
Trust Management within Virtual Communities:

Adaptive and Socially-Compliant Trust Model

Reda Yaich, Olivier Boissier, Philippe Jaillon, Gauthier Picard

To cite this version:

Reda Yaich, Olivier Boissier, Philippe Jaillon, Gauthier Picard. Trust Management within
Virtual Communities: Adaptive and Socially-Compliant Trust Model. 2011. <hal-00599271>

HAL Id: hal-00599271

https://hal.archives-ouvertes.fr/hal-00599271

Submitted on 9 Jun 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-EMSE

https://core.ac.uk/display/52621501?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00599271

Trust Management within Virtual Communities:

Adaptive and Socially-Compliant Trust Model

R. Yaich, O. Boissier, P. Jaillon and G. Picard

Abstract

Recent years have witnessed increasing interest of people in sharing,
collaborating and interacting in many different ways among new social
structures called Virtual Communities (VC). They represent aggrega-
tions of entities with common interests, goals, practices or values. VCs
are particularly complex environments wherein trust became, rapidly,
a prerequisite for the decision-making process, and where traditional
trust establishment techniques are regularly challenged. In our work
we are considering how individual and collective trust policies can be
managed, adapted and combined. To this aim, we propose an Adaptive
and Socially-Compliant Trust Management System (ASC-TMS) based
on multi-agent technologies. In this framework, policies are used as
concrete implementations of trust models in order to specify both (i)
user-centred (i.e. personal) and community-centred (i.e. collective)
trust requirements. Agents are used to manage and combine these
different policies in a decentralized and flexible way. We describe the
functionalities and the architecture that supports them and discuss
also a prototype implementation.

1 Introduction

1.1 Context

Online environments such as virtual communities are known to be complex
structures (open, dynamic, uncertain and risky) where trust became rapidly
a prerequisite for the decision-making process. Further, several character-
istics of these environments are constantly challenging our societies on how
trust is produced and assessed; besides identifying key trust factors, finding
the appropriate formalism to represent trust requirements has been, for the
last decade, one of the most interesting issues for both industrials and aca-
demics.
Trust policies [18] are considered to be a viable solution to represent trust
requirements. They constitute a flexible way to specify under which condi-
tions trust may be granted. However, none of the existing languages is able
to address properly new considerations raised by VCs.

1

1.2 Problematic

One of the main issues in specifying and deploying trust policies in VC is
the ability to manage unpredictability that is inherent to their dynamic and
evolving character. Unforeseen changes must be handled otherwise running
policies could rapidly become obsolete and inefficient. Another important
issue is the capacity of personal policies, specified individually by entities,
to integrate seamlessly collective trust requirements that could be imposed
or recommended by virtual communities or virtual organizations. In fact,
humans in their daily decisions often consider trust by combining, at the
same time, two requirements’ levels: Collective and personal requirements.
Collective requirements represent common trust criteria that should/must
be used by the members of the same community/organization, while per-
sonal requirements reflect personal and subjective trust criteria. Thus, it’s
becoming increasingly evident that neither static trust models nor inert trust
policies tackles appropriately the previously cited considerations. Whether
for tuning used policies to fit environment changes or for making individ-
ual requirements comply with collective ones, enabling trust policies with
adaptation features is clearly needed as it has been pointed out by some
authors.

1.3 Proposition

In this report, we focus on endowing Trust Management Systems with adap-
tation features based on rich, dynamic and integrative trust model. By rich
we mean that trust is built upon a wide range of trust factors. By dynamic
we mean that policies are constantly adapted and evolve over time. By
combinative we mean that individual policies are combined with collective
ones to yield global trust requirements. To that aim, we propose to use
Policy-based Trust models[18] wherein policies are used to specify trust re-
quirements. In order to express and illustrate mentioned aspects within our
framework, we used Jason [7], an extension of AgentSpeak[15] syntax, as
the underlying logic formalism. The remainder of this report is organized as
follows. The next section introduces background concepts including details
on trust basis. To illustrate our approach we use a simple virtual community
scenario wherein requirements has been identified. Section 3 introduces the
foundations of our approach, including the system overview and the trust
model outline. Section 4 introduces the details on policies representation.
The framework architecture is illustrated and discussed in Section 5. Finally,
concluding remarks and future works are presented in Section 6.

2

2 Background And Positioning

The last decade has seen an increasing interest on trust that gave rise to
numerous researches and many definitions. In this report, we do not consider
investigating these definitions nor do we attempt to add a new one. We
refer readers to [3] that summarizes the existing literature. However, given
the multidimensional nature of trust, we are more interested in identifying
essential trust factors (i.e. sources of information) based on which trust is
built. To that aim, we will have a quick insight on existing trust models in
order to isolate pertinent trust factors.

2.1 Trust Models

Among the large literature on trust, sociologists vision is particularly inter-
esting. They identified two kinds of factors that are widely used in trust
assessment among human societies: hard trust and soft trust factors[11],
where hard trust factors represent information derived from security mech-
anisms such as identity keys, credentials and certificates, whereas soft trust
factors encompass information that are inferred from experience and obser-
vations of others. Based on this, existing trust models can be categorized
into two families: hard trust models and soft trust models.

2.2 Hard trust models

They focus on managing digitally signed documents (e.g. public keys, cre-
dentials and certificates) and enforcing policies. These approaches assume,
in most of cases, that trust is derived by obtaining sufficient credentials that
satisfy the policy. PGP [1], PolicyMaker [4] and IBM TE [10] are some of
the works, among others, that pioneered this type of models. These mod-
els highlights some common features of trust: it is direct and is accorded
based on the identity key [1, 4], transferable by authorization credentials [4],
and/or subjective and depends on different properties certified by a third
party authority [10].

2.3 Soft trust Models

They mainly stress the importance of the social dimension of trust [8]. These
models build trust based on others history [12] or evaluations[17, 11] in
absence of (or in addition to) personal ones. The history represents the
experience over past interactions while reputations are measures of trust as-
sociated to individuals. Both factors are used based on direct and indirect
information where personal experience and assessments are internally com-
puted and indirect information are aggregated over all the community (i.e.
social structure).
Full integration of soft and hard trust factors within trust models has not

3

been done yet. However, [5] and [13] paved the way recently for such per-
spective by exploring the combination of these two types of trust factors into
what we call Hybrid Trust Models. They represent new approachs that make
use of both hard and soft trust factors. In addition to hard an soft trust
factors, these models, often, consider the use of any other factor that may be
pertinent for trust evaluation and open doors for any source of information
including context information the risk and the outcome of an interaction.
This work is an additional right step toward the proposition of a better in-
tegration of hard and soft trust factors in more realistic and rich model. For
that, we consider the use of a wide range of source of information. Without
loss of generality, chosen factors have been limited to the most commonly
used ones among reviewed models.

2.4 Trust issues in virtual communities

In this section, we will explore first some interesting issues that are chal-
lenging trust establishment within VC and have not been solved yet. To
that aim, we support our motivation with three scenarios of Virtual Com-
munities. We then used this scenarios in order to derive and argue a set of
important features that should be addressed by modern trust management
models.

1. Developers Community Alice is regularly developing new Android
applications within the Google Android Community (GAC). Before
releasing the final version, Alice often needs the help of some GAC
members for pointing out and fixing bugs. However, granting access
to her project repository is risky (e.g. the code could be revealed
and the binaries distributed). Thus, Alice limits the access to her
code (resp. binary) to qualified members (i.e. having competences in
Android/Java) that have reputation higher than 0,7 (resp. 0,6). As a
member of the GAC, Alice is also obliged to comply with the model
used by the community and must rely on identity (e.g. PGP keys) as
an additional trust criterion.

2. Scientific Virtual Community: Bob is a PhD student in the LSTI
lab. He is also member of the ePub Community where he can exchange
with the other members scientific articles. Bob is disposed to share his
articles only with student members having a good reputation (higher
than 0,6). The ePub community members are copyright conscious and
agreed that they must respect the publishers policies while sharing
articles. Thus, articles access is granted only to the members that are
authorized by the publisher of the article.

3. Open Innovation Community: Hypios is a new open innovation
platform whose users form a widespread community. Hypios proposes

4

a showcase for R&D problems to which the community members try
to find a solution and earn money for that. Carol, as an avid passion-
ate of challenging problems, joined recently Hypios. She first managed
to solve individually some simple problems but for the actual one she
requires the help of some mathematicians. She created a group in or-
der to solve collaboratively the problem and share the reward. Carol
restricts the access to her group to members with mathematic back-
grounds and a reputation of at least 0,7. Moreover, some problems
are sensitive and the access to their description should be protected
by respecting both Hypos and companies trust requirements. For in-
stance, in order to exclude malevolent members, Hypios indicates to
it’s members the least tolerated value for the reputation. Thus, mem-
bers reputation threshold must be at least equal to the advocated value
(e.g. 0.6).

Each of the above scenarios highlights a number of interesting characteristics
that should be addressed by modern trust management models. We focus
here principally on three of them that we consider as central in our approach:
1. Subjectivity: Virtual communities, as the one presented above, are
highly dynamic environments where no generic interaction pattern could be
identified. Each specific interaction requiring trust establishment is different
and will need specific set of trust requirements. We think that an efficient
trust model should not neglect any trust factor in order to enable the user
to protect himself in any circumstance.

Example 1 Alice, Bob and Dave expressed differently their trust require-
ments characterizing the subjectivity of trust

1. Dynamicity: Trust perception is not static and changes depending on
the situation. However, we think that trust dynamics is not solely due to
perception changes but also to how these perceptions are managed. In other
words, not only trust the set of used trust factors varies, the variation comes
also from how they are used and aggregated. Thus, trust models should be
malleable at will.

Example 2 Carol received three requests to join her group from, respec-
tively, Dave (Rep = 0,75), Paul (Rep = 0,60) and Walter (Rep = 0,65).
She accepted Dave’s requests and refused Paul’s and Walters ones. After
refusing Pauls and Walter’s requests due insufficient reputation, Carol was
worried about the success of her objectives, as she still requires the collab-
oration of some mathematicians. she decided then to reduce the reputation
threshold to 0,65 and finished by accepting Walter too. The dynamic of her
evaluation is not due to the input information she used that remained un-
changed, but its related to her perception of the environment that led her to
change the way she considers these information (e.g. As the community is

5

new, she considers that 0,6 is a fair value while she still respect the least
tolerated value advocated by the community).

2. Social-Context Awareness: Trust is closely tied to beliefs, values,
traditions, and norms of the society. The social dimension of trust received
considerable attention recet year but wasn’t completely explored leading to
closed trust models (i.e. insensitive to social influences). We think that, like
all our practices, trust is highly influenced by the social context we belong
to. This influence may be strict such as the law that obliges a person to let
a policeman enter his home, but in most of case is seamless and constitute
a kind of inspiration.

Example 3 Both Alice, Bob and Dave integrated social trust requirements
along with their individual ones for the trust assessment.

2.4.1 Desiderata

Our study of the above use cases led us to identify three important require-
ments for trust management within virtual communities. these requirements
should be considered as an extension of the more traditional requirements
for trust management that has already been raised in the literatures [18, 20].
Thus, in this report we are more interested in :

1. Identifying essential trust factors (i.e. sources of informa-
tion) based on wich VC members could build trust. We are
particularly motivated by stressing the importance of two kinds of
factors that are widely used in human societies: hard trust and soft
trust factors[11], where hard trust factors represent information de-
rived from security mechanisms such as keys, credentials and certifi-
cates, whereas soft trust factors encompass information that are in-
ferred from experience and observations of others.

2. Specifying how these factors are aggregated in trust assess-
ment. A lot of works tried mimic humans behaviour by capturing the
subjective aspect trust evaluations. Nevertheless, in most of the cases,
the subjectivity refers only to some kind of variations in the inputs/
outputs of the trust evaluation mechanism. Further, a direct implica-
tion from the previous point, which is stressed here, is the importance
of models heterogeneity which may exists from a community member
to another and even from a community to another. This heterogene-
ity implies the coexistence of different trust models within the same
environment. The question that arises here is how community mem-
bers deal with such heterogeneity when they have a fixed trust model.
In other words, do they need to use always the same trust model re-
gardless of the partner, the community or the situation? For instance,
what could an individual with an exclusively reputation-based trust

6

model do when he moves from collaborative and altruist community
to a dishonest and selfish one? Thus, trust models are fare to be inert.
they are in fact perpetually re-shaped to fit newly considered trust
criteria. None of the cited works address this dynamic aspect of trust
models where the set of used trust factors; the required values and
their weight within the trust assessment are constantly reconsidered.

3. Studying the co-influence of individual trust models on col-
lective ones and vice-versa. A trust model reflects minimal con-
ditions an entity requires in order to grant trust to another entity.
These entities are either atomic and represent individuals (e.g agent)
or aggregated and represent social structures (e.g. communities). The
influence of the community on the individual as the influence of the
individual on the society has already been studied for general decision-
making process. However, to the best of our knowledge, no work tried
to address the effect of such co-influence in regard to trust practices.
Indeed, on one hand, the community to which we belong considerably
affects our trust decisions as the way we are evaluating trust. On the
other hand, collective trust requirements constitute an image of indi-
vidual practices leading to a mutual influence between the individual
and the social trust mechanisms.

3 Foundations

In this section, we describe the basic foundations and concepts on which the
proposal is built.

3.1 System Overview

The system model (cf. Fig. 1) represents a multi-agent system S which is
defined by S = 〈C,A,R,O, I,F〉. Where C is a set of communities c, A is
a set of agents a, R is a set of resources r, O is a set of operations o, I is
a set of interactions ı taking place between agents and F is an ontology of
trust factors f among S.

Definition 1 (Communities) Agents from S with common interests join
together to form communities wherein they engage in frequent interactions.
Each community is governed under a set of social policies that describes
minimal conditions community members must use in their trust assessment.
∀c ∈ C, c is represented by 〈εCc ,Πc〉 where: εCc is unique identifier and Πc is
the set of social policies.

Example 4 With respect to the motivating scenario. The Android Devel-
opers platform DevCo constitutes the system wherein each project represents
a community. For instance, c is a community by the agent Bob.

7

Figure 1: System model overview

Definition 2 (Agents) Agents are autonomous entities, able to perform
operations on resources. By autonomous we mean that no agent has direct
control over operations of another agent. Each agent operates on the behalf
of the user he is representing and integrates as a Trust Management System
(TMS) protecting his private resources through trust-based decisions making
process. ∀a ∈ A, a = 〈εAa , κa, ωa, βa, ψa, T Pa〉, where, εAa is the agent’s
unique identifier, κa ⊆ 2O is the set of operations that a can perform (i.e.
capabilities), ωa ⊆ 2R is the set of resources under control of a, βa ⊆ 2O

are communities a belongs to, ψa ⊆ 2R×2
O×2O are rights agent a acquired

that state which operations a is allowed to perform on each resource, and
T Pa is set of trust patterns and ∀tp ∈ T Pa, tp = pa ∪ pc∪ ∈ MPa where
pa ∈ πa is and individual policy among the set πa of all individual policies
that has a, pc ∈ Πc is the social policy of the community to which a belongs
(i.e. the community c), and M(pa) is a set of meta-policies over the policy
pa

Definition 3 (Resources) Resources are passive artefacts in S on which
operation can be performed. ∀r ∈ R, r is represented by 〈εRr , τr, ςr〉 where:
εRr is its unique identifier, (ii) τr represents its type, τR ∈ {object,service,data,
credential} and ςr qualifies its sensitivity, ςr ∈ {private, public}. Public re-
sources could be manipulated by any agent without restrictions, while private
resource manipulation is limited to trustworthy agents and requires permis-
sion from an agent controlling them.

8

Example 5 Bob considers online-demo as service, the binary of the appli-
cation as an object, its source-code, the documentation wiki and the dis-
cussion boards as data while the members’ electronic addresses and their
PGP keys represents credentials. All these resources are private except the
discussion boards that are public.

Definition 4 (Operations) Operations represent the actions agents are
able to perform on a resource. Without loss of generality, we can classify op-
erations into types. ∀oi ∈ O, oi ∈ τO = {access, retrieve, alter, release, grant
,release, delegate}.

Definition 5 (Interactions) Interactions are message exchanged between
agents. Each interaction ı ∈ I is defined by 〈as, at, τı, θ〉, where as, at are re-
spectively the source and target agent of the message, τı ∈ {request, inform
,reply} is the interaction type and θ the content of the message and θ ∈ R.
Our focus will essentially be on requests where each request concerns a spe-
cific type of resources τr (with r ∈ R) and a specific type of operations
τo (with o ∈ O). An interaction starts when an agent ar ∈ A (called the
requester) sends a request to another entity ac ∈ A (called the controller)
asking him permission to preform an action on a private resource ac controls.

Definition 6 (Permissions) A permission issued from an agent ac to an
agent ar is a declaration stating which rights ac possesses with respect to
a specific resource r. Permissions are defined by 〈ac, ar, r,O+,O−〉 where
ac, ar ∈ A are, respectively, the issuer (i.e the controller) and the recipient
(i.e. requester) of the permission, while O+, O− ∈ O are, respectively, sets
of allowed and forbidden operations over the resource r.

Now that the system model been introduced, we will describe how trust is
built within such system by introducing our Trust Model.

3.2 Trust Model outline

Figure 2, illustrates our operational model for building trust and gives a
temporal vision about interactions between required concepts and the pro-
cess handling them. This model is used to be implemented by each agent a
of the system S.

3.2.1 Model description

Within the model, agent a evaluates the trustworthiness of a requester b
(where a, b ∈ A) based on a trust model resulting from the combination
of its individual trust requirements and the social ones. Both requirements
are concretely represented by use of trust policies. Individual policies
(π) constitute the agent’s requirements in regard of according trust. These

9

Figure 2: The Trust Model

requirements are stated by specifying restrictions on the concepts f of the
Trust Factors Ontology F (cf. section 3.3). Social policies (Π) represent
trust requirements imposed by the community (c here). They are used to
ensure minimal trust level for each interaction undertaken within the com-
munity. Meta-policies (M(p)) enable the user to specify how its individual
policies p could be adapted in order to handle specified events. Trust Pat-
terns (T P) have been introduced in the model in order to reduce complexity
and handle properly each type of request. In fact, as already mentioned, re-
quests are categorized into types and each request r is mapped into a unique
type τr. Thus, the model enables, for instance, the agent a to associate to
each type t ∈ τr ⊂ (τO × τR) an individual policy pta, a social policy ptc rela-
tive to the community to which a belongs and a set of meta-policiesM(pta)
in order to adapt his individual policy pta. Trust patterns (T Pta) consti-
tute an elegant way to structure and encapsulate policies and meta-policies
based on the request type they handle. Thus, trust patterns reduce the
complexity when specifying and managing trust policies while limiting the
aftereffect of an error when updating a policy. As depicted above, only the
appropriate trust pattern is selected and used avoiding accidents. Context
information are captured by meta-policies and handled by triggering poli-
cies adaptation. In our approach we principally used, but are not limited
to, the social and individual contexts. Social Context (SC) has a great

10

influence on trust decisions, whether the context is highly competitive or co-
operative, different trust requirements can be formulated affecting the way
decisions are taken. This model enables agents to make context-aware trust
decision based on such indicators. Thus, information such as the number
or agents are proposing the same resource (#providers) or the number of
agents looking for it (#requesters) constitute good examples of such social
context information. Personnal Contex (PC) are indicators agents uses
for adapting individual policies in order to fit user (i.e. represented by the
agent) requirements. Whether the requested resource is extremely sensitive
or its realease is highly rewarding, such information gives the agent indica-
tors on what to focus on: protecting the resource or releasing it. Concretely,
in the model, the individual policies are regularly weakened on strengthened
basede on risk and reward information for each resource and stated within
the user preferences.

Example 6 (Context) Bob is exlusively proposing a new performance test-
ing service for Android phones. As his service is sensitive to denial-of-service
attacks, he is using a policy that regulates the access to its service based on
users’ past behaviour. He fixed a bad-experience threshold to zero in order
to exclude agents that misbehaved at least one time by making abusive use
of his service. However, bob is also conscious that the community is open
and at each moment new agents may propose the same service, he is also
sensitive to the number of agents using his service. For that, his decided to
enable policy adaptation based on his social context.

3.2.2 Model features

The model outlined above offers three interesting features that, we believe,
deserves to be highlighted: it is rich, dynamic and combinative (i.e. socially
compliant). (i) Richness is relative to the subjectivity and the multidimen-
sionality of used trust factors in order to build trust. (ii) Dynamic refers to
the fact that it is constantly reshaped as it is illustrated in the figure wherein
individual policies evolve over time by integrating individual preferences, so-
cial context and social policies. Finally (iii) the model is combinative in the
sense that for each trust decision, the social requirements in regard trust
evaluation are integrated to individual ones leading to versatile and socially
compliant trust model. The combination of these features enables agents to
benefit from a more realistic trust model where they can build, reshape and
combine trust requirements at will.

3.3 Trust Factors Ontology

In the model characterized above, the trust model represents a specification
of trust factors aggregation function. For that, the Trust Factors Ontology
(TFO) (see Fig. 3) is central to our approach. It is used to capture and

11

represents essential requirements that constitute the basis for establishing
trust between agents.

3.3.1 Toward semantically enabled trust models

According to [9], an ontology represent a specification of a shared conceptu-
alization. The conceptualization refers to the choices on the way to describe
a domain (e.g. trust requirements), the specification represents its formal
description, while shared means that these conceptualization specification
is shared among the members of a system. Ontologies are particularly in-
teresting for modern trust management within virtual communities (and
multi-agent systems as well) for several reasons. (i) First, in order to es-
tablish trust, a requester is required to provide some specific information
that satisfies the controller trust requirements. These information and their
semantics should be unambiguous and shared among agents of the system.
Second (ii), agents within a community are asked to combine social trust
requirements with their individual ones. Such combination would not be
possible without a common description of these requirements. (iii) Further,
agents who newly joined community may also need to discover what kinds
of requirements they could use and which values they should accept for their
trust assessment, the need for a semantically rich description of the trust
factors arise again here. Also (iv), the structure representing trust require-
ments should extensible as new requirements could/should be added at need.
Finally, in virtual communities where individual is constantly reshaped by
social influences, ontology is crucial for agents with different trust models
in order to communicate and share trust information (e.g. reputations and
experiences). Therefore, the need for a formal, semantic and extensible rep-
resentation of trust factors is leading the ontologies to be preferred to other
representations.

3.3.2 TFO description

Different from existing ontologies [2], TFO concepts are derived from liter-
ature review and analysis of existing trust models (see section 2). Most of
these models, however, emphasize some factors and abstracts away others,
while it is assumed that the integration of various factors provides agent
with optimal set of trust requirements [14]. Therefore and as outlined in
section 2, the Trust Factors considered in the TFO as sources of informa-
tion for trust evaluation are not limited. We refer instead to any factor that
may be pertinent for trust evaluation. In this way, doors remain wide open
for any sources of information for trust decisions to be further added.

Definition 7 (Trust Factor) A trust factor fi ∈ F is a tuple (τf ,∆f)
where τf is the type of the fi and ∆f its domain (i.e. the set of values fi
can take).

12

Example 7 (Trust Factor) (reputation,+0.6) and (identity, ”Trusted”)
are examples of trust factors used by DevCo are using.

The whole set of trust factors types (τf ∈ F) is hierarchically structured and
forms the Trust Factors Ontology, as illustrated in Figure 3. The first level

Figure 3: The Trust Factors Ontology

root concept represents a generic trust factor type, it is further divided in two
sub-types proofs and indicators: proofs represent all digitally signed state-
ments, while indicators include the set of all possible facts stored internally
or gathered from external sources. Even if they are impossible to check and
may be subject to tempering, proofs are valuable hints for trust evaluation
in many situations (e.g. when no certification authority exists). For simplic-
ity reasons, we’re considering in our ontology, identities, authorizations,
and certified properties as proofs, while experience (direct and indirect)
and reputation (direct and indirect) are considered as indicators of trust.

Example 8 (proofs and indicators) In the running example, agents are
using PGP [1] model for the identities management, Authorizations repre-
sent permissions controllers’ issues and two types of properties are consid-
ered, skills and familiarization (e.g. how an agent is skilled in Java and how
much he is familiar with Android applications).

13

3.3.3 TFO features

As the domains ∆f of trust factors values are quite heterogeneous (i.e. sets
and intervals), and in order to be able to use the same management mecha-
nism for each fi ∈ F , we defined a relation hasStrength : fi 7→ l, where l ∈ L
is a level representing fi’s strength. While the levels can be as finely grained
as desired, we adopte the set of levels L = {V eryLow,Low, Fair,High,
V eryHigh}. With the same mechanism function hasImpact : fi → N∗

is defined in order to associate to each fi an impact value representing its
weight among the trust decision.

Definition 8 (Trust Criteria and Trust Information) When f ∈ F is
used to express a trust requirement we call it a trust criterion (TC). When
f is used to state (realease or gather) an information used in order to fulfill
a TC, its called a trust Information (TI).

The ontology F is used within the model (cf. Fig. 2) in three different ways.
(i) For policies specification where τF are used as types and the l ∈ L as
thresholds for restrictions; (ii) for policies adaptation where F offers values
ordering agents refers to in order to strengthen or weaken their policies; and
(iii) while combining individual and social policies where it offers referential
values set for choosing the most restrictive policy. Mapping each fi ∈ F
enables agents (if needed) not to care about heterogeneity of values and
to express trust critetia at abstract level, while being able to map such
abstract values with concrete ones at will. These criteria are then checked
in comparison with acquired trust information.

Example 9 (Trust Criteria and Trust Information) Agent a wants to
limit the access to the online demo of his service to requesters having a
reputation of at least +0.6. a states then TC = (Reputation,+0.6) and
when he receives an access request r of type τr = (access, service) from
an agent b, in order to check whether b satisfies his criterion he needs
to acquire a trust information about b’s reputation. Hence, when a ac-
quires TI = (reputation,+0.8) about b he considers that his, quite ba-
sic, trust requirement is satisfied and may decide to issue the permission
(a, b, {access}, {}).

4 Trust Policies

The trust model represents a specification of trust factors aggregation func-
tion. This function is expressed through trust policies, wherein restrictions
on types, acceptable values and weights of trust factors are stated (i.e TC
expression). This section presents how the previous trust model is concretly
expressed in order to implement the semantic of rich, dynamic and combi-
native trust. It introduces the policy language formalism and describes how
policies and Meta-policies are expressed using that formalism.

14

Definition 9 (Policies) Let P = (π ∪Π) be the set of all policies where π
and Π are respectively the sets of all individual and social policies within the
system S. ∀p ∈ P = (π ∪Π), p ∈ 2τF×ℵ×N where ℵ is either a level l ∈ L or
a value v ∈ F .

4.1 Expression formalism

Besides its expressivity and ease-of-use, the required formalism to represent
policies must be flexible enough to allow adaptation and combination of poli-
cies by adding, removing and updating trust criteria. In order to address
such requirements, we adopted first-order predicate structures in order to
represents policies. These policies are represented using programming lan-
guage statements. Prolog is especially interesting as it is declarative and
can express a wide range of constraints [6]. For meta-policies, Jason[7], an
extension of AgentSpeak [15] (Prolog extension for BDI architectures) has
been used. This language offers better practical programming features en-
abling the combination of declarative and procedural approaches. The most
interesting issue in representing meta-policies with this language are plans.

4.2 Representing policies

Policies are represented as a set of TC. Now, let T = {tc1, tc1, ..., tcn, }
be a set of trust criteria. Each tci, (i ∈ [1, n]) is a triplet 〈τi,ℵi, wi〉. τi
corresponds to existing trust factors τf ∈ F , ℵi is a threshold value or level
from among possibilities, while wi ∈ N∗ represents the weight of the tci. Let
pta = {tc1, tc2, ..., tcm} be the policy used by the agent a ∈ A associated to
the request τr. The policy is assimilated to a function f(r, l) = f(pta) that
evaluates the trust level l relative to an instance request r ∈ I of type t.
Then :

f(pta) =

∑m
i=1 f(τi,ℵi, wi)∑m

i=1wi
(1)

Where f(τi,ℵi, wi) ∈ [0, wi] is the weighted evaluation of the constraint ℵi
satisfaction on the criterion of type τi. Relative importance assigned to
each trust criterion is modelled as the weight wi of a criterion within the
policy. Each criterion is then evaluated and returns one (1) or zero (0),
respectively, whether the criterion is fulfilled or not. This result is then
multiplied by the wx which is the weight associated to tci and returned
by f . This policies representation is used to represent both individual and
social policies. ∀pti ∈ P, if i ∈ A then pti is an individual policy and belongs
to π, if i ∈ C then pti is social policy and belongs to Π.

Example 10 (individual and social policies) Let r = (alter, object) be
a request type. The individual policy agent a uses in order to issues permis-
sions for requests of type r is stated as follow: pra = {〈identity, trusted, 2〉, 〈
reputation ,High, 1〉}. While community c to which a belongs obliges its

15

members to use the following policy in handling requests of type r : pra =
{〈identity, V eryHigh, 3〉, 〈reputation,+0.5, 1〉}.

4.3 Representing Meta-policies

As mentioned in previous sections, meta-policies state how a policy could
be changed to handle a specific context. The meta-policies presented in this
report are specified by means of AgentSpeak plans. Plans could be described
by means of an informal pseudo-code under which each plan is a sequence
of event-condition-action rules of the form: Upon〈event〉 : If〈condition〉 ←
Do〈action〉 where 〈event〉 represents a triggering events, 〈condition〉 is a
general expression, typically a conjunction or a disjunction of literals to be
checked before the execution of the plan. Conditions filters defined over the
social context, the agent preferences, the requester or the requester resource,
while the 〈action〉 is one or more adaptation actions specified by the agent
in order to adapt its policy. The key feature in using Jason plans lies in the
possibility to execute legacy code through internal actions. In this work,
we use internal action to execute adaptation operations presented in our
trust model (for more details on AgentSpeak plans see [15]). The result
of the execution of each meta-policy affects the original policy by adding,
removing, changing restricting or relaxing one or more trust criteria. The
adaptation process will be described with more details in the next section.

Example 11 (Meta-policies) The agent a is particularly vigilant in re-
gard to the number of agents using his service and the risk associated to
such use. He wants then to express adaptation meta-policies in order to
adapt dynamically his policy depending on this information. Let r be an
access request on the service andro, where τt = (access, service) and pra be
the policy a uses to handle such request from an agent b. Meta-policies he
may state are as follow:
Adapt(pra1 , a2, andro) : Number(users,X)&Threshold(users, Y) ∧ (X <
Y)← .relax(reputation).
Adapt(pra1 , a2, andro) : Risk(randro,X)&Threshold(risk,X)∧(X > Y) ←
.restrict(reputation), .add(〈”identity”, ”Trusted”, 3〉.)
The first meta-policy lowers the required reputation value depending on the
users amount while the second increases it and adds an identity creteria
when the risk is over a certain threshold. Both meta-policies has been ex-
press using Jason plans.

5 ASC-TMS : An Adaptive and Socially Compli-
ant TMS

This section presents essential components of our Socially Compliant Trust
Management System (ASC-TMS) that assists agents (each agent is equipped

16

with a personal ASC-TMS) in their trust decision-making process. ASC-
TMS is an on-going project that implements the adaptive and combined
trust model presented in this report.

5.1 Framework design

The abstract architecture depicted in Figure 4, illustrates our proof-of-
concept implementation. We use the JACAMO platform [16] to leverage
the requirements discussed earlier while preserving the generality of the ap-
proach. The architecture is essentially composed by five main modules and
each modules is responsible of a specific operation.

As the principal objective of the framework is the management of trust

Trust
Patterns
Manager

Trust
Policies
Adapter

Trust
Policies
Combiner

Trust Broker

Patterns
Manager

Policy
Adapter

Policy
Combiner

Policy
Checker

Trust
Patterns Preferences

Proofs
Manager

Indicators
Manager

ASC-TMS

Request Trust Evaluation

1

2

3

4 5

6 6

7 8 9 10

11

12

13

Context Manager

Figure 4: ASC-TMS Framework Architecture

policies by realising the operations presented within the model, we decided
to present the framework in respect to its functional features rather then
describing the components. The focus will be on essential operations while
the others will be briefly described. Selection (1-4) operations are realised
by the Trust Broker module where the appropriate trust pattern to each re-
quest is retrieved from the Patterns Manager based on a mapping matrix (
τq → τO × τR) Management (3) realises the creation and the maintenance
of TPs. It enables the user to specify for each request type, the individ-
ual policy and associated meta-policies. Social policies are automatically

17

retrieved from the community and integrated to the TP. The maintenance
is processed when one of the policies needs to be updated.

Function Combine(pµ,ρa ,pµ,ρc)

SP ← pµ,ρc ; IP ← pµ,ρa ; TP ← ∅ ; i← 0
while SP 6= ∅ do

foreach SP.tcx ∈ SP do
if tcx.τx /∈ IP then

TP.tci ← tcx
SP ← SP − {tcx}
i← i+ 1

while IP 6= ∅ do
foreach IP.tcx ∈ IP do

if tcx.τx /∈ SP then
TP.tci ← tcx
IP ← SP − {tcx}
i← i+ 1

forall the tcx ∈ SP , tcy ∈ IP s.t. tcx.τx = tcy.τy do
TP.tci ← 〈τi,max(tcx.νx, tcx.νy),max(tcx.wx, tcy.wy))〉
SP ← SP − {tcx}
IP ← IP − {tcy}
i← i+ 1

return SP

Adaptation (5-7) is carried out by the Policy Adapter which integrates
five main operations : Add, Remove, Set, Relax, Restrict. Each op-
eration implements an internal action that is triggered by a meta-policy.
The Policy Adapter regularly updates its beliefs-base. When the condition
of a meta-policy holds the plan is executed and specified actions are per-
formed. Adaptation is then achieved by the execution of one or more of the
following internal actions: .add(〈ti, νi, w1〉) : this action adds the criteria
〈ti, νi, w1tci〉) in the current policy. If another TC of the same type exists, a
.set(〈ti, νi, w1tci〉) is triggered otherwise. .remove(ti) : the actions removes
all TC of the type ti. ti is either a specific type as the identity or a general
one such as proofs or indicators. .set(〈ti, νi, w1〉) : this action affects ti and
νi, w1, respectively, to the strength and the weight of the TC of type ti in the
current policy. If such TC does not exists, an .add(〈ti, νi, w1〉) is triggered.
.restric(ti) / .relax(ti) : These two actions are quite similar. When no pa-
rameter is given, all TC of the policy are affected by the action. Otherwise
only the specified trust criterion is affected. This action checks the TFO
for a lower (resp. higher) value for the specified TC. If such value exist, a
set with the new value is called other wise the weight of the TC is lowered

18

(resp. incresed). If the weight becomes null, the TC is removed.

Combination (8-9) consistes in combining the individual policy along
with the social one.

Definition 10 (Combining Policies) Let Pa be the policies set of the
agent a, ∀pa ∈ Pa, pa is dedicated to a specific request type τq ⊂ (τO × τR).
Let t ∈ τq, pta is the policy the agent a generates to handle a request of the
type t = (µ, ρ) within the community c and pµ,ρa ∈ πµ,ρa , pµ,ρc ∈ Πµ,ρ

c are,
respectively individual and social policies set dedicated to the request type t.
pta = pµ,ρa ⊕ pµ,ρc means that the policy pta is obtained by combining pµ,ρa , pµ,ρc
while pta the resulting policy is at least as restrictive as pµ,ρa ∪ pµ,ρc
When the policy combiner receives the policies to be combined. It executes
the heuristic sketched above (cf. Combine).

Evaluation (10-12) is realised by the Policy Checking module. This
part of the framework behaves as basic Trust Management System in a
way that it evaluates the policy satisfaction by confronting policy TCs to
received and/or gathered TI. When this agent receives a policy to check
(10), and after parsing it, it identifies the types of the TC. Proofs are
requested from the Proofs Manager (11), while indicators are collected by
the indicators manager (11’). When all TIs has been received, the module
executes the function described in the previous section (cf. section 4.2) in
order to compute all verified TC. The final result is a quantitative evaluation
stating the amount of satisfied criteria out of the initially formulated ones.

6 Conclusion And Future Works

We introduced in this report the notion of social compliance for trust man-
agement within virtual communities. In order to realize it, we developed a
rich, dynamic and combinative model that mimics trust features (i.e. subjec-
tivity, dynamics and context awareness) and preserves real world semantics
of trust. We began by exploring and isolating commonly used trust factors
from the literature in order to enhance subjectivity. We outlined then a new
trust model where individual requirements are adapted and merged with so-
cial ones. The originality of this proposition lies in the use of dynamic and
adaptive trust policies (and meta-policies) in order to capture and represent
the dynamisms of trust. Finally, we made the first steps towards design-
ing a Socially Compliant Trust Management System (ASC-TMS) based on
Multi-agent technologies.
The next steps in our work include extending the model in order to integrate
individual trust requirements (policies) into social ones. The idea would be
to study how agents may influence / trigger adaptation or evolution of social
policies. We also plan to investigate mechanisms to automatically build so-
cial policies from individual ones. Such feature is particularly interesting for

19

decentralized and self-organized communities like social networks (diaspora
for example).

References

[1] A. Abdul-rahman. The PGP Trust Model. Architecture, pages 1–6, 1997.

[2] P. Anantharam, C.A. Henson, K. Thirunarayan, and A.P. Sheth. Trust
Model for Semantic Sensor and Social Networks : A Preliminary Report.
Scenario.

[3] D. Artz and Y. Gil. A survey of trust in computer science and the
semantic web. Web Semant., 5:58–71, June 2007.

[4] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized Trust Management.
In Proceedings of IEEE Symposium on Security and Privacy, 1996.

[5] P. Bonatti, C. Duma, D. Olmedilla, and N. Shahmehri. An Integration
of Reputation-based and Policy-based Trust Management. Management.

[6] P. Bonatti and P. Samarati. Regulating service access and information
release on the web. In Proceedings of the 7th ACM conference on Com-
puter and communications security, CCS ’00, pages 134–143, New York,
NY, USA, 2000. ACM.

[7] R.H. Bordini and J. Hübner. Semantics for the jason variant of agents-
peak. In Proceeding of the 2010 conference on ECAI 2010, pages 635–
640, Amsterdam, The Netherlands, The Netherlands, 2010. IOS Press.

[8] R. Falcone and C. Castelfranchi. Social trust: a cognitive approach, pages
55–90. Kluwer Academic Publishers, Norwell, MA, USA, 2001.

[9] T. Gruber. Toward Principales for Design of Ontologies Used for Knowl-
edge Sharing, 1993.

[10] A. Herzberg, Y. Mass, J. Michaeli, Y. Ravid, and D. Naor. Access
control meets public key infrastructure In Proceedings of the 2000 IEEE
Symposium on Security and Privacy, 2000.

[11] A. Jøsang. Foundations of security analysis and design iv. chapter
Trust and reputation systems, pages 209–245. Springer-Verlag, Berlin,
Heidelberg, 2007.

[12] Karl K., Mogens N., and Vladimiro S. A framework for concrete
reputation-systems with applications to history-based access control. In
In Proc. of the 12th CCS, pages 7–11, 2005.

20

[13] A. J. Lee, T. Yu, and Y. Le Gall. Effective trust management through
a hybrid logical and relational approach. pages 169–179, 2010.

[14] D.W. Manchala. E-commerce trust metrics and models. IEEE Internet
Computing, 4:36–44, March 2000.

[15] A. Rao. AgentSpeak (L): BDI Agents speak out in a logical computable
language. (L), 1996.

[16] A. Ricci, J.F. Hubner, R. H Bordini, and O. Boissier. JaCaMo Project,
2010.

[17] J. Sabater and C. Sierra. Regret: A reputation model for gregarious
societies. pages 61–69, 2001.

[18] K. Seamons, M. Winslett, T. Yu, B. Smith, E. Child, J. Jacobson,
H. Mills, and L. Yu. Requirements for policy languages for trust negoti-
ation. In Proceedings of POLICY ’02, USA, 2002.

[19] Li X. and Ling L. Peertrust: Supporting reputation-based trust
for peer-to-peer electronic communities. IEEE TRANSACTIONS ON
KNOWLEDGE AND DATA ENGINEERING, 16:843–857, 2004.

[20] J. L. De Coi, D. Olmedilla A Review of Trust Management, Security
and Privacy Policy Languages International Conference on Security and
Cryptography (SECRYPT 2008). INSTICC Press, July 2008.

21

