..22..  AAnnaallyysseess  
III.2.1. X-ray diffraction (DRX) 

The XRD analyses were carried out using Cu Kα radiation (λ = 1.5406 Å) on Brukner D8 
advance device. The XRD scans were recorded from 5 to 59° 2θ with 0.040 step width and 5 s 
counting time. The analyses were directly performed on the bulk specimen; hence about the 
first hundred micrometers were analyzed.  

III.2.2. Fourier transform infrared spectroscopy (FT-IR) 
FT-IR analyses were carried out with Biorad FTS 185 (digilab) equipment using Attenuated 
Total Reflexion (ATR) unit. The spectra were usually recorded in the range of 4,000–
400 cm−1 with 2 cm−1 resolution, and 32 scans were collected each time. The ATR analyses 
require very small amount of sample (~1 mg), and furthermore no preparation or dilution of 
the sample is needed. The surface of our specimens was gently scraped and analysed. Hence 
FT-IR analyses provided information from the first 500 μm.  

III.2.3. Scanning electron microscope equipped with X-ray microanalyses (SEM/EDX)  
The fractured surface samples were obtained from the specimens non-weathered, carbonated 
then leached, and carbonated only. Specimens’ cross-sections were also prepared. They were 
vacuum impregnated with epoxy resin, and polished sections were prepared in the Civil 
engineering department of Ecole des Mines de Douai.  
For the investigation by SEM and EDX, the samples were dried in a desiccator for 24 h, and 
subsequently gold/palladium coated. Observations were carried out with a JEOL 840 
SEM/EDX. Figure 1 shows the different areas analyzed for the EDX analyses.  
Each analysis is performed on a surface about 20 × 200 μm. Calcium, silicon, and aluminium 
are assayed. 

IIIIII..33..  MMiiccrroobbiioollooggiiccaall  tteecchhnniiqquueess  
III.3.1. Fungal strains and cultural media  

Alternaria alternata and Exophiala sp. were isolated from a monument in India 
(unpublished data). Coniosporium uncinatum MC557 was isolated from a Carrara marble 
statue located in the court-yard of the Messina Museum, Italy [9]. These isolated strains were 
kept in the collection of Department of Microbiological, Genetic and Molecular Sciences in 
Messina.  
Alternaria alternata was cultivated in solid medium (Potato Dextrose Agar—PDA, Oxoid) for 
5 days at 26°C. Exophiala sp. and Coniosporium uncinatum were cultivated in liquid medium 
(Malt Extract Broth—MEB Oxoid) for 5 days at 26°C.  
Nutritive medium used for biodeterioration test is composed of 1× concentrated Yeast 
Nitrogen Broth (YNB) (Difco) plus the addition of Glucose 0.01%.  
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III.3.2. Fungal units’ suspension  
Fungal colonies growing in solid medium were scraped from the agar surface and conidia 
suspended in physiological solution (0.9% of NaCl in distilled water), while the cultures in 
liquid medium were directly transferred in physiological solution. Each suspension was 
centrifuged 15 min at 2,095g (3,000 rpm with a Beckman and Coulter Allegra X-12R 
centrifuge—4750 A rotor). Centrifugation pellets were put in suspension in 1 ml of 
physiological solution. The number of fungal units was determined through a direct 
microscopic count in a counting chamber (Bürker chamber, ProSciTech, Australia) and 
adjusted at a concentration of 8.7 × 105 fungal units/ml in YNB 1× + glucose 0.01% medium.  

IIIIII..44..  BBiiooddeetteerriioorraattiioonn  tteesstt  
III.4.1. Experimental set up  

Polyethylene boxes of 9.5 × 9.5 × 9.5 cm3 were used. In order to keep the humidity inside the 
box, the bottom was covered by vermiculite; paper sheet is disposed on it to avoid the direct 
contact between specimens and vermiculite. Boxes are autoclaved 15 min at 120°C, then 
sterile water is added on vermiculite to wet it. Two specimens of each matrix were disposed in 
each box (Figure 2).  

III.4.2. Inoculation  
Each specimen was inoculated with 1.5 ml of fungal units’ suspension, except controls (only 
1.5 ml of sterile medium). Inoculation was performed in duplicate, thus for each strain, 6 
specimens were inoculated (2 unweathered, 2 carbonated, 2 carbonated and leached), and 
placed in 3 different boxes. Boxes were incubated at 26°C.  

III.4.3. SEM observation  
After 4 weeks of incubation, one specimen of each box was taken and broken in small pieces 
for SEM observation (Figure 3). Fixation of samples was performed overnight at 4°C in 
buffered aldehyde fixative 2% (w/v) formaldehyde (P6148, Sigma). Samples were then 
washed 3 times in 0.01 M phosphate buffer (0.01 M NaH2PO4.H2O, 0.01 M Na2HPO4, pH 7.2) 
for 10 min each. Dehydration was made in graded ethanol series (70, 85, 95% (v/v) and in 
anhydrous ethanol (100%) for 15 min each). Samples were air dried and then coated with gold 
for SEM observation (JEOL 840 SEM).  

IV. Results and discussion 
IIVV..11..  AAcccceelleerraatteedd  wweeaatthheerriinngg  

IV.1.1. XRD analyses  
The assignments of the XRD peaks to phases were based on 2θ values and the corresponding 
d-spacing (Figure 4). The peaks corresponding to portlandite appear at 4.900, 3.112, 2.628, 
1.927, 1.796, and 1.687 Å. The main peaks corresponding to ettringite are present at 9.671, 
5.583, and 3.859 Å. Presence of calcite (CaCO3) and gypsum can be observed but at a lower 
extent.  
Additional peaks are noticed on the diffractogram of the carbonated specimen compared to 
non-weathered one. They are attributed to the formation of calcium carbonate polymorphs—
aragonite and vaterite—as a result of accelerated carbonation. The decrease in relative 
intensity of portlandite peaks is due to the dissolution of portlandite to form calcium 
carbonate. The presence of portlandite can be due to the fact that the depth investigated is 
larger than the carbonation front. The carbonation operation was performed for 48 h, hence 
the specimen is only superficially carbonated. The diffractogram of the carbonated and 
leached specimen exhibits only calcite and aragonite peaks. The disappearance of portlandite 
and ettringite is a consequence of their dissolution as a result of leaching. Vaterite is the less 
stable calcium carbonate polymorph, and it is easily transformed into other forms. 

IV.1.2. FT-IR analyses  
Usually band assignments reported in literature are deducted from spectra performed in 
diffuse reflectance. In the present work, spectra acquisition is mainly performed in ATR. Band 



Materials and Structures, 2010, doi: 10.1617/s11527-010-9653-1 
 

6 

assignments on ATR spectrum are deducted from spectrum performed first in diffuse 
reflectance (Table 1). 
A shift of about 10–20 wave number units is noted between both spectra (Figure 5). 
Nevertheless the band assignments for hydrated cement paste are in close agreement with 
those previously reported [20, 40, 43]. The band at 3,645 cm−1 is due to the OH band from 
Ca(OH)2 [42]. The water bands appear at approximately 3,440 (stretching) and 1,660 
(bending) cm−1 [41]. The bands at 1,480–1,430, 875 and 720 cm−1 are due to carbonates. 
The wide and deep band between 1,480 and 1,430 cm−1 is attributed to ν3 of CO3 2− and the 
sharp bands at 875 and 720 cm−1 are due to ν2 and ν4 vibrations, respectively [41]. The band at 
975 cm−1 is due to the Si–O asymmetric stretching band (ν3) from C–S–H [40].  
The spectral data changes upon weathering and analyses of these changes can provide 
valuable information about the reactions involved. The FT-IR data for band assignments are 
presented in Table 2. The OH band at 3,636 cm−1 from portlandite disappears with 
carbonation. However, XRD analyses show the presence of portlandite on carbonated 
specimen, but in small amounts. The majority of portlandite is mainly transformed during 
carbonation operation, and totally during leaching. The small amounts present on the 
carbonated specimen are probably not detectable with FT-IR, certainly due to smaller 
penetration depth of analysis on FT-IR compared to XRD. 
The FT-IR spectra of weathered specimens (carbonated and leached or carbonated only) show 
a strong broad band at 1,414–1,440 cm−1, which is broader than the calcite band, 
characteristic of aragonite. According to the intensity it can be assumed that the aragonite 
overlays the calcite band. New bands appear at 1,080, 858, 702 cm−1 and are assigned to 
aragonite formed as a result of accelerated carbonation. The band at 742 cm−1 belonging to 
vaterite, appears only in the carbonated specimen. Other characteristic bands at 860, 850, 
and 710 cm−1 may be overlaid by calcite bands. Vaterite is a less stable polymorph of calcium 
carbonate and thereby transforms into more stable forms calcite and aragonite with leaching 
operation. The Si–O stretching (ν3) band now appears at approximately 970 and 980 cm−1 for 
the carbonated and carbonated then leached specimens respectively, while the same band in 
the non-weathered specimen appears at 959 cm−1. Hence, this shifting to higher frequency is 
caused by the polymerization of the orthosilicate units (SiO4 4−) during weathering process. 
The magnitude of this shift is indicative of the degree of polymerization [40]. 

IV.1.3. SEM observations  
Figure 6 shows surface fractures. Platy crystals and fine needles are the distinguishing 
characteristic shapes of portlandite and ettringite respectively [15]. A thin layer covers 
progressively the specimen surface as accelerated weathering progresses. This is consistent 
with the weathering performed: carbonation results in a decrease in the amount of portlandite 
and the leaching gives rise to the dissolution of portlandite and ettringite. A net decrease in 
porosity is also observed: pores are progressively filled by CaCO3 precipitation and become 
smaller and smaller as the matrix is weathered.  
Now, if one examines the following images of polished sections, microstructure alteration is 
not observed between non-weathered and carbonated specimens (Figure 7a, b). Contrarily, 
numerous cracks are observed for the carbonated and leached specimen (Figure 7c). 
These cracks are distributed along the periphery (Figure 8). This phenomenon may be 
explained by one of two scenarios: (i) the cracks appear progressively during leaching 
operation, this could be confirmed by direct observation or (ii) the matrix structure is 
weakened by the leaching operation, and thereby the cracks are due to the sample 
preparation. We also notice for this sample the presence of a thin band which seems to be 
more porous than the rest of specimen (Figure 7c). Its thickness is estimated to be 70 μm. 

IV.1.4. SEM/EDX analyses  
Chemical change was expected from EDX analysis. Figure 9 presents EDX analysis performed 
on carbonated and leached specimens. Twenty punctual analyses are performed for each area; 
mean values are plotted on graphs.  
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We compare concentrations in calcium, silicon, aluminium between analyses performed on 
the side and in the core. We assume that accelerated weathering has a superficial impact, so 
the chemical composition in the core is representative of a non-weathered matrix.  
No change in chemical composition is observed, there is just a tendency of Ca enrichment and 
thereby Si depletion of specimen. 

IV.1.5. Discussion  
Our results show that accelerated carbonation results in calcite, vaterite and aragonite 
formation (Figure 4; Table 2). This is consistent with literature. The presence of metastable 
forms (vaterite and aragonite) in the carbonated area seems to be a feature of accelerated 
carbonation tests [54]. According to Thiery [53], the thermal stability of CaCO3 produced is 
lower as the carbonation level increases. This author also showed that the thermodynamically 
metastable forms of CaCO3 correspond to the carbonation of C–S–H. The shift of the ν3SiO4

4− 
from the FT-IR spectrum (Table 2) to higher wave number units suggests also a 
polymerisation of C–S–H with the carbonation as well as with leaching operations [40].  
The carbonation reaction mainly has two effects on the cement matrix and its pore water 
solution [60]: lowering of the pH of the pore water, and decreasing of the matrix porosity. 
This is because of the formation of calcite, which is less dense than portlandite, thereby can 
clog pores more easily. Evolution of total porosity with carbonation is dependent of w/c ratio 
and cement type.  
Generally, the leaching of cement paste gives rise to matrix decalcification due to the 
dissolution of portlandite and C–S–H decalcification. Haga et al. [33] concluded from their 
work that the major leached constituents of hardened ordinary Portland cement are 
portlandite and C–S–H gel, and the large pore size, associated with the leaching of 
portlandite, will significantly affect the diffusion of leached constituents. In the present study 
leaching occurs after carbonation. The porosity decrease diminishes the leaching of matrix 
constituents, while the decrease in pH increases leaching. The effect of porosity, however, 
exceeds that of pH, resulting in a net decrease of leaching due to carbonation [62]. It can be 
assumed that the dissolution of portlandite and decalcification of C–S–H result in CaCO3 
precipitation in the pore volume. Gervais [26] found that carbonation prior to leaching 
operation results in a decrease of calcium release compared to the leaching of non-carbonated 
specimens. The mobility of Ca2+ is reduced, and it may precipitate with CO3 2− before, thus not 
reaching leachate. This could explain EDX analyses and lack of the matrix decalcification 
observed (Figure 9): most of the dissolved Ca2+ precipitates into CaCO3 before, hence not 
exiting the matrix with the outcome: enrichment in calcium near the specimen surface.  

IIVV..22..  BBiiooddeetteerriioorraattiioonn  tteesstt  
IV.2.1. Observations of non-weathered specimens  

Figure 10 presents direct observations of the non-weathered specimens performed after 
4 weeks of incubation. No microbial growth is noticed on all exposed specimen. 
Coniosporium uncinatum cells are dark pigmented and taller than those of other fungi 
inoculated. Hence, this results in the presence of black spots on the specimen. Moreover, 
when the suspension of cells is inoculated on the non-weathered specimens, it does not 
penetrate immediately into the matrix. Thus, cells can agglomerate on the surface, resulting in 
observation of black spots. This spots are, in this case, absolutely not due to the fungal 
development.  

IV.2.2. Observations of carbonated specimens  
Figure 11 shows direct observations performed on the carbonated specimens just after 
inoculation (T0) and after 4 weeks of incubation (T4). No microbial growth is noted on the 
control and specimens inoculated with Exophiala sp. A fungal development is observed on 
one specimen inoculated with Coniosporium uncinatum. It appears after 3 weeks of 
incubation and looks like small dark area of about 1 cm diameter. Nevertheless, it doesn’t 
seem to be characteristic of Coniosporium uncinatum development, but looks more like 
Alternaria alternata. While boxes are handled with lot of care, they remain very close during 
experiment, so a fungal contamination can easily occur. This should be confirmed with 
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microscopic observations. Interesting results are obtained with the specimens inoculated with 
Alternaria alternata. Therefore, a fungal development is noticed after 1 week only of 
incubation for one specimen.  
For the second specimen inoculated, it appears after 3 weeks of incubation. The fungus grows 
until the fourth week. It appears as dark area, scarcely spread on the specimen surface. 
Hydrated cement paste are heterogeneous material, and there are likely to exist micro-regions 
that could be prone to preferential fungal colonisation due to e.g. differences in the 
carbonation rate. Differences in specimen porosity would lead to different rates of CO2-
ingress, which in turn would produce varying degree of carbonation. This would result in 
differences in the pH values in the micro-niches, thus influencing fungal growth [49]. The 
fungal spreading may also reflect the distribution of fungal cells on the specimen surface after 
inoculation. 

IV.2.3. Observations of the carbonated then leached specimens  
Figure 12 presents direct observations performed on the carbonated then leached specimens. 
Microbial development is noticed on all the specimens after 1 week of incubation only. For the 
specimens inoculated with Exophiala sp. and surprisingly also controls, it appears due to pink 
coloured spots which seem to grow along the specimen cracks. It is certainly due a bacterial 
contamination. Moreover, the specimens were inoculated in two series with 1 day of interval: 
firstly inoculation with Exophiala sp., and controls were performed, then the day after with 
Alternaria alternata and Coniosporium uncinatum. The bacterial contamination occurred 
probably during the inoculation of the first series. Nevertheless, this contamination remains 
localized on restricted area and doesn’t spread all over the surface.  
Exophiala sp. growth is noticed after the first week on both specimens inoculated. The 
bacterial contamination doesn’t seem to prevent the fungal development. The growth is more 
pronounced on the periphery area of the specimen surface. No microbial element is observed 
on the SEM examination of the cross sections.  
Alternaria alternata development is observed since the first week of incubation. It is 
characterized first with mycelial development and then sporulation is observed on the surface. 
The growth appears more homogeneously than for the carbonated only specimens. SEM 
observations point out numerous hyphae on the surface (Figure 13a). Crystals, plates like, 
resulting probably from the sample preparation, are noted from observations of the specimen 
surface. The cross-section observations show also hyphae but in a more dispersed way (Figure 
13b). It may be explained by the fact that fungi can penetrate inside the matrix only by the 
open porosity, provided the pore diameter is large enough, or through the existing cracks. 
Therefore, the space available for the fungal growth inside the matrix does not permit 
extensive development. Nevertheless, the resulting biodeterioration could be more intense 
inside the exposed material than on the surface.  
The development of Coniosporium uncinatum is observed since the first week of incubation. 
It is characterized by the increase of the number and the size of the black spots. Mycelial 
growth is noted as the incubation time increases. The development seems to occur all over the 
surface, rather homogeneously. SEM pictures of the surface exhibit the hyphae spread on all 
over the surface (Figure 13c). Moreover, hyphae are closely linked to the matrix, and even 
seem to penetrate inside it. Examinations of the cross-section (Figure 13d) clearly show 
hyphal penetration into the matrix through cracks. It points out the capacity of the fungi to 
develop not only superficially but also inside the matrix, via structural default, accentuating 
the physical deterioration. 

IV.2.4. Discussion  
The results point out that in the present study the microbial growth is promoted with the 
accelerated weathering of the matrix. It plays a major role. Decrease of surface pH increases 
considerably matrix bioreceptivity. The microbial colonisation is observed on some 
carbonated specimens and on all carbonated then leached specimens. Carbonation is the most 
common chemical reaction influencing cement-based materials in natural environmental 
scenarios [26, 38]. This is the reason why accelerated weathering of matrix is generally 
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performed by carbonation [10, 26, 49]. But cement based materials are also exposed to the 
elements (humidity, acidic rain, snow…) which leads to cement compounds leaching [4]. In 
our case, carbonation is followed by leaching operation. This allows to obtain a surface pH 
about 8.8 after 30 days (data not shown), but also to have two ways of weathering involved in 
natural weathering of materials. To our knowledge, only Escadeillas et al. [19] and de Muynck 
et al. [11] performed these two ways of accelerated weathering of the matrix, but giving 
greater importance to the carbonation step.  
Physical weathering of a mineral substrate acts to enhance or accelerate rates of chemical, 
biomechanical and biochemical weathering and vice versa. The development of cracks, 
fissures and weathering rinds in rocks accelerates biological weathering by providing a niche 
that can easily be exploited by opportunistic micro-organisms [5].  
The presence of Alternaria alternata and Coniosporium uncinatum, two melanin producers, 
was noted on the SEM observations of the cross-sections. Melanin pigmentation of rock-
inhabiting fungi confers extra-mechanical strength to the hyphae that are then better able to 
grow into crevices [17, 30, 52]. Increased penetration augments contact of fungal hyphae and 
their metabolites with the rock, amplifying their geochemical influence on the mineral 
substrate. Expansion of hyphal growth into deeper rock layers also helps to protect the cells 
from the UV radiation [30]. One characteristic of meristematic fungi is the ability to form 
filamentous hyphae that develop from clump-like colonies to penetrate deep into rocks thus 
protecting themselves from environmental stresses. In this sense, the visible portion of 
melanized micro colonial fungi is like the tip-of-the-iceberg, because the hyphae can rapidly 
penetrate several mm to cm into hard rocks in search of more protected environments [30]. 
The fungi form explorative hyphae to seek nutrients on the surface, or mycelium during the 
growth. Under natural conditions, nutrient availability, even if small, enhances the chance of 
fungal units (single cells, conidia, or hyphae fragments) surviving and starting the 
colonization [55, 56].  

V. Conclusion 
Results showed that there was no microbial development when the cementitious matrix was 
not weathered. Microbial growth was noted on and inside the carbonated then leached 
specimens.  
Relating to the matrix weathering; combined process led to the maximum microbial growth. 
This process was composed by a carbonation operation followed by the leaching of the matrix. 
This resulted in modification of the matrix microstructure and above all in the surface pH 
decrease. Carbonation of hardened cement paste led to a surface composition nearer of a 
limestone than that of a cementitious matrix.  
The accelerated laboratory test developed in this study permits to obtain a rapid fungal 
development on cement specimens. Three months of experiments only are needed to obtain 
first results, which is rather shorter than other test developed to date to study fungal 
biodeterioration. Results are mainly related to aesthetical biodeterioration. Moreover, fungal 
strains presenting various growth patterns were used, and so may lead to different 
biodeterioration mechanisms in long term exposition experiment. These results will be 
completed by the quantification and estimation of the extent of the fungal growth.  
This test could be used to compare the bioreceptivity of various cement based materials, 
leading to results in 3 months only. 
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FFiigguurree  11::  LLooccaalliizzaattiioonn  ooff  EEDDXX  aannaallyyzzeedd  aarreeaass..  

 

FFiigguurree  22::  EExxppeerriimmeennttaall  sseett  uupp  ffoorr  tthhee  bbiiooddeetteerriioorraattiioonn  tteesstt..  

 

FFiigguurree  33::  EExxaammppllee  ooff  aa  ssppeecciimmeenn  bbrrookkeenn  ttoo  ccaarrrryy  oouutt  SSEEMM  oobbsseerrvvaattiioonnss..  
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FFiigguurree  44::  XX--rraayy  ddiiffffrraaccttooggrraamm  ooff  ssppeecciimmeennss  bbeeffoorree  ((aa))  aanndd  aafftteerr  ((bb)),,  ((cc))  aacccceelleerraatteedd  wweeaatthheerriinngg  ooff  tthhee  mmaattrriixx  ––  
EE==eettttrriinnggiittee,,  GG==ggyyppssuumm,,  PP==ppoorrttllaannddiittee,,  CC==ccaallcciittee,,  AA==aarraaggoonniittee,,  VV==vvaatteerriittee..  
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FFiigguurree  55::  FFTT--IIRR  ssppeeccttrraa  ooff  hhyyddrraatteedd  cceemmeenntt  ppaassttee  aatt  2288  ddaayyss  ooff  ccuurriinngg  aatt  110000%%RRHH  ––  ((aa))  ddiiffffuussee  rreefflleeccttaannccee,,  ((bb))  
AATTRR..  
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FFiigguurree  66::  SSEEMM  iimmaaggeess  ooff  ssuurrffaaccee  ffrraaccttuurreess  ooff  ssppeecciimmeennss  ––  ((aa))  nnoonn  wweeaatthheerreedd,,  ((bb))  ccaarrbboonnaatteedd,,  ((cc))  ccaarrbboonnaatteedd  
tthheenn  lleeaacchheedd..  

 

FFiigguurree  77::  SSEEMM  iimmaaggeess  ooff  ppoolliisshheedd  sseeccttiioonnss  ffoorr  ssppeecciimmeennss  ((aa))  nnoonn  wweeaatthheerreedd,,  ((bb))  ccaarrbboonnaatteedd,,  ((cc))  ccaarrbboonnaatteedd  tthheenn  
lleeaacchheedd..  
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FFiigguurree  88::  GGlloobbaall  SSEEMM  iimmaaggeess  ooff  ppoolliisshheedd  sseeccttiioonnss  ooff  aa  ccaarrbboonnaatteedd  tthheenn  lleeaacchheedd  ssppeecciimmeenn..  

 

FFiigguurree  99::  SSEEMM//EEDDXX  aannaallyysseess  ooff  ppoolliisshheedd  sseeccttiioonnss  ffoorr  ccaarrbboonnaatteedd  tthheenn  lleeaacchheedd  ssppeecciimmeenn  ––  aa,,  bb,,  cc,,  dd  ccoorrrreessppoonndd  ttoo  
tthhee  aannaallyyzzeedd  aarreeaass  nnaammeedd  iinn  sseeccttiioonn  IIIIII..22..33..  
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FFiigguurree  1100::  DDiirreecctt  oobbsseerrvvaattiioonnss  ooff  tthhee  nnoonn  wweeaatthheerreedd  ssppeecciimmeennss  aafftteerr  44  wweeeekkss  ooff  iinnccuubbaattiioonn..  
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FFiigguurree  1111::  DDiirreecctt  oobbsseerrvvaattiioonnss  ooff  tthhee  ccaarrbboonnaatteedd  ssppeecciimmeennss  ––  aarrrrooww  iinnddiiccaatteess  ccoonnttaammiinnaattiioonn..  
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FFiigguurree  1122::  DDiirreecctt  oobbsseerrvvaattiioonnss  ooff  tthhee  ccaarrbboonnaatteedd  tthheenn  lleeaacchheedd  ssppeecciimmeennss..  
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FFiigguurree  1133::  SSEEMM  oobbsseerrvvaattiioonnss  ooff  tthhee  ccaarrbboonnaatteedd  tthheenn  lleeaacchheedd  ssppeecciimmeennss  ––  SSuurrffaaccee  ((aa))  aanndd  ccrroossss--sseeccttiioonn  ((bb))  ooff  
ssppeecciimmeennss  iinnooccuullaatteedd  wwiitthh  AAlltteerrnnaarriiaa  aalltteerrnnaattaa  --  SSuurrffaaccee  ((cc))  aanndd  ccrroossss--sseeccttiioonn  ((dd))  ooff  ssppeecciimmeenn  iinnooccuullaatteedd  wwiitthh  
CCoonniioossppoorriiuumm  uunncciinnaattuumm..  
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Tables 

TTaabbllee  11::  FFTT--IIRR  cchhaarraacctteerriizzaattiioonn  ooff  hhyyddrraatteedd  cceemmeenntt  ppaassttee..  

BBaanndd  aassssiiggnnmmeennttss  HHyyddrraatteedd  cceemmeennttaa  
11  mmoonntthh  ((ccmm−−11))    

HHyyddrraatteedd  cceemmeennttbb  
aafftteerr  mmiixxiinngg  ((ccmm−−11))    

HHyyddrraatteedd  cceemmeennttcc  
ppaassttee  ((ccmm−−11))    

HHyyddrraatteedd  cceemmeennttdd  
ppaassttee  ((ccmm−−11))    

v3 SiO4
4−  980 s, b 970 s, b 977 s, b 959 s 

v4 SiO4
4−  536 w, sh – – – 

v2 SiO4
4−  467 s – 453 w 446 w 

1105 w, sh 1100 1134 vw, sh 1113 vw, sh 
v3 SiO4

2− 
1155 w, sh – – – 

v4 SiO4
2− 667 w 610 – – 

3325 – – – 
v1 + v3 H2O 

3450 s, b 3415 s, b 3436 s, b 3414 m, b 
v2 H2O  1630 w 1638 m 1656 m 1640 w 
V OH−  3645 sr, sh 3640 sr 3644 sr, sh 3636 sr, sh 
v3 CO3

2−  1425 1497 s, b 1421 s,b 1462 s, b 1414 s 
v2 CO3

2−  876 m, sr 874 m, sr 875 m, sr 872 s, sr 
v4 CO3

2−  732 w 713 w 718 w 710 w 

bb  BBrrooaadd,,  ss  ssttrroonngg,,  sshh  sshhoouullddeerr,,  ssrr  sshhaarrpp,,  mm  mmeeddiiuumm,,  vvww  vveerryy  wweeaakk,,  ww  wweeaakk    

vv  ll  ssyymmmmeettrriicc  ssttrreettcchhiinngg,,  vv  22  ssyymmmmeettrriicc  bbeennddiinngg,,  vv  33  aassyymmmmeettrriicc  ssttrreettcchhiinngg,,  vv  44  aassyymmmmeettrriicc  bbeennddiinngg    

aaMMoollllaahh  eett  aall..  [[4040,,  4343]]    

bbFFaarrccaass  aanndd  TToouuzzee  [[2020]]    

ccPPrreesseenntt  ssttuuddyy  ddiiffffuussee  rreefflleeccttaannccee    

ddPPrreesseenntt  ssttuuddyy  AATTRR    

http://www.springerlink.com/content/t5n8376600x45t13/fulltext.html#CR40
http://www.springerlink.com/content/t5n8376600x45t13/fulltext.html#CR43
http://www.springerlink.com/content/t5n8376600x45t13/fulltext.html#CR20
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TTaabbllee  22::  FFTT--IIRR  cchhaarraacctteerriizzaattiioonn  bbeeffoorree  aanndd  aafftteerr  aacccceelleerraatteedd  wweeaatthheerriinngg  [[1212,,  2020,,  2828,,  5050]]..  

BBaanndd  aassssiiggnnmmeennttss  CCaallcciiuumm  
ccaarrbboonnaatteeaa  CCaaCCOO33  
((ccmm−−11))    

NNoonn--
wweeaatthheerreeddbb  
ssppeecciimmeenn  
((ccmm−−11))    

CCaarrbboonnaatteeddcc  
ssppeecciimmeenn  ((ccmm−−11))    

CCaarrbboonnaatteedd  aanndddd  
lleeaacchheedd  ssppeecciimmeenn  
((ccmm−−11))    

v3 SiO4
4−  970 s, b 959 s 970 s 970 s 

v2 SiO4
4−  – 446 w – – 

v3 SiO4
2−  1100 1113 vw, sh – – 

v OH−  3640 sr 3636 sh – – 
v3 CO3

2− calcite  1421 s, b 1414 s 1414 s 1414 s 
v3 CO3

2− aragonite  1400–1500 s, b    1414–1440 s, b 1414–1440 s, b 
v1 CO3

2− vaterite  1080 w –      v1 CO3
2− aragonite  

1083 – 1080 w, sh 1080 w, sh v2 CO3 2− calcite  
874 m, sr 875 s, sr 876 s, sh 876 s, sh  
v2 CO3 2− vaterite  860 s, sr – ? ? 
850 m, sr – ? ? v2 CO3

2− aragonite  
856 m – 858 s, sh 858 s, sh v4 CO3

2− calcite  
713 w 710 w 714 m 714 m v4 CO3

2− vaterite  
740 w – 742 w, sh – 710 m 

bb  bbrrooaadd,,  ss  ssttrroonngg,,  sshh  sshhoouullddeerr,,  ssrr  sshhaarrpp,,  mm  mmeeddiiuumm,,  vvww  vveerryy  wweeaakk,,  ww  wweeaakk    

vv  ll  ssyymmmmeettrriicc  ssttrreettcchhiinngg,,  vv  22  ssyymmmmeettrriicc  bbeennddiinngg,,  vv  33  aassyymmmmeettrriicc  ssttrreettcchhiinngg,,  vv  44  aassyymmmmeettrriicc  bbeennddiinngg,,  ??  cceerrttaaiinnllyy  
ccoovveerreedd  bbyy  aannootthheerr  bbaanndd    

aaSSiimmssppoonn  [[5050]],,  GGhhoosshh  [[2828]],,  FFaarrccaass  aanndd  TToouuzzéé  [[2020]],,  aanndd  DDeevvaarraajjaann  eett  aall..  [[1212]]    

bbPPrreesseenntt  ssttuuddyy——nnoonn--wweeaatthheerreedd  ssppeecciimmeenn    

ccPPrreesseenntt  ssttuuddyy——ccaarrbboonnaatteedd  ssppeecciimmeenn    

ddPPrreesseenntt  ssttuuddyy——ccaarrbboonnaatteedd  aanndd  lleeaacchheedd  ssppeecciimmeenn    

  

http://www.springerlink.com/content/t5n8376600x45t13/fulltext.html#CR12
http://www.springerlink.com/content/t5n8376600x45t13/fulltext.html#CR20
http://www.springerlink.com/content/t5n8376600x45t13/fulltext.html#CR28
http://www.springerlink.com/content/t5n8376600x45t13/fulltext.html#CR50
http://www.springerlink.com/content/t5n8376600x45t13/fulltext.html#CR50
http://www.springerlink.com/content/t5n8376600x45t13/fulltext.html#CR28
http://www.springerlink.com/content/t5n8376600x45t13/fulltext.html#CR20
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