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ABSTRACT 
The semi-empirical electrolyte NRTL (eNRTL) model [1,2,3,4], also referred to as the model of 
Chen, is a versatile model for the excess molar Gibbs energy, capable of describing 
multicomponent electrolyte systems over wide ranges of state conditions. The model represents 
the excess Gibbs molar energy as the sum of two contributions, the first one of which accounts 
for long range electrostatic forces between ions, and the second one for the short range forces 
between all species. In single solvent systems, the long range interaction contribution consists of 
a term originating from the Pitzer-Debye-Hückel (PDH) equation [5]. A modified version of the 
Non-Random-Two-Liquid (NRTL) local composition model of Renon and Prausnitz [6] accounts 
for the short range interaction between all the species in their immediate neighbourhood. The 
most general form of the eNRTL activity coefficient expressions for both, individual species as 
well as mean ionic quantities have been implemented in the JAVA language. Model parameters 
for different strong electrolytes are provided by means of a data bank in the xml file format. The 
program code of the model implementation has been incorporated into the program package 
“gashydyn” developed in our group and allowing for performing equilibrium calculations 
involving gas hydrate phases. The correctness of the program implementation of the eNRTL 
expressions has been verified by comparing the results of numerous examples with corresponding 
literature results, including the composition dependence of the mean ionic activity coefficient of 
binary salt + solvent mixtures as well as of ternary salt 1 + salt 2 + mixtures. For the ternary 
systems, the influence of different values for the salt-salt binary interaction parameter is 
illustrated. Calculations on HLV phase equilibria of ternary H2O + salt + gas and quaternary 
H2O + salt + gas 1 + gas 2 systems have been performed. The calculations are based upon an 
equation of state approach for the gas phase, the van-der-Waals and Platteeuw model for the 
clathrate hydrate phase and the eNRTL model to account for the liquid phase non-idealities. The 
results reveal that a satisfying correlation of the experimental p-T-phase equilibrium data can be 
achieved with results ranging from around 1 to 15 %. 
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NOMENCLATURE 

Aφ – Pitzer-Debye-Hückel constant [] 
α – nonrandomness factor [] 
φ – Osmotic coefficient [] 
G – Boltzmann kind factor [] 

E
m

γ – Activity coefficient [] 
 – Excess molar Gibbs energy [J·mol-1] 

I – Ionic strength [] 
m – Molality [mol kg-1] 

AvN  – Avogadro’s constant [mol-1] 
exp dataN  – Number of experimental data points [] 

ν  – stoichiometric coefficient [] 
p – Pressure [bar, MPa] 
ϑ – Celsius temperature [°C] 
R – Perfect gas constant [J·K-1·mol-1] 

relσ  – Root mean square deviation (relative) [] 
T – Temperature [K] 
τ – Energetic interaction coefficient [] 
x – Mole fraction [] 
X – Effective mole fraction [] 
Y – Ionic charge fraction [] 
z – Charge number of ionic species i [] 



subscripts 
A – Anion with charge number zA < 0 
calc – Calculated 
C – Cation with charge number zC > 0 
CA – Binary salt composed of Cν  cations and Aν  
anions 
exp – Experimental 
i,j,k – Any kind of species 
LR – Long range interaction contribution 
l – Index numbering experimental data point 
m – molar 
m – Molecular species and referring to molal 
concentration scale, respectively, depending on the 
context 
SR – Short range interaction contribution 
s – solvent species 
x – referring to mole fraction concentration scale 
w – water 
 
superscripts 
∗  – unsymmetric convention for normalization of 
activity coefficients 
∞  – infinite dilution 

 – pure component state 
○  – Standard value (here: molality 11 mol kg−= ) 

¯ – concentration quantity based on stoichiometric 
mole numbers 
 
INTRODUCTION 

In electrolyte systems both, electrically neutral 
molecular species as well as charged particles are 
present [1]. Due to the additional presence of long-
ranging electrostatic interactions between the ions 
being inversely proportional to square of their 
mutual distance, the thermodynamics of electrolyte 
solutions is significantly more difficult than the 
treatment of nonelectrolyte systems [7]. Contrary, 
the forces acting between ions and molecules and 
molecules and molecules, respectively, are 
dominant on shorter distances. Hence, in 
electrolyte solutions, three types of interactions 
have to be distinguished [1]: a) Ion-ion interactions 
(electrostatic, long-ranging); b) Ion-molecule 
interactions (dominant interactions: electrostatic 
forces between ions and permanent dipoles, large 
compared to thermal energies [8], short-range in 
nature); c) Molecule-molecule interactions 

(electrostatic forces between permanent dipoles, 
induction forces between induced dipoles, 
dispersive forces between non-polar molecules, 
short-range in nature). These microscopic 
characteristics of electrolyte solutions are to be 
taken into account by semi-empirical models 
capable of describing appropriately the 
thermodynamics of electrolyte systems. 
Numerous semi-empirical excess Gibbs energy 
expressions have been proposed for electrolyte 
systems (e.g. by Bromly (1973) [9], Pitzer 1973 
[10], by Cruz and Renon (1978) [11], by Chen et 
al., 1982, 1986, 2001 [1,2,12], by Iliuta et al., 2002 
[13]; Papaiconomou et al., 2002 [14]) [3]. Models 
for the excess Gibbs energy of electrolyte solutions 
taking into account the nature of the different 
forces by individual terms often represent the 
excess molar Gibbs  energy explicitly as a sum 
of a long-range and a short range contribution. 
From these  model equations expressions for 
the activity coefficients of electrolyte solutions can 
explicitly be derived. Variations or equivalents of 
the Debye-Hückel theory typically comprise the 
term accounting for the long-range interactions 
attributed to electrostatic forces between ions [3]. 
The short-range term is represented by modified 
versions of well-proven expressions for 
nonelectrolyte systems that account for the 
contributions arising from the short-range local 
interactions of various kinds [3]. The approach 
used for the short-range contribution can be 
empirical or based on molecular theory [7]. The 
model of Pitzer (1973) [10] and the eNRTL model 
of Chen et al. (1982, 1986, 2004, 2008, 2001) [1-
4,12] have gained the widest recognition among 
the excess Gibbs energy models for electrolyte 
solutions. Both models have received wide 
acceptance in industrial practice of thermodynamic 
modeling of electrolyte systems [3]. In comparison 
with the model of Pitzer [10], the model of Chen et 
al. has no limitations with regard to the 
concentration range and can also treat mixed 
solvent-systems. Since it principally can describe 
electrolyte solutions over the whole concentration 
range, saturated solutions, fused salt and non-
electrolyte mixtures are covered as special cases by 
the model equations [3]. 

E
mG

E
mG

 



THE ENRTL MODEL 

The eNRTL model describes the excess Gibbs 
molar energy of – in the most general case – a 
multicomponent electrolyte system by referring to 
the basic microscopic characteristics of electrolyte 
solutions. Therefore, the model accounts explicitly 
for the long ranging inter-ionic forces and the short 
range forces acting between the various species 
present in the solution by splitting up the excess 
Gibbs molar energy  into the sum of E

mG ∗ E
m, LRG ∗  

and , respectively, according to: E
m, SRG ∗

E E E
m m, LR m,G G G∗ ∗ ∗= + SR  (1) 

where stands for the long-range and E
m, LRG ∗ E

m, SRG ∗  
for the short range contribution to E

mG ∗ . The 
asterix denotes the unsymmetric reference state 
(see explanations below). 
 
On the origin of the two contributions 

In the eNRTL model, the long range contribution 
is modeled by a Debye-Hückel term as modified 
by Pitzer [5], i.e., . In the derivation 
of the Pitzer-Debye-Hückel (PDH) as well as the 
Debye-Hückel equation, the solvent is treated as a 
dielectric continuum. The thermodynamic set of 
independent variables underlying these equations 
is the one of the so-called McMillan-Meyer-
framework [15], that is to say temperature, molar 
volume, the chemical potential of the solvent and 
the mole numbers of all solute species. Therefore 
the Pitzer-Debye-Hückel (PDH) equation is based 
on an unsymmetric reference state whereby  
vanishes when the solvent mole fraction reaches 
unity: 

E E
m, LR m, PDHG G∗ ∗=

E
m, PDHG ∗

s

E
m, PDH1

lim 0
x

G ∗

→
=  (2) 

where sx  denotes the mole fraction of the solvent 
species (for the definition of different 
concentration quantities used to describe the 
composition of electrolyte solutions see further 
below.).  is equivalent to the condition 

, explaining the term “unsymmetric”. 
 vanishes if the pure component state is 

approached for the solvent, but the state of infinite 
dilution for the solute species. 

s 1x →
0ii s

x
≠

→∑
E
m, PDHG ∗

A modified version of the Non-Random-Two-
Liquid (NRTL) model of Renon and Prausnitz [6] 

is used to describe the short range contribution 
E
m, SRG ∗ ,. The NRTL model is based on the local 

composition concept, i.e.,  E E
m, SR m, mod-NRTLG G∗ ∗=

E
m, LCG ∗=  In contrast to the Pitzer-Debye-Hückel 

model, the modified NRTL model is based on a 
symmetric reference state, i.e., it provides an 
expression for , the symmetric molar excess 
Gibbs energy rather than for . As reference 
states the model uses the pure liquid solvent, and 
the hypothetically homogeneously mixed pure 
molecular and electrolyte solutes, respectively: 

E
m, SRG

E
m, SRG ∗

s

E
m, SR1

lim 0
x

G
→

=  (3) 

E
m, SR1

lim 0
mx

G
→

= , (4) 

CA

E
m, SR1

lim 0
x

G
→

= , (5) 

Where sx , mx  and CAx  denote the stoichiometric 
mole fractions (see explanations below) of the 
solvent, the molecular solute components, and the 
electrolyte solute components, respectively. 
 
The composition of the system 

In the most general case considered here the 
system is a multicomponent electrolyte solution 
consisting of 1mN +  molecular components 

0 1 mN , where 0  stands for the 
molecular solvent component (here water), and 

1 mN  for the additional molecular solute 
species, respectively, in addition to C

, , ,m m m…

m m…

s wm = =

, ,
N  cationic 

species 
C
 and A1C , ,CN… N  anionic species 

A1 , respectively. The corresponding sets 
of species are denoted by ,  and , i.e. 
A , , AN…

mS CS AS

{ }0 1, , ,
mmS m m m= … N  (6) 

{ }CC 1C , ,CNS = …  (7) 

{ }AA 1A , , ANS = …  (8) 

The systems treated here are comprised of strong 
electrolytes 

C, CA A, CA
 (abbreviated as CA)  

which dissociate completely into C, CA

C Aν ν
ν  cations 

CCz +  and A, CAν  anions  according to: A| |A z −

C A

C, CA A , CA

| |
C, CA A, CAC A C Az z

ν ν ν ν+ −→ +  (9) 



The system composition can either be character-
ized by means of the mole fraction ix  of any 
species , calculated from the corresponding mole 
numbers of 

i
jn  according to: 

C Am

i
i

j
j S S S

nx
n

∈ ∪ ∪

=
∑

   (for all Cmi S S SA∈ ∪ ∪ ) (10) 

The composition can also be described terms of the 
amount of the chemical components regardless of 
what happens to their particles when being 
dissolved. These quantities are called here 
“overall”, “apparent” or “stoichiometric 
quantities”. For example, the overall molality km  
of component k  is defined as: 

s s

k
k

nm
n M

=    (for all { } { }CA \ smk S S∈ ∪ ) (11) 

 
Activity coefficients 

The activity coefficient ,x iγ  describing the non-
ideality of a phase (mostly applied to quantify the 
liquid phase non-ideallities) can be derived from 
an expression for the excess molar Gibbs energy 

 according to: E
mG

( )E
m

,

, ,

1ln
j i

x i
i

T p n

nG
RT n

γ
≠

⎛ ⎞∂
⎜ ⎟=
⎜ ⎟∂⎝ ⎠

 (12) 

With the symmetrically referenced activity 
coefficient ,x iγ , the unsymmetrically referenced 
activity coefficient can be gained by 

,
,

,

x i
x i

x i

γ
γ

γ
∗

∞=    (for all { } { }C A \ smi S S S∈ ∪ ∪ ) (13) 

Where ,x iγ ∞  refers to the activity coefficient at 
infinite dilution. The activity coefficient refers to 
the mole fraction as composition scale. Conversion 
to the value referring to the molality is done by: 

, ,m i x i sxγ γ∗ ∗=    (for all { } { }C A \ smi S S S∈ ∪ ∪ ) (14) 

 
The long range interaction contribution 

As outlined above, in the framework of the eNRTL 
model the long-range contribution to , E

mG ∗ E
m, LRG ∗ , 

is accounted for by a version of the Debye-Hückel 
expression as modified by Pitzer [4]: 

E E
m, LR m, PDH

s4
G G

A M m
RT RT φ

∗ ∗

= = − ○( ) (1 2 1 2ln 1x
x

I )Iρ
ρ

−
+  (15) 

In eq. (15) R  denotes the universal gas constant, 
 the absolute temperature, ST M  the molecular 

weight of solvent, Aφ  the Pitzer-Debye-Hückel 
constant, m ○  the standard value of the molality, 
ρ  the closest approach parameter, and xI  the 
ionic strength, defined with respect to the mole 
fraction concentration scale, respectively. Aφ  in 
turn can be expressed by: 

3 21 2 2
Av s

s B

21
3 1000

N eA
k Tφ

π ρ
ε

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
, (16) 

where AvN  and B  stands for the Avogadro and 
the Boltzmann constant, respectively,  for the 
elementary charge and s

k
e

ρ  and sε  for the density 
and the dielectric constant, of the solvent, 
respectively. The symbols for sρ  and sε  are 
endowed with the superscript “°” to indicate that a 
pure solvent is assumed here. xI  is defined through 
the relation: 

C A

21
2x i i

i S S
I

∈ ∪

= ∑ z x  (17) 

The summation in eq. (17) runs over all ions in the 
solution. 
In case of water being the solvent, i.e., s w≡ , the 
Debye-Hückel parameter  is provided 
as an empirical function in the temperature by 
Chen et al. (1982) [1]. The function was obtained 
from a data correlation of the 

)(TfA =φ

Aφ -values reported 
by Silvester and Pitzer [16] and was also used here. 
The closest approach parameter is in accordance 
with the work of Chen and co-workers set to a 
value of 14.9 [1,2]. 
The general expression for the long range 
interaction contribution to the activity coefficient is 
derived from eq. (15) and eq. (12): 

, , LR

s

ln x i

A M mφ

γ ∗ =

− ○( ) ( )
2 2 1 21 2 1 2

1 2

2 2ln 1
1

i i x
x

x

z z II
I

ρ
ρ ρ

− ⎛ ⎞⎛ ⎞ −
+ +⎜ ⎟⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠

3 2
xI

 (18) 

The expression above is valid for all types of 
species, ionic as well as molecular solute and 
solvent species, i.e., C Ami S S S∈ ∪ ∪ . 
 



The modified NRTL model describing the short 
range contribution to multicomponent systems 

Based on the theoretical framework of the binary 
version of the model [1], the modified NRTL 
model is generalised to systems containing 1mN +  
molecular species 0 1 mN , C, , ,m m m… N  cationic 
species 

C
 and A1C , ,CN… N  anionic species 

. The molecular component 0m  
( 0 .  assumed here) is regarded as the 
solvent component, treated differently with regard 
to the normalisation of its activity coefficient. 

A1A , , AN…
sm ≡ s w=

The reference value for defining the short range 
contribution of the excess molar Gibbs energy is 
the residual molar Gibbs energy of the pure 
molecular component/species for molecular 
species m  and the hypothetically 
homogeneously mixed completely dissociated 
liquid electrolyte mixture [2] is used as reference 
state for the residual molar Gibbs energy of ionic 
species  and  respectively 

m S∈

CC S∈ AA S∈
R
m, -cellmG = mmg    (for all ) (19) mm S∈

A

R
m, C-cell C A A C

A S
G z Y g′ ′

′∈

= ∑    (for all ) (20) CC S∈

C

R
m, A-cell A C C A

C
| |

S
G z Y g′ ′

′∈

= ∑    (for all ) (21) AA S∈

With regard to the activity coefficients for the 
individual ionic species the symmetrical reference 
frame implies that the activity coefficients 
approach unity only, if for a given CC S∈  (or 

A ) all other ions vanish except for another 
single counter ion A  (or CC ). This 
corresponds to the state of the pure, hypothetically 
homogeneously mixed liquid pure electrolyte 
component . In eqs. (20) and (21), AY  and CY  
stand for the so-called ionic charge fractions 
defined according to: 

A S∈
A S∈ S∈

CA

C

C
C

C
C S

XY
X ′

′∈

=
∑

 (22) 

A

A
A

A
A S

XY
X ′

′∈

=
∑

 (23) 

Ín eqs. (22) and (23), iX  are the effective mole 
fractions iX  of species  which are given by. i

i i iX x C=
C A

1 for
| | for

m
i

i

i S
C

z i S S
∈⎧

= ⎨ ∈ ∪⎩
 (24) 

In a manner analogue to the procedure for deriving 
the -expression for binary mixtures, the 
corresponding equation for multicomponent 
systems is derived: 

E
m, SRG

C A

C A

A

C A

A

C

A

C

E
m, SR

C,A C C,A C

C A
C A C,A C

A,C A A,C A

A C
A A,C A

m

m

m

m

m

m

m

j j m j m
j S S S

m
m S k k m

k S S S

j j j
j S S

S S j j
k S S

j j j
j S S

S c k k
k S S

X G
G

X
RT X G

X G
X Y

X G

X G
X Y

X G

τ

τ

τ

∈ ∪ ∪

∈
∈ ∪ ∪

′ ′
∈ ∪

′
′∈ ∈ ′

∈ ∪

′ ′
∈ ∪

′
′∈ ′

∈ ∪

=

+

+

∑
∑ ∑

∑
∑ ∑ ∑

∑
∑ ∑ ∑

 (25) 

where the Boltzmann kind factors j m  for G j m′=  
( mm S′∈ ), Cj =  ( CC S∈ ) and  (Aj = AA S∈ ) are 
for any mm S∈  are calculated according to: 

( )expm m m m m mG α τ′ ′= − ′

CA,m

 (26) 

A

C A
A

m
S

G Y G
∈

= ∑  (27) 

C

A C C
C

m
S

G Y G
∈

= A,m∑  (28) 

and  in turn is given by: CA,mG

( )CA, CA, CA,expm mG α τ= − m  (29) 

The same mixing rule is applied to calculate the 
nonrandomness factors Cmα  and Amα  from the 
independent nonrandomness factors CA, ,CAm mα α≡ : 

A

C A C
A

m m
S

Yα α
∈

= A,∑    (for all ) (30) CC S∈

C

A C C
C

m m
S

Yα α
∈

= A,∑    (for all ) (31) AA S∈

Having defined j mG  and j mα  for  ( CCCj = S∈ ) 
and Aj =  ( AA S∈ ), the dimensionless interaction 
energy parameters j mτ  can now be derived for any 

mm S∈ : 

C
C

C

ln m
m

m

G
τ

α
= −  (32) 



A
A

A

ln m
m

m

G
τ

α
= −  (33) 

While the dimensionless interaction energy 
parameters AC,A Cτ ′  and CA,C Aτ ′  are further basic 
parameters of the model, C,ACmτ  and A,CAmτ  are 
composition dependent quantities to be calculated 
by: 

( )CA,
C,AC C CA, ,CA

C,AC

m
m m m m

m

α
τ τ τ τ

α
= − −  

(for all , , mm S∈ CC S∈ AA S∈ ) (34) 

( )CA,
A,CA A CA, ,CA

A,CA

m
m m m m

m

α
τ τ τ τ

α
= − −  

(for all , , mm S∈ CC S∈ AA S∈ ) (35) 

Whereas CA,mτ  and ,CAmτ  are regarded as 
independent model parameters, C,ACmα  and A,CAmα  
are set to: 

C,AC Cm mα α=  (36) 

A,CA Am mα α=  (37) 

Applying eq. (12) to  as defined by eq. (25) 
and differentiating the expression with respect to 
the molecular species for i  ( mm ) leads to 
the desired expression for calculating the natural 
logarithm of the symmetrically referenced activity 
coefficient of molecular species , 

E
m, SRG

m= S∈

m , , SRln x mγ : 

C A

C A

C A

C A C A

A

A

, , SR

C,A C C,A C
A C C,A C

C,A C
C,A C C,A C

ln m

m

m

m

m m

m

m

j j m j m
j S S S

x m
k k m

k S S S

j j m j m
j S S Sm mm

mm
m S k k m k k m

k S S S k S S S

j j j
j S Sm

m
k k k k

k S S

X G

X G

X G
X G

X G X G

X G
Y X G

X G X G

τ
γ

τ
τ

τ
τ

∈ ∪ ∪

∈ ∪ ∪

′ ′
′ ′ ∈ ∪ ∪

′
′∈ ′ ′

∈ ∪ ∪ ∈ ∪ ∪

′ ′
′ ′ ∈ ∪

′
′

∈ ∪

=

⎛ ⎞
⎜ ⎟

+ −⎜ ⎟
⎜ ⎟
⎝ ⎠

+ −

∑
∑

∑
∑ ∑ ∑

∑
∑ ′C A

A

C

A C

C C

C A

A,C A A,C A
C A A,C A

A,C A
A C A,C A A,C A

m

m

m m

S S
k S S

j j j
j S Sm

m
S S k k k k

k S S k S S

X G
Y X G

X G X G

τ
τ

′∈ ∈
∈ ∪

′ ′
′ ′ ∈ ∪

′
′∈ ∈ ′ ′

∈ ∪ ∈ ∪

⎛
⎜
⎜
⎜
⎝
⎛
⎜ ⎟

+ −⎜ ⎟
⎜ ⎟
⎝ ⎠

∑ ∑ ∑

∑
∑ ∑ ∑ ∑

⎞
⎟
⎟
⎟
⎠
⎞

 (38) 

Since the activity coefficient for the solvent 
species 0  is normalised according 
to the pure component reference frame which is in 
accordance with the asymmetric convention, no 
further adjustment of the value derived from eq. 
(38) is needed for the case of , , SR

s wm m= ≡ =

ln x mγ  with 
. Contrary, in order to calculate the 

activity coefficients for the molecular solute 
species (

0 s wm m= ≡ =

{ }\ smm S∈ ), normalization of the activity 
coefficient to the reference frame of infinite 
dilution would be required. However, since the 
presence of molecular solutes the liquid phase was 
neglected in our calculations, the corresponding 
formula is not mentioned here. 
Deriving the activity coefficients requires the 
calculation of the first partial derivative of the 

-function with respect to in , the mole number 
of species i . Since the ionic charge fractions CY  
and AY  appear in the expression for  (explicitly 
and implicitly via the mixing rules for the 
concentration dependent model parameters), this 
step involves the calculation of 

E
SRG

E
SRG

C , ,( )
j ii T p nY n
≠

∂ ∂  and 
A , , j ii T p n( )Y n

≠
∂ ∂ . Performing the differentiations 

leads to the result that C , ,( )
j in ≠

 vanishes 
only for 

i T pY n∂ ∂
, Ai m= , but not for  (the inverse 

holds for the derivative 
Ci =

A , ,( )
j ii T p n ≠

Y n∂ ∂ ). While the 
derivative vanishes in any case if it the 
differentiation is executed with respect to the mole 
number of a molecular species,  (mn mm S∈ ), it 
remains finite if the differentiation of the ionic 
charge fraction for a given ion is performed with 
respect to the mole number of an ion of the same 
charge number. Hence, when deriving , C, SRxγ  and 

, A, SRxγ  the derivatives C , ,( )
j ii T p nY n
≠

∂ ∂  and 
A , ,( )

j ii T p nY n
≠

∂ ∂  lead to considerably more 
complicated expressions compared to the 
expression for , , SRln x mγ . To simplify the 
calculations and resulting expressions, Chen and 
Evans [2] have therefore set C , ,( )i T p nY n

j i≠
∂ ∂  

A , ,( ) 0i T p nY n
j i≠

= ∂ ∂ = . Only in 2008, Bollas et al. 
[4] presented a version of the model, in which the 
simplifying assumption for deriving , C, SRxγ  and 

, A, SRxγ  had been removed. In the early model 
version based on the simplification [2], the 
functions for , C, SRln xγ  and , A, SRln xγ  read: 
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The corresponding activity coefficients at infinite 
dilution derived from eqs. (39) and (40), are: 

s
A

, C, SR , C, SR
A sC,AC Cs Cs1 AC C

ln ln
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The basic model parameters 

The basic parameters of the model that are to be 
adjusted to binary solvent + electrolyte systems are 
the nonrandomness factor CA,sα  and the 
dimensionless energetic interaction parameters  

CA,sτ  and s,CAτ  being weak but well behaved 
functions of temperature. In practice, the 
nonrandomness factor is often set a priori to a 
fixed value (0.2 for electrolyte-solvent-pairs). 
Hence, only two parameters are needed to describe 
a solution of a single electrolyte [1,2]. 
In multicomponent systems, containing - besides 
the solvent additional molecular solutes as well as 
ionic species, the independent model parameters 
are: mmα ′ , CA,mα , CA,CAα ′ , AC,ACα ′ , mmτ ′ , m mτ ′ , 

CA,mτ , ,CAmτ , AC,ACτ ′ , AC ,ACτ ′ , CA,CAτ ′ , CA ,CAτ ′ . 
Again, the nonrandomness factors are often fixed 
to a constant value. mmτ ′ , m mτ ′  (and possibly mmα ′ ) 
are adjusted to molecule-molecule binary systems 
(these are the values that can be taken from data 
sources for the original NRTL-model). AC,ACτ ′ , 

AC ,ACτ ′ , CA,CAτ ′ , and CA ,CAτ ′  (and possibly also 
CA,CAα ′  and AC,ACα ′ ) can be adjusted to ternary 

solvent + salt1 + salt2 systems involving 
electrolytes having one ion in common. Actually it 
can be set AC,AC AC ,ACτ τ′ ′= −  and CA,CAτ ′ , 

CA ,CAτ ′= − . Good results are even obtained by 
setting these parameters to zero [2]. This is an 
example showing the predictive capabilities of the 
model. 

MODELLING AND DISCUSSIONS 

Verification of the correctness of the model 
implementation 

The correctness of the eNRTL-model implemen-
tation was verified by numerous selected examples 
including osmotic coefficient data on binary and 
activity, osmotic coefficient as well as solubility 
data on ternary electrolyte systems, respectively. 
 
Binary solvent + salt systems: osmotic coeffi-
cients of alkali and earth alkali halide solutions 

The selected examples of this subsection cover the 
modeling of experimental data on binary 
solvent + salt systems. The calculations performed 
were inspired by the examples presented in the 
publications of Chen et al. (1982) [1] and Chen and 
Evans (1986) [2] and intended to check the 
correctness of the code. The osmotic coefficient of 
single salt solutions of alkali halide and magne-
sium and calcium halides have been modeled using 
data for the solvent-salt interaction coefficients 
reported in [2]. 
 

 
Figure 1: Osmotic coefficients of a) alkali metal, b) 

magnesium and c) calcium halide solutions at 
25 °C. 

The modeling results are displayed in Figure 1, 
along with corresponding experimental data given 



by Robinson and Stokes [8]. The root mean square 
relative deviations between the experimental and 
the calculated data, defined according to: 

exp data
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are displayed in Table 1. As can be verified in 
Table 1, the values of , relφσ  generated in this work 
reproduce the corresponding , relφσ -values of Chen 
and Evans [1]. 
 

Salt , relφσ  a , relφσ b
CA, maxm  

LiCl 0,0227 0,024 6 
NaCl 0,0118 0,012 6 
KCl 0,0023 0,002 4,8 
RbCl 0,0015 0,002 5 
CaCl2 0,0238 0,025 2,5 
CaBr2 0,1235 0,13 6 
CaI2 0,0220 0,024 2 
MgCl2 0,0838 0,09 5 
MgBr2 0,0896 0,09 5 
MgI2 0,1036 0,11 5 

Table 1: Root mean square deviation between 
calculated and experimental data for a) results of 

athis work and of bChen et al. (1986) [2] 

Ternary solvent + salt1 + salt2 systems 

Calculations on ternary solvent + salt1 + salt2 
systems have been performed in order to provide 
evidence for the correctness of the program 
implementation for the general case of multinary 
electrolyte solutions. The two different salts in 
these systems have one of their ions in common, 
i.e., they are of either the type 2 1 2  
or 2 1 2 . Osmotic coefficients 

H O C A C A+ +
H O CA CA+ + φ  

mean molar activity coefficients , , CAm  and salt 
solubilities have been calculated and compared to 
their corresponding results found in the literature. 

γ ∗
±

 
Osmotic coefficient of the H2O+NaCl+LiCl 
system 

In a first example the osmotic coefficient φ  
(Figure 2) has been calculated for the system 

2  at  and constant 
total stoichiometric molality 
H O NaCl LiCl+ + 298.15 KT =

1
NaCl LiCl 2 mol kgm −

+ =  

as function of the relative amount of LiCl in the 
salt mixture. The latter is expressed in terms of the 
stoichiometric mole fraction of LiCl LiCl, NaCl LiClx + =  

LiCl NaCl LiCl(m m m )+  in the binary NaCl LiCl+  
subsystem. The example was chosen in an attempt 
to reproduce Figure 2 given in [2] (Figure 2 b)).  
 

 
Figure 2: Osmotic coefficient of the system 

H2O + NaCl + LiCl at constant total stoichimetric 
molality 1

NaCl LiCl 2 mol kgm −
+ =  and  

as function of the molar salt fraction 
298.15 KT =

LiCl, NaCl LiClx +  
LiCl NaCl LiCl(m m m )= + . Figures a.1) and a.2) this 

work with solvent-salt parameters given in [2] and 
[1], respectively, and salt-salt-parameters 1,2,3 for 
B-D). b) from [2] with salt-salt-parameters 0, 1, 2. 

Besides the linear interpolating line of curve A, φ  
was calculated with different values for the 
salt1 + salt2-interaction parameters. Chen et al. 
claimed that curves B, C, and D, correspond to 
parameter values of 

Na Cl ,Li Cl Li Cl ,Na Cl
τ τ+ − + − + − + −= − , 

0= , 1, and 2 and a value for the non-randomness 
factor 0.2 [2]. Although they do not explicitly 
mention the source for their energetic interaction 
parameters, it can be assumed that they are taken 
from the values published in the same article which 
are reproduced in a.1) of Table 1. By using the 
same values for CA,wτ  and w,CAτ  and 0, 1, 2 the 
curves of [2] could not be reproduced. However, 



when incrementing the values by one setting 

Na Cl ,Li Cl Li Cl ,Na Cl
τ τ+ − + − + − + −= −  1, 2,3= , the curves B-D, 
could nearly be generated. However, since the 
correctness of the Java implementation has been 
checked independently through calculations 
performed by using the computer algebra software 
Mathcad (version 14), it is believed that the results 
calculated in this work are correct. 
The influence of a change in the parameters CA,wτ  
and w,CAτ  on φ  of the binary sub-mixtures is 
demonstrated by means of Figure a.2) where the 
parameters previously published by Chen et al. [2] 
(see Table 2) have been used in the calculations. 
 
Parameter 
source salt CA,wτ  w,CAτ  

a.1) [2] NaCl –4.5916 9.0234 
 LiCl –5.1737 10.1242 

a.2) [1] NaCl –4.549 8.885 
 LiCl –5.154 10.031 

Table 2: Values of binary water-salt interaction 
coeffcients used to model the ternary system 
H2O + NaCl + LiCl for curves a.1) and a.2). 

Modelling of the H2O+NaCl+KCl system 

As another example of a thermodynamic property 
of a ternary solvent + salt1 + salt2-system for 
verifying the correctness of our program code, 
mean molal activity coefficients of NaCl and KCl 
in H2O + NaCl + KCl-solutions have been modeled 
at 25 °C (Figure 3). The calculations were inspired 
by Figure 1 presented in the article of Bollas et al. 
[4]. In that work the authors have performed 
calculations of , , NaClm  and , , KClm  for different 
values for the salt-salt-interaction parameters of 

γ ∗
± γ ∗

±

Na Cl , K Cl K Cl ,Na Cl
τ τ+ − + − + − + −= −   to 
compare the performance of the simplified eNRTL 
equations for ,

0, 0.25, 0.50=

x iγ ∗  ( C Ai S S∈ ∪ ) (version 
published previously by Chen and Evans [2], see 
Figure 3, b.1)) and the refined version [4] (see b.2) 
in Figure 3). Since we were able to reproduce the 
curves of both model versions (see Figures a.1) 
and a.2)), this also serves as an evidence that the 
more complicated new model equations had been 
correctly implemented in our program. 
 

 
Figure 3: Prediction of mean ionic activity 

coefficient of a constant total molal H2O + NaCl + 
KCl system with various salt-salt energy 

parameters using the equations for , Cxγ
∗  and , Axγ

∗  of 
Chen and Evans [2] a.1), b.1) and Bollas et al. 

(2008) [4] a.2), b.2): a) this work, b). 

From Figure 3 it can be seen that the refined model 
possess a greater degree of physical significance 
since the experimental data are better described by 
the refined model of Bollas et al. [4] than by the 
simplified version of Chen and Evans [2]. 
 
SL and SSL equilibrium encountered in the 
H2O + KI + KCl electrolyte system 

As an example for equilibrium calculations 
performed by using the eNRTL model, the 
solubility curve at T = 298.15 K and p = 0.1 MPa 
of the system H2O + KI +KCl is shown in Figure 4. 
 

 
Figure 4: Salt Precipitation in the H2O + KI + KCl 
system at T = 298.15 K and p = 0.1 MPa. A) This 

work, b) [2]. 



In order to model the solubilties in this ternary 
electrolyte system, values for the solubility 
products sp, KI  and sp, KCl  characterizing the 
solubility of the salts are needed in addition to the 
model parameters. With sp, KI  and 

sp, KCl , gained from a data regression 
[2] of the solubility data of Linke [17], the salt-
solvent interaction parameters 

K I ,w

K K

4.2346K = −
5.9695K = −

4.1217τ + − = − , 

w,K I
7.9408τ + − = , 

K Cl ,w
4.1341τ + − = − , and 

w,K Cl
τ + −  

 and the salt-salt-interaction parameters 

K Cl , K I

8.1354=
0.109τ + − + − = , 

K I , K Cl
0.124τ + − + − =  [2], the 

solubility curves were reproduced (Figure 4) well. 
 
Application of the model to the modeling of gas 
hydrate equilibria 

With the eNRTL model equations for the activity 
coefficients of the different species and the 
osmotic coefficient for the solvent species 
implemented in the in-house program package 
“gashydyn”, modeling calculations have been 
carried out on phase equilibria of ternary and 
quaternary mixtures involving gas hydrate phases. 
Different types of aqueous ternary or quaternary 
electrolyte systems of the type H2O + CA + gas or 
H2O + C1A + C2A +gas containing one or two 
different salts have been modeled. The influence of 
three different types of strong electrolytes, NaCl, 
KCl and CaCl2, on the HLV-phase equilibrium for 
two hydrate forming gases, methane (CH4) and 
carbon dioxide (CO2), has been investigated. 
In these calculations an equation of state (EOS) 
approach (Soave-Redlich-Kwong EOS (SRK) 
[18]) has been used to describe the gas-phase non-
idealities, whereas the hydrate phase was modeled 
by a modified version of the van der Waals-and-
Platteeuw theory [19] (for details of the procedure 
see Herri et al. (2011) [20]). In the modeling of the 
deviations from ideality in the liquid phase, it has 
to be stressed that all solvent salt parameters were 
taken from the Aspen databank provided by the 
Aspen Engineering suite version 2006.5 and that 
salt-salt interaction parameters were (with the 
exception of the NaCl + KCl salt pair) set to zero. 
The presence of the gas was in a good 
approximation (due to the concentration range and 
the chemical nature of the gases involved) 
neglected. 

HLV Equilibrium data of the systems H2O + 
CH4 + NaCl and 2) H2O + CH4 + NaCl + KCl 

The first modeling calculations on the three HLV-
phase p-T-curves at constant salt concentrations in 
the liquid phase were carried out for the ternary 
system 1) H2O + CH4 + NaCl and the quaternary 
system 2) H2O + CH4 + NaCl + KCl (Figure 5). 
Despite the relatively high pressure range 
( 2 MPa 1p 0< < ) covered, the model shows a 
good overall performance with average relative 
deviations (marked as numbers in the figure) 
ranging from 2.8 % for the mixture H2O + CH4 
+ NaCl containing 0.94 % NaCl to 7.0 % for the 
two salt-system with 3.67 % NaCl and 3.54 % 
KCl. 
The deviation quantity was based on the absolute 
value of the differences between experimental and 
calculated data and calculated according to: 

exp data
exp, calc,

1exp data exp,

|| | 1 N
l

l l

p pp
p N p=

−Δ
= ∑

|l  (38) 

The curves display the potential of the salts as 
hydrate inhibitors through a rise in pressure with 
increasing salt concentration. 
 

 
Figure 5. HLV-Equil. data of 1) H2O + CH4 + 

NaCl and 2) H2O + CH4 + NaCl + KCl. Lines and 
hollow diamonds: modeling, solid diamonds: exp. 

data of Dholabhai et al. (1991) [21].

HLV equilibrium data of the system H2O + CH4 
+ NaCl + CaCl2

In second example involving methane, HLV-phase 
equilibrium calculations were performed on the 
quaternary mixture H2O + CH4 + NaCl + CaCl2 
(Figure 6). While the range of temperature and 
pressure ( 8 °C 8ϑ− < < , 2 MPa 10p< < ) as well 
of the absolute deviations between experimental 



data (Dholabhai et al. (1991) [21]) and modeling 
results (between 2 % and 6 %) are of the same 
order of magnitude as for the previous mixtures, 
the overall electrolyte concentration is significantly 
smaller. However, since the 2-1-electrolyte CaCl2 
with the bivalent cation  is involved, the 
range of ionic strength is not smaller. Not only 
does CaCl

2Ca +

2 release three ions due to dissociation in 
solution, but the  also possess a higher charge 
and charge density which increases its potential of 
being involved in hydration processes. 
Nevertheless, the performance of the eNRTL 
model for this mixture containing CH

2Ca +

4 as a hydrate 
forming gas is still very good. 
 

 
Figure 6: HLV Equilibrium Data of the System 
H2O + CH4 + NaCl + CaCl2. Lines and hollow 

diamonds: modeling, solid diamonds: exp. data of 
Dholabhai et al. (1991) [21]. 

 
HLV-equilibrium in the Systems 1) H2O + CO2 
+ NaCl and 2) H2O + CO2 + NaCl + KCl 

The second gas, the hydrate equilibria of which are 
investigated, is carbon dioxide. The mixtures based 
on CO2 as gaseous constituent further contain 
either 1) NaCl or 2) NaCl and KCl (Figure 7). For 
the single salt system, the maximum stoichiometric 
mole fraction of NaCl amounts to NaCl 0.04x = , 
whereas for the NaCl + KCl-system the maximum 
overall mole fraction NaCl KClx x+  is almost 7 %. 
At a smaller pressure range of 0 MPap< < 4  a 
very good performance of the eNRTL model is 
found for this system with relative deviations 
mostly between 1 and 2 %. 
Like in the previous cases (Figure 5 and Figure 6), 
Figure 7 shows that the strong electrolytes NaCl 
and KCl act as hydrate inhibitors, causing the 

temperature (at a given pressure ) to fall, or the 
pressure to rise (at a given temperature) for hydrate 
formation with increasing salt mole fraction. 
 

 
Figure 7. HLV Equil. data of 1) 

H2O + CO2 + NaCl and 2) 
H2O + CO2 + NaCl + KCl. Lines and hollow 

diamonds: modeling, solid diamonds: exp. data of 
Dholabhai et al. (1993) [22]. 

 
HLV Equilibrium Data of the System H2O + 
CO2 + NaCl + CaCl2

The HLV-phase equilibrium calculations on the 
quaternary mixture H2O + CO2 + NaCl + CaCl2 
(Figure 8) reveal that on a similar pressure interval 
as in the previous example, higher deviations 
between calculated and experimental p values are 
observed than for the other systems. 

 
Figure 8. HLV Equil. data of the System H2O + 

CO2 + NaCl +CaCl2. Lines and hollow diamonds: 
modeling, solid diamonds: exp. data of Dholabhai 

et al. (1993) [22]. 

Whereas the result for the two lowest concentrated 
mixtures is fairly good (with average deviations of 
1.3 % and 4.2 % at 2.65 % NaCl and 0.35 % CaCl2 
and 0.98% NaCl and 0.52 % CaCl2,), the 
deviations increase up to between 12 % and 18 % 



for the solutions that are higher concentrated. This 
is most probably due to the influence of the 
significantly higher degree of hydration of the 

-ion rather than to neglecting the solubility of 
the CO

2Ca +

2 in the liquid phase for calculating the 
activity coefficient of the solvent species. 
Moreover, since the salt-salt parameters between 
NaCl and CaCl2 were not known, the interaction 
between the ions of the two salts had to be 
neglected as well. 
 
CONCLUSIONS 

In this article, it is demonstrated by numerous 
examples that the eNRTL-model of Chen and co-
workers [1-4] is implemented successfully in a 
Java program. The Java code in turn has been 
incorporated in our “gashydyn” program package 
allowing for performing – among other features – 
predictive HLV-gas hydrate equilibrium calcula-
tions. 
The correctness of the code has been verified by 
calculations on mean ionic activity coefficients and 
osmotic coefficients of binary solutions of strong 
electrolytes and ternary mixtures of the type 
water + salt1 + salt2 where constituting salts share 
one common ion. The examples selected to verify 
the correctness of the implementation were taken 
from the original articles on the ENRTL model by 
Chen et al. [1,2,4]. In case of the H2O+NaCl+LiCl 
mixture, the shape of the osmotic coefficient 
curves could not reproduced with the parameter 
values given in [2]. However, when they were 
incremented by one, it turned out that the curves 
were reproduced quite well. Since the results of 
that calculation had also been checked independ-
ently by means the computer algebra software 
“mathcad”, it is believed that the values for the 
coefficients have been reported erroneously. It 
could be shown that the eNRTL model provides an 
accurate description of liquid phase non-ideality of 
the electrolyte systems over the ranges of state 
conditions investigated. The model not only cor-
relates thermodynamic data, but possesses also 
predictive capability using model parameters de-
termined exclusively from data of the constituting 
binaries and ternary salt-salt systems with a com-
mon ion. 

The model has subsequently been used in the 
modelling of HLV-hydrate phase equilibrium data 
of mixtures involving one or two of the salts NaCl, 
KCl and CaCl2 and the gases methane and carbon 
dioxide. In these calculations, the presence of CO2 
in the liquid phase had been neglected with regard 
to the calculation of the activity coefficient of 
water. Due to a lack of data, another simplification 
imposed on the calculation was, with the exception 
of the NaCl-KCl-salt pair – the negligence of salt-
salt-interaction parameters. Despite of these 
simplifications, the p-T-data pairs obtained reveal a 
good overall performance of the model leading in 
the average to relative deviations within 2 % to 
7 %. Only at higher ionic strengths and in particu-
lar when the bivalent -ion gets involved, the 
deviations increase remarkably to reach around 
20 %. In a future work this deficiency may be 
overcome by implementing a version of the model 
that takes hydration into account [23]. Neverthe-
less, in view of the simplifications involved in the 
modeling calculations executed in this work, it can 
be stated that the results are quite satisfying from 
an engineering point of view. 

2Ca +
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