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Abstract9

In this paper, we present a new approach for the bi-axial characterization of in vitro human arteries10

and we prove its feasibility on an example. The specificity of the approach is that it can handle het-11

erogeneous strain and stress distributions in arterial segments. From the full-field experimental data12

obtained in inflation/extension tests, an inverse approach, called the virtual fields method (VFM),13

is used for deriving the material parameters of the tested arterial segment. The obtained results are14

promising and the approach can effectively provide relevant values for the anisotropic hyperelastic15

properties of the tested sample.16

1 Introduction17

It is well assessed that, despite biochemical and hemodynamical factors play a primary role in the develop-18

ment of most vascular disorders, solid mechanics models may contribute to understand their genesis and19

progression. The realism of models in solid mechanics depends significantly on the mechanical properties20

used as input parameters. Therefore, characterizing the biomechanical properties of arteries remains an21

essential issue.22

In vivo measurements with ultrasounds or magnetic resonance imaging (MRI) techniques provide23

relevant information on the vascular behavior [Slager et al., 2000,Masson et al., 2008,Avril et al., 2009]24

although they are not sufficient for a rigorous determination of arterial wall constitutive equations. To25

investigate the passive structural response of the arterial tissue, a large variety of in vitro experimental26

protocols are available [Humphrey, 2002].27

Among them, inflation/extension of arterial segments are physiologically meaningful tests since the28

in vivo loading conditions may be reproduced and the native geometry is preserved [Hayashi, 1993].29

Classically, for the analysis, it is assumed that the artery is a perfect cylinder and that the loading30

induces a homogeneous stress and strain distribution [Humphrey, 2002,Fung, 1993]. These assumptions31

provide a framework for deriving stress-strain curves and to fit them by appropriate constitutive models.32
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However, inverse approaches should generally be employed since stresses and strains are always het-33

erogeneous, because of noncylindrical shape [Holzapfel, 2004,Humphrey, 1999], locally varying material34

properties or experimental artifacts like edge effects [Arimitsu et al., 1995].35

The combination of 3-D deformation measurements [Rastogi, 1999, Foster, 1978, Viotti et al., 2008,36

Matthys et al., 1991,Genovese, 2007,Genovese, 2009, Sutton et al., 2007] and inverse approaches [Avril37

et al., 2008] is now very common in solid mechanics but it is still under-employed for identifying the38

anisotropic hyperelastic properties of the arterial tissues [Seshaiyer and Humphrey, 2003,Einstein et al.,39

2005]. Moreover, the Virtual Fields Method [Grédiac et al., 2006], which is an inverse method specifically40

dedicated to full-field data, has never been used for the mechanical identification of arterial tissues41

although it has very relevant assets: insensitivity to the uncertainty of boundary conditions [Grédiac42

et al., 2006], robustness [Avril et al., 2004], fast convergence [Avril and Pierron, 2007].43

This paper attempts to give a new contribution for addressing the mechanical identification of arterial44

tissues by presenting an implementation of the Virtual Fields Method to full-field experimental data45

measured on the whole surface of an arterial segment during inflation/extension tests. The objective of46

the paper is to present the principle of the approach and to prove its feasibility on an example.47

2 Materials and Methods48

2.1 Materials49

Results reported in this paper are obtained on a fairly straight segment of a human ascending aorta (initial50

length: L0 ' 35 mm, initial average radius: R0 ' 10 mm, initial average thickness: e0 ' 1.3 mm). This51

vascular segment has been obtained from a cadaveric 65 years old female donor. All procedures were52

carried out in accordance with the guidelines of the Institutional Review Board of the University Hospital53

Centre of Saint-Etienne, France. After gently cleaning the artery with physiological solution, two side54

branches were clamped with surgical suture threads (Fig. 1).55

2.2 Experiments56

This study results from a collaboration between the University of Basilicata (Italy) and Ecole des Mines57

de Saint-Etienne (France). The experimental setup was developed at the University of Basilicata and58

presented in a companion paper [Genovese, 2009]. The current paper focuses on the inverse approach59

and all the details about the experimental techniques may be found in [Genovese, 2009].60

The sample was mounted on the in vitro rig and preconditioned via 8 pressurization cycles from p =61
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0 to p = 80 mmHg (10.5 kPa) and then 8 cycles of axial stretching from L/L0 = 1 to L/L0 = 1.4. Then,62

different sets of inflation/extension tests were performed.63

Let Ψt denote the geometrical deformation of the artery induced by the loading at time t, such as64

x(t) = Ψt(x0), where x(t) is the position vector of a material point at t and x0 is the initial position65

vector of the same material point.66

The vascular segment is covered with N (N ' 300) black spherical markers (Fig. 1). The markers67

were fixed with cyanoacrylate adhesive which was shown not to diffuse in the tissues [Holzapfel et al.,68

2007]. The optical measurement presented in [Genovese, 2009] provides a point-wise evaluation of Ψt at69

all the points where a marker has been bonded, with an accuracy of 0.17 mm.70

During all the inflation/extension tests, the artery remains in a bath of physiological solution. The71

optical technique was calibrated accounting for the bath of physiological solution around the artery72

[Genovese, 2009]. However the artery was not hydrated while we bonded the markers. This lasted less73

than one hour. This could be reduced in the future by using glue that activates with water.74

2.3 Derivation of the field of Green-Lagrange strain tensors75

The surface of the artery is meshed for interpolating Ψt across the whole artery from the data measured76

at the marker position. Triangular elements with linear interpolation functions are used. The mesh is77

defined using a Delaunay triangularization algorithm applied onto the marker initial positions (actually78

the marker position means the contact position of the marker onto the surface of the artery). Each79

triangular element is labeled by an index denoted q. Let xq(t) denote the position vector of the center of80

gravity of each element at time t81

Eventually, Ψt is known everywhere across the meshed area of the artery. Let Ω be this domain across82

which the deformation is measured. Ω is defined in the initial configuration because the deformation is83

Lagrangian. Let ω(t) be the counterpart of Ω in the deformed configuration at time t.84

All the derivations presented in this paper are based on the theory of finite deformations [Ogden,85

1997]. Let F(x0, t) denote the deformation gradient:86

F(x0, t) ≡ ∇Ψt(x0)87

where ∇ is the gradient operator.88

Then we define the right Cauchy-Green tensor:89

C(x0, t) ≡ FT F90

where FT is the transpose of F.91
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Eventually, we define the Green-Lagrange strain tensor:92

E(x0, t) ≡ [C− I]/293

where I is the identity tensor.94

2.4 Constitutive equations95

Arteries in vitro are usually considered as anisotropic visco-hyperelastic materials. Here, the viscoelas-96

tic properties are not considered and only the instantaneous and monotonic response is modeled, after97

preconditioning. Pseudo-elasticity can therefore be applied [Fung, 1993]. Hyperelastic models are con-98

sidered.99

In these models, the Cauchy stress tensor, denoted S, is deduced from the Green-Lagrange strain100

tensor such as:101

S = F : dΦ/dE : FT + λI (1)

where Φ is the strain energy function depending only on E and on material parameters. The term λI102

comes from the incompressibility and λ is assessed by writing the plane stress condition (S33 = 0).103

Different strain energy functions for the anisotropic hyperelastic behavior of arteries may be found104

in the literature. Some of them are phenomenological [Fung, 1993, Sun and Sacks, 2005] and others are105

based on the microstructure [Holzapfel et al., 2000]. In this study, we consider 3 different models:106

1. the Delfino model [Holzapfel et al., 2000]:

Φ′ =
1
2
β′ [exp (α′(I1 − 3))− 1] (2)

where β′ and α′ are material parameters and I1 = tr(C).107

2. the 2-D Fung model [Fung, 1993], which may be written as:108

Φ =
1
2
β

[
exp

(
α11(E11)2 + α22(E22)2 + α12E11E22

)− 1
]

=
1
2
β [exp(Q)− 1] (3)

where β, α11, α22 and α12 are material parameters and Eij are the components of the E matrix in109

the material coordinate system (indice 1 refers to the circumferential direction and indice 2 refers110

to the axial direction in the local coordinate system).111
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3. the Holzapfel model [Holzapfel et al., 2000]. This model assigns separate strain energy functions to

the media layer and the adventitia layer. The simplest form of the strain energy function may be

written:

Φ′′ =
c′′

2
(I1 − 1) +

k′′1
2k′′2

[
exp

(
k′′2 (I4 − 1)2

)− 1
]
+

k′′1
2k′′2

[
exp

(
k′′2 (I6 − 1)2

)− 1
]

(4)

where c′′ and k′′1 are stress-like material parameters, k′′2 is a dimensionless material parameter;I4112

and I6 are the squares of the stretch component in the two families of symmetric tissue fibers.113

Hence, this model prescribes a fiber orientation angle φ for each layer, based usually on analysis of114

microscopy data. The fiber angles for the specimen used in this work were not known, and so the115

fiber angles are another material parameter to be determined from the experimental data.116

2.5 Inverse approach117

The Virtual Fields Method (VFM) is an approach dedicated to the identification of material parameters118

from full-field measurements [Grédiac et al., 2006, Avril et al., 2004, Avril and Pierron, 2007, Promma119

et al., 2009]. It is based on the weak form of equilibrium equations.120

Assuming quasi-static conditions and no body forces, the weak form of equilibrium in the deformed121

configuration may be written such as:122

−
∫

ω(t)

S : E∗dv +
∫

∂ω(t)

t.u∗ds = 0 (5)

where ∂ω(t) is the boundary of the volume in the deformed configuration, vector t denotes the tractions123

applied onto this boundary (pressure forces and axial load), u∗ is a displacement virtual field which acts124

as a test function in Eq. 5). E∗ is the strain virtual field deduced from the gradient of u∗:125

E∗ =
1
2

(
∇u∗ + ∇T u∗

)
(6)

At position x where a marker is located, u∗1 and u∗2 take the following values:126





u∗1 = sin
(

π
z − zb

zt − zb

)
i

u∗2 =
z − zt

zb − zt
k

(7)

where:127
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• vectors i and k are respectively the radial and longitudinal axes in the global cylindrical coordinate128

system defined in Fig. 2;129

• z is the component of x along the longitudinal axis: z = x · k ;130

• zb and zt are defined in Fig. 2.131

The rationale behind this choice of virtual displacements is:132

• one involves mainly the radial properties (u∗1)133

• one involves mainly the axial properties (u∗2)134

• both zero the action of unknown reaction forces or involve their resultant if the resultant is measured135

[Grédiac et al., 2006].136

Given the previous points, infinity of virtual deformation may be used. The rationale behind the137

current choice is that the best results are always obtained with the simplest functions. This was proved138

in different papers [Grédiac et al., 2006,Avril et al., 2004,Avril and Pierron, 2007,Promma et al., 2009].139

This can be interpreted like this: a virtual deformation is a test function. If the test function is very140

smooth, it will average out the randomly distributed errors contained in the experimental data.141

Eq. 7 only gives the values of the virtual displacement at marker positions. Between the marker142

positions, the values of u∗1 and u∗2 are interpolated linearly.143

Moreover, regarding the external virtual work, it can be written:144





∫

∂ω(t)

t.u∗1ds =
∫

∂ω(t)

kt.u∗1 p(t)ds

∫

∂ω(t)

t.u∗2ds =
∫

∂ω(t)

kt.u∗2 p(t)ds + F(t)

(8)

where kt is the unit outer normal vector at t, F(t) is the axial resultant load measured by a load cell.145

As S is deduced from experimental data, Eq. 5 cannot be satisfied exactly and the principle of the146

inverse method [Grédiac et al., 2006] is to minimize the squares of residuals, as defined in the following147

cost function:148

ζ(β, α11, α22, α12) =
∑

k

∑
m

[
−

∫

ω(tm)

S : E∗kdv + p(tm)
∫

∂ω(tm)

ktm .u∗k ds + δk2F(t)

]2

(9)
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where m labels the time when a measurement is achieved and k labels the virtual field (k = 1, 2); δk2=0149

if k = 1 and δk2=1 if k = 2.150

Considering the interpolation of all quantities with the triangular mesh, the previous integrals in the151

principle of virtual work may be changed into discrete sums.152

ζ(β, α11, α22, α12) =
∑

k

∑
m

[
−

∑
q

S(xq,m) : E∗k(xq,m)A(xq,m)e(xq,m) + p(tm)
∑

q

kt(xq,m).u∗k(xq,m)A(xq,m) + δk2F(t)

]2

(10)

where A(xq,m) denotes the area of triangular element q at time tm and e(xq,m) denotes the thickness of153

the artery1 at xq at time tm. E∗k is derived from the virtual displacements u∗k using Eq. 6. The virtual154

displacements u∗k are defined in Eq. 7. The value of p are experimental data and S is derived using155

Eq. 1. It must be noted that the model parameters are involved in S. All the incremental steps are taken156

into account as the squares of residuals of each incremental step, denoted m, are summed up.157

Cost function ζ figures the quadratic gap between the internal virtual work (IVW) and the external

virtual work (EVW) where:

IVWk,m = e0

∑
q

S(xq,m) : E∗k(xq,m)A(xq,0)

EVWk,m = p(tm)
∑

q

kt(xq,m).u∗k(xq,m)A(xq,m) + δk2F(t)
(11)

Cost function ζ and IVW are driven by the choice of the unknown material parameters. Eventually,158

the cost function can be minimized through an iterative scheme using the Nelder-Mead algorithm [Nelder159

and Mead, 1965]. This yields the unknown material parameters.160

3 Results161

A sample was tested for proving the feasibility of the approach (Fig. 1 and Fig. 2). We report data162

corresponding to 8 pressure levels distributed between 0 and 150 mmHg at L/L0 = 1.1 (Fig. 3 and163

Fig. 4).164

The results obtained with the VFM are reported in Tab. 1 for the Fung model. Convergence of the165

Nelder Mead optimization routine was reached in nearly 10 minutes. The identified values for the Fung166

material parameters of the artery are consistent with the range orders reported in the literature [Holzapfel167

1Due to the incompressibility assumption, A(xq,m)e(xq,m) = A(xq,0)e0, with xq,m = xq(tm).
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parameter β α11 α22 α12

identified value 5 kPa 14.5 7 0.1

Table 1: Results obtained with experimental data for the Fung model.

et al., 2000, Fung, 1993]. Parameter β is usually around 10 kPa. It is interesting to notice the large168

difference between the value of α11 and α22. It means that there is a large anisotropy in this specimen,169

which has already been reported in the literature [Holzapfel et al., 2000].170

It can be observed in Fig. 5 that the gap between the external virtual work and the internal virtual171

work is very low for the obtained material parameters.172

4 Discussion173

4.1 Application to the other constitutive models174

4.1.1 The Delfino model175

The material parameters of Eq. 2, namely α′ and β′ can be identified using only u∗1. This means that176

only the circumferential response is used for the identification. The results obtained with the VFM for177

these two material parameters are: β′ = 1.5 kPa and α′ = 4.6.178

However, it is interesting to notice in Fig. 6 that the gap between IVW and EVW remains very large179

for u∗2 when computed with the constitutive equations of Eq. 2 and the material parameters reported180

above. This indicates irrelevancy of the isotropic assumption. This justifies the choice of anisotropic181

laws.182

4.1.2 The Holzapfel model183

Here, having access only to measurements on the surface of the artery, it is only possible to identify the184

average strain energy function across the whole thickness, but not separately strain energy functions of the185

media layer and of the adventitia layer. If, as in [Marra et al., 2006], the strain energy function is assumed186

homogeneous across the thickness, then a mean fiber angle and mean values of the other parameters of the187

Holzapfel model can be identified by the VFM. The obtained results are: c′′ = 0.4 kPa, k′′1 = 8.7 kPa,188

k′′2 = 5.4 and φ = 27◦. These results show that parameters of a Holzapfel model may be retrieved by the189

VFM.190

Fiber angles and material parameters in human arteries are usually different for the media and the191

adventitia. Only average values are reported here. A separate identification of media and adventitia192

constitutive equations would be possible by mechanical separation of the layers of the human artery, as193
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shown in [Holzapfel et al., 2000].194

4.1.3 Material heterogeneities195

Arteries may also have properties varying along the axis. The VFM was already applied successfully to the196

identification of nonlinear heterogeneous behavior for metals [Sutton et al., 2008]. The implementation197

of a similar approach for arteries is possible but it will require that the spatial resolution is adapted to198

the length scale of local variations of the material properties. This may be achieved by employing 3-D199

digital image correlation, as shown in [Sutton et al., 2007].200

4.2 Discussions for α12 in the Fung model201

Parameter α12 is the coupling factor between E11 and E22 in the exponential of the strain energy function.202

It means that α12 characterizes the effect of the circumferential strain onto the axial response, or vice-203

versa. A value of 0.1 was found for parameter α12 (Tab. 1). For obtaining this result, the algorithm was204

initialized according to values2 reported in [Fung, 1993].205

However, it must be noted that the results regarding α12 are significantly affected by the value input206

for initializing the optimization algorithm. This may indicate a lack of sensitivity of the cost function to207

α12, inducing the existence of a valley in the cost function.208

The dependence of the VFM to the initializing values was not observed for the Holzapfel model.209

Nevertheless, in the Holzapfel model, the exponential part is driven by only 3 material parameters,210

whereas the exponential part of the Fung model is driven by 4 material parameters. This supplementary211

material parameter in the Fung model does not affect sufficiently the value of cost function ζ in Eq. 10,212

inducing the lack of sensitivity to α12. If one would like to increase the sensitivity to α12, one would213

have to consider the response of the artery not only to incrementally varying pressures, but also to214

incrementally varying stretches in the axial direction, and to include these responses in the definition of215

cost function ζ. This will be considered in future studies.216

4.3 Implementation of the identified model in a FE code217

In [Sun and Sacks, 2005], the implementation of the Fung model in a FE code was discussed. In order218

to check the feasibility of utilizing this model with the parameters that we identified here (Tab. 1),219

computations were achieved on the geometry of the artery with the Abaqus R© software. The geometry of220

the model is a 33.8 mm long cylinder with an initial diameter of 21.5 mm, and initial thickness of 1.3 mm.221

2Initial values: β=29kPa, α11=2.5, α22=0.5 and α12=0.17

9



It was meshed with 1276 membrane elements (M3D4R type in Abaqus R©). The Fung model is a built-in222

feature of Abaqus R©, which requires the definition of a local coordinate system related to the anisotropy223

directions and the constitutive parameters reported in Tab. 1. No residual stress was incorporated in this224

model. One end of the cylinder was clamped. Regarding the other end, radial displacements were fixed225

and a longitudinal displacement was prescribed, corresponding to L/L0 = 1.1. The different experimental226

pressure steps were applied successively. The resolution of the problem was performed using an implicit227

scheme accounting for large strains.228

A comparison of the average radii computed by Abaqus R© to the measured average radii is shown in229

Fig. 7. The comparison is made for the cross section located at z = (zb + zt)/2, i.e. at midspan. The230

results show a good agreement.231

However, the radii computed by FE model are slightly larger than the experimental ones. It may be232

induced by the fact that, in the model, we neglected the pressure applied by the physiological bath on233

the external surface of the artery (about 5 mmHg ' 0.7 kPa at the midspan of the arterial segment).234

Discrepancies may also be induced by a difference between the experimental boundary conditions and235

the actual ones at the ends. For the FE model, the boundary conditions were of clamping type at both236

ends, whereas the actual ones are less rigid.237

It is worth noting here that this discussion about the boundary conditions at both ends does not affect238

the results obtained by the VFM. Indeed, the effect of unknown reaction forces and parasitic motions at239

both ends is filtered out by the VFM. This is an essential asset of the VFM, as shown in [Grédiac et al.,240

2006].241

4.4 Derivation of average stress/strain curves242

It was shown that the identified Fung model can be used to derive stress/strain curves of the artery, both243

in the circumferential direction and in the axial direction. Results are presented in the appendices.244

5 Conclusion245

In conclusion, results presented in this work are promising regarding the application of the virtual fields246

method (VFM) for identifying the anisotropic hyperelastic properties of arteries. An innovative experi-247

mental device has been set up, calibrated and validated for characterizing arterial mechanical properties.248

It is now important to carry out a large number of experiments for validating the approach with249

different sets of data and different tests. Other perspectives concern more complex loading conditions250
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and more sophisticated models. More especially, next steps will consist in (i) considering the possible251

heterogeneity of the properties and geometry of the artery wall, (ii) processing data from different loading252

cases (including torsion), (iii) and considering independently the different layers of arteries and the253

residual stresses. Achievement of these steps will require optimal spatial resolution and accuracy of the254

measurement technique, employing for instance 3-D digital image correlation [Sutton et al., 2007].255
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7 Appendices262

7.1 Appendix A263

In this section, we show that the identified Fung model can be used to derive a stress/strain curve of the264

artery in the circumferential direction and that this curve is in agreement with the average stress/strain265

curve deduced from experimental data.266

The average circumferential Green-Lagrange strain is defined by:267

Ẽ11(t) =
1
2

((
R̄

R0

)2

− 1

)
(12)

where R̄(t) is the average radius of the best fitting circle at time t at x3 = (xb
3 + xt

3)/2 and R0 is R̄(t) at268

t = 0.269

The circumferential stress component, denoted S̃11, should satisfy the Laplace law everywhere:270

S̃11(t) =
p(t)R̄(t)

ē(t)
(13)

where ē(t) is the average thickness at the midspan of the arterial segment.271

We compare the value of S̃11(t) and S̄11(t), where S̄11(t) is the value deduced from Ẽ11 by applying272

directly the Fung model of Eq. 3 to Ẽ11 with the assumption Ẽ22 = 0. The parameters for the Fung’s273

model are the ones that are reported above in Tab. 1.274
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Results shown in Fig. 8a are in agreement. This means that the material parameters identified in275

the circumferential direction are consistent with a standard procedure (plotting stress/strain curves from276

pressure/diameter measurements). The advantage of the VFM is that the properties in the axial direction277

were also identified simultaneously.278

7.2 Appendix B279

In this appendix, we show that the identified Fung model can be used to derive a stress/strain curve of280

the artery subjected to a tensile test in the axial direction and that this curve is in agreement with the281

average stress/strain curve deduced from experimental data.282

The axial Green-Lagrange strain is defined by:283

Ẽ22(t) =
1
2

((
L

L0

)2

− 1

)
(14)

where L(t) is the length of the arterial segment at time t.284

The axial stress component, denoted S̃22 should satisfy:285

S̃22(t) =
F(t)

2πR̄(t)ē(t)
(15)

We compare the value of S̃22(t) and S̄22(t) , where S̄22(t) is the value deduced from Ẽ22 by applying286

directly the Fung model of Eq. 3 to Ẽ22 with the assumption Ẽ11 = 0. The parameters for the Fung’s287

model are reported in Tab. 1.288

Results shown in Fig. 8b are in agreement. This means that the material parameters identified in the289

axial direction are in agreement with a classical analysis consisting in plotting stress/strain curves. The290

advantage of the VFM is that the properties in the axial direction were identified using only one stretch291

value, whereas a full tensile test was required in the axial direction for plotting the stress/strain curve292

with the standard analysis.293
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[Promma et al., 2009] Promma, N., Raka, B., Grédiac, M., Toussaint, E., Cam, J. L., Balandraud, X.,348

and Hild, F. (2009). Application of the virtual fields method to mechanical characterization of elas-349

tomeric materials. International Journal of Solids and Structures, 46:698–715.350

[Rastogi, 1999] Rastogi, P. (1999). Photomechanics. Springer Verlag.351

14



[Seshaiyer and Humphrey, 2003] Seshaiyer, P. and Humphrey, J. (2003). A sub-domain inverse finite352

element characterization of hyperelastic membranes including soft tissues. Journal of Biomechanical353

Engineering, 125:363–371.354

[Slager et al., 2000] Slager, C., Wentzel, J., Schuurbiers, J., Oomen, J., Kloet, J., Krams, R., von Birge-355

len, C., van der Giessen, W., Serruys, P., and de Feyter, P. (2000). True 3-dimensional reconstruction356

of coronary arteries in patients by fusion of angiography and IVUS and its quantitative validation.357

Circulation, 102:511–516.358

[Sun and Sacks, 2005] Sun, W. and Sacks, M. (2005). Finite element implementation of a generalized359

Fung-elastic constitutive model for planar soft tissues. Biomechanics and Modelling in Mechanobiology,360

4:190–199.361

[Sutton et al., 2007] Sutton, M., Ke, X., Lessner, S., Goldbach, M., Yost, M., Zhao, F., and Schreier,362

H. (2007). Strain field measurements on mouse carotid arteries using microscopic three-dimensional363

digital image correlation. Journal of Biomedical Materials Research Part A, 84A(1):178–190.364

[Sutton et al., 2008] Sutton, M., Yan, J., Avril, S., Pierron, F., and Adeeb, S. (2008). Identification of365

heterogeneous constitutive parameters in a welded specimen: Uniform stress and virtual fields methods366

for material property estimation. Experimental Mechanics, 48(5):451–464.367

[Viotti et al., 2008] Viotti, M., Albertazzi, A., Fantin, A., and Pont, A. D. (2008). Comparison between368

a white-light interferometer and a tactile formtester for the measurement of long inner cylindrical369

surfaces. Optics and Lasers in Engineering, 46:396–403.370

15



List of Figures371

1 Picture of the arterial segment used in the tests. . . . . . . . . . . . . . . . . . . . . . . . 17372

2 Meshing and schematic of the initial geometry: (a) 3D view (b) cross sectional view. . . . 18373

3 Plot of the circumferential components of the Green-Lagrange strain tensor for different374

values of p. The plot is displayed in the undeformed configuration. . . . . . . . . . . . . . 19375

4 Plot of the circumferential components of the Cauchy stress tensor for different values of376

p. The plot is displayed in the deformed configuration. The Cauchy stress are calculated377

with the Fung model using the identified values reported in Tab.1 . . . . . . . . . . . . . . 20378

5 Comparison of the internal and external virtual work for virtual field 1 (a) and virtual field379

2 (b) when an anisotropic model is identitied . . . . . . . . . . . . . . . . . . . . . . . . . 21380

6 Comparison of the internal and external virtual work for virtual field 1 (a) and virtual field381

2 (b) when an isotropic model is identitied . . . . . . . . . . . . . . . . . . . . . . . . . . . 22382

7 Comparison of the deformed geometry between a FE model and experimental data . . . . 23383

8 Obtained stress/strain curves: (a) in the circumferential direction and (b) in the axial384

direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24385

16



Figure 1: Picture of the arterial segment used in the tests.
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Figure 2: Meshing and schematic of the initial geometry: (a) 3D view (b) cross sectional view.
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Figure 3: Plot of the circumferential components of the Green-Lagrange strain tensor for different values
of p. The plot is displayed in the undeformed configuration.
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Figure 4: Plot of the circumferential components of the Cauchy stress tensor for different values of p.
The plot is displayed in the deformed configuration. The Cauchy stress are calculated with the Fung
model using the identified values reported in Tab.1
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Figure 5: Comparison of the internal and external virtual work for virtual field 1 (a) and virtual field 2
(b) when an anisotropic model is identitied
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Figure 6: Comparison of the internal and external virtual work for virtual field 1 (a) and virtual field 2
(b) when an isotropic model is identitied
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Figure 7: Comparison of the deformed geometry between a FE model and experimental data

23



0.1 0.2 0.3 0.4
E

11

(a)

experimental stress/strain curve

identified Fung model

0 0.1 0.2 0.3 0.4 0.5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

E
22

S
22

 (
M

P
a)

(b)

experimental stress/strain curve

identified Fung model

PSfrag replacements
S11

E11

S22

E22

Figure 8: Obtained stress/strain curves: (a) in the circumferential direction and (b) in the axial direction
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