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Implementation of the direct evaluation of strains 

in a frequency-based image analysis code for random patterns
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a Claude Goux Laboratory , UMR CNRS 5146, University of Lyon, Health Engineering Center, 
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ABSTRACT  

A new approach for decoding displacements from surfaces encoded with random patterns has been  

developed  and  validated.  The  procedure  is  based  on  phase  analysis  of  little  zones  of  interest.  

Resolution in standard conditions (32×32 pixels²)  is 2/100th pixel,  for a spatial resolution of 9  

pixels. Here we adapt new concepts proposed by Badulescu (2009) on the grid method to random 

patterns  for  the  direct  measurement  of  strains.  First  metrological  results  are  encouraging:  

resolution is proportional to strain level, being 9% of the nominal value, for a spatial resolution of 9  

pixels (ZOI 64×64 pixels²).  Random noise have to be carefully controlled. A numerical example  

shows the relevance of the approach. Then, first application on a carbon fiber reinforced composite  

is developed. Fabric intertwining is studied using a tensile test. Over-strain are clearly visible, and  

results connect well with previous studies.
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• sub-pixel interpolation is achieved using phase component

• strain maps can be extracted without derivation of a displacement map

• small speckles and gray level noise averaging give best results
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1. INTRODUCTION

Digital  image  correlation  is  one  of  the  most  diffused  image  processing  technique  among 

experimental mechanics community [1]. The system has been extended to different cases and firstly 

on warp surfaces (stereocorrelation) [2,  3]. But basically,  one of the most interesting problems in 

DIC is the sub-pixel detection. Usually, authors use either correlation peak interpolation either sub-

pixel deformation of the target sub-image. The deformation hypothesis can be a rigid body motion or 

a complete transformation function of the zone of interest (ZOI) [4]. Recently, Hild [5] proposed an 

original work, based on a correlation algorithm coupled with Finite Element based transformation 

functions, allowing for strongly regularized displacement fields with solid mechanics assumptions. 

In all these cases, the assumptions on the interpolation level are believed to have a direct influence 

on metrological properties of the correlation core [6].

Beside  the  classical  DIC  approach,  the  grid  method,  even  if  less  used,  has  rather  comparable 

features: it is basically an image processing technique allowing for in-plane displacement fields. In 

the previous case, images are random patterns; in the latter, surface signature is a periodic grid. In 

this case, displacements derive from a spatial phase extraction [7]. The choice of surface encoding 

should orient the user toward one method or the other, but in fact, the nature of the pattern is not 



crucial: DIC has been successfully applied to periodic pattern for a very long time [8], and a random 

pattern can be seen has the superimposition of many frequencies. This last remark have been made 

recently by some authors [9,  10, 11] and will be developed hereafter. Random pattern are of more 

practical  use  than  periodic  pattern  for  two  basic  reasons:  first,  periodic  pattern  generation  and 

transfer is not as easy as someone could think. Second, it is almost impossible to generate a periodic 

pattern on a non-flat surface – and to develop a 3D surface grid method, even if industrial demand 

for measurement on real structures is high.

Finally,  one should note that  DIC is  a  genuine  large-strain approach because  it  is  based on re-

correlation  of  decorrelated  informations  whereas  Grid  technique  is  a  genuine  small  perturbation 

method because the phase difference is merging initial and final state of the investigated object, and 

because phase information is fairly more sensitive than amplitude. Consequently, it could be of great 

interest to adapt advances made in the context of grid techniques to random patterns, and to compare 

the results to those obtained by classical image correlation technique. We noted here the following 

specific “phase culture” items: camera distortion can be evaluated with a single grid image [12], 

shape and shape variation can be detected in very good conditions using a video-projector and a 

camera [13]. Last, derivation can be derived analytically and the grid technique becomes sensitive to 

strain  rather  than  displacements  [14].  This  item  should  bring  to  such  method  a  breakthrough 

compared to DIC techniques; it will be developed in the following.



2. 2D DISPLACEMENT METHOD USING FREQUENCY-BASED ANALYSIS

2.1 Digital Image Correlation Principle

Assuming a reference image im0 described by  f(x,y), a deformed image im1 of im0 after a small 

strain is described by g(x,y) by the following equation:

g  x , y = f  x−x , y− yb  x , y  (1)

where δx and δy are the components of the displacement of im1 and b(x,y) the noise measurement. 

A way to find δx and δy is to maximize the function h defined by:

h  x , y = g∗ f   x , y =∫
−∞

∞

∫
−∞

∞

g  ,  f −r ,−s d d  (2)

where * denotes the cross-correlation product.  The obtained  r and  s correspond to the maximal 

probability of displacement (δx, δy). This method can be applied in Fourier space using Fast Fourier 

Transform function, noted FFT2D. Equation 2 becomes:

g∗ f =FFT2D−1  FFT2D g  FFT2D  f  (3)

where the overline denotes the complex conjugate, and f x , y = f Lx−x , Ly− y  where Lx and 

Ly are the dimension of the domain. Equation 2 and 3 are used at a local scale, on typical 32×32 zone 

of interest (ZOI). The work is repeated all over the map, giving a final displacement chart.

Now, classical digital image correlation performs the cross-product either in Fourier or real space. 

More refined approachs exist by the way: for example, the signal could be normalized respect to the 

mean local intensity,  and/or the mean local contrast [6]. The cross-correlation peak is commonly 

interpolated in order to reach a sub-pixel displacement accuracy. The interpolation function is not 



the same for all the implementations. It could be for example a Gaussian or polynomial function. 

Basically,  this  choice  doesn't  have  a  strong  theoretical  basis,  and  authors  have  an  empirical 

approach.  We will  propose  hereafter  an  alternative  to  this  weak point  in  the  image  correlation 

approach.

2.2 Sub-Pixel algorithm

The sub-pixel algorithm is based on the phase estimation of each ZOI. Because Fourier Transform 

requires  continuity,  in  particular  at  the  boundaries,  the  ZOI  is  windowed  using  a  bi-triangular 

function. So far, the algorithm is an extension of the windowed Fourier Transform (WFT) algorithm 

proposed by Surrel [15]. As shown Fig.  1, in the frequency domain, each couple of frequencies is 

characterized by an amplitude and a phase. This phase is proportional to the displacement normal to 

the corresponding fringe direction. Note that the phase is defined only if the amplitude is higher than 

zero. Then, in absence of any phase jump, displacements can be related to any defined phase using 

the relationship:

{ ⋮


i

⋮ }=[ ⋮ ⋮
2
p

i cosi 2
p

i sini

⋮ ⋮
]


A

{x

 y} (4)



Displacements  can then be derived from eq.  4 using the pseudo-inverse of A. This operation is 

possible  if  det  At A≠0 .  In  practice,  this  means  that  at  least  two  phases  along  two  different 

directions exist.

{ x

 y}= At A−1
At{ ⋮


i

⋮ } (5)

Practical  problem of  this  approach  is  that  the  signal  to  noise  ratio  is  weak for  each  couple  of 

frequencies.  Then,  the  quality  of  the  measurement  is  obtained  by  averaging  all  the  available 

information throw the pseudo-inverse function.

One should note also that a phase jump can occur in the Fourier domain. Even if a specific treatment 

should be developed, it sounds better to first use a pixel correlation algorithm. This ensures that the 

two ZOIs will be as superimposed as possible and that the fringe order is zero for any point and any 

couple  of  frequencies.  No  deformation  of  the  ZOI  is  proposed  here,  considering  that  target 

applications will be in the small transformation domain. 

2.3 Characterization

The method has been characterized using a simulation of a rigid body translation. A single ZOI is 

generated and translated from -0.5 to 0.5 pixel, in presence of noise or not. The ZOI has been over-

sampled 10 times. 10 translation cases equally spaced are studied, and for each displacements 60 

pairs of ZOI are sampled. Typical results are shown in fig.  2 for a 32×32 region of interest, 12bit 

camera, with a  31 gray level white noise or not. One should note first that the error has the same 



amplitude as with image correlation techniques (Table  1), but the bias is fairly lower in this case. 

This should be one major advantage of this method. 

Spatial resolution of the method is estimated using the following procedure: two independent noise 

distributions are added to the same speckle image. Then, displacements between the two situations 

are calculated, giving a displacement error map. The autocorrelation function of this error map is 

only affected by the displacement extraction procedure, so its size characterize the spatial resolution 

of the displacement extraction procedure. For the 32×32 window, effective spatial resolution is a 

diameter of 9 pixels (at 50% attenuation). This result should be surprising, but it can be partially 

explained  by the  use  of  the  bi-triangular  window:  in  1D (the  classical  WFT algorithm)  spatial 

resolution is half the window size. Then, it is worth noting that these values are very interesting 

compared with others zero-order image correlation algorithms.

3. DIRECT DERIVATION IMPLEMENTATION

3.1 Basic principle

Recently,  Badulescu and al.  [14]  proposed a  new derivation  procedure for grid techniques.  The 

technique is twofold: first, it consists in deriving the wavelet used for the phase extraction. Authors 

claim that this approach leads to better results than deriving the displacement map using a classical  

low-pass filter coupled with a least-square derivation (called hereafter the classical procedure). In the 

phase extraction procedure, the phase is defined as:

  x , y =arg  RiJ =arg∫
−∞

∞

∫
−∞

∞

s  , ×g −x ,− y ×exp−i 2 
P

cossin  d  d  (6)



where s(ζ, η) is the signal and g(ζ-x, η-y) is a windowing Gaussian function. Note that this function is 

different than the one used previously for displacement measurement. If considering the derivation 

of Uθ along x , 

∂

∂ x
= ∂ J 

∂ x
×R−

∂ R

∂ x
×J 

J
2R

2  (7)

∂U 

∂ x
=−2

P
 ∂

∂ x  (8)

Last, the derivation of Jθ or Rθ along xθ consists in deriving g(ζ, η) i.e.:

∂ J 

∂ x
=∫

−∞

∞

∫
−∞

∞  x− 
2 4×s  , ×g −x ,− y ×exp−i 2 

P
cossin  d  d  (9)

Second, reference and deformed phase gradient maps are numerically superimposed to avoid noise 

propagation due to local variations in the grid signature. In each situation, authors show that the 

results  are  better  if  noise  intensity  is  reduced  using  temporal  averaging.  Depending  on  the 

conditions, the resolution can be one order of magnitude lower than the classical procedure for a 

given spatial resolution.

Now, the grid technique can be seen as a particular case of the frequency-based image analysis of 

random patterns.  So far, it  is possible to generalize this new strain measurement procedure. The 

proposed implementation is based on:

1. the superimposition of the original and deformed images, using a linear interpolation of gray 

levels.  Note  that  it  is  impossible  here  to  deform  directly  the  phase  gradient  maps. 



Deformation of the intensity map is a major difference between the two approaches. In a first 

step, intensity maps are submitted to a simple translation. Then, a first evaluation of the strain 

is used to deform the intensity map, and procedure stop when convergence is achieved.

2. the expression of phase derivative according to (7), 

3. instead  of  using  direct  expressions,  a  calibration  procedure  for  4  reference  numerical 

deformations of the original ZOI is made (two translations, a rotation, and in-plane shear), 

giving  an  in-situ  sensitivity.  It  is  believed  that  this  procedure  is  less  sensitive  to  ZOI 

signature.

3.2 Characterization

The method has been characterized using a simulated  deformation of a  single ZOI. The ZOI is 

submitted to uniaxial strain at different levels ranging from 2.10-5 to 2.10-3. In order to characterize 

average behaviour, , 60 ZOI are generated for each strain level. The rigid body displacement is set to 

zero in order to avoid possible coupling effects. For each case, all the displacement gradients are 

recorded and mechanical strain tensor is reconstructed (εxx, εyy, εxy, ω). The different cases are: 

– ZOI varies from 32×32 and 64×64 px2;

– noise on intensity from 0 to 31 gray levels;

– speckle radius from 2 to 16, 

– encoding deepness from 8 to 16 bits. 

Because of the high number of parameters, we use here a linear experimental test plane. Results are 

presented Table 2. Note that every parameter has a good enough confidence interval, and is possible 



to draw the main behavior. It  was necessary to add 1st order interaction to have a good enough 

model. Finally, uncertainty on strain increases with the speckle size and with intensity noise, and 

decreases  when ROI size  and  encoding  increase.  Note  that  speckle  size  and noise  are  strongly 

correlated, with a positive effect. Finally, results can be strongly improved by minimizing gray level 

noise using image averaging. Last, it is proved here that the use of small speckle is necessary to 

achieve  good accuracy.  Best  results  (64×64 px2 ZOI,  2  px speckle  radius,  0  GL noise,  16 bits 

encoding) gave a mean final uncertainty of 58 µm/m. In this case, the uncertainty is entirely random, 

with no bias. Dispersion is related to quantization error and to random process generation of the 

speckle pattern. Results are presented figure  4. The uncertainty increases with the load case, and 

finally, the relative uncertainty remains roughly constant (9 %).

Last,  spatial  resolution  must  be measured  as explained before.  Here,  the value obtained for the 

64×64 zone of interest is 9 pixels. This very low value can be explained by the use of a Gaussian 

windowing with σ = 10.7 pixels. 

4. EXAMPLES

4.1 Simulated experiment

First test on the sub-pixel algorithm has been conducted on a fake displacement map provided by 

GDR 2519 [6]. It consists in a sine-wave displacement field, as shown figure 4 encoded on a 8-bits 

intensity map,  without noise.  Here,  the displacement  amplitude has been set  to 0.02 pixels,  and 

spatial wavelength to 128 pixels. Root mean square error found both in x and y directions is 0.003 

pixels. The strain map (fig.5) are focused on a limited area. Its obvious anyway that the values show 

a  very good trend.  If  comparing  classical  derivation  with  the  same spatial  resolution,  this  new 



technique gives better results in absence of noise: 1.7 10-4 for the proposed technique vs. 2.6 10-4 for 

the classical one.

4.2 Strain field a single-ply carbon-fiber reinforced composites

Carbon fiber reinforced composites are commonly used for structural parts. The reinforcement can 

be delivered as UD tapes; mechanical properties are at the maximum, but handling is difficult. On 

the opposite,  fabrics can be handled easier,  but the intertwining of tows decreases  their  loading 

capacity. This effect is due to the development of local stresses. Then, it is important to characterize 

a  weaving  with  a  security  coefficient  corresponding  to  the  local  amplification  of  global  stress. 

Because the geometrical description of a fabric is difficult, experimental study through an optical 

full-field  technique  is  a  good  solution.  This  work  has  already  been  done  by  Lee  [16]  using 

interferometry  technique  outlining  strain  concentrations.  Here,  the  idea  is  to  propose  a  simpler 

optical  set-up  using  a  single  camera.  Direct  derivation  is  a  good  way  to  catch  very  localized 

phenomena. 

The result of a feasibility test is given figure 6 and 7. The specimen is a composite made of a single 

fabric carbon ply. The fabric unit cell is 8×8 mm2. Applied load is 200 N. Extraction of data is made 

here with a 64×64 ZOI. Displacement maps show variations in conjunction with the tow interlacing. 

Strain map obtained on figure 7 had to be filtered for cosmetic reasons using a first a salt-and-paper 

filter, then a Gaussian low-pass filter with σ = 9 pixels. Results are in good agreement with former 

works on the same structure [16, 17]. It is shown that interlacing of tows implies periodic over-strain 

with band (banana) shapes. The shear strain is maximum in the resin rich region at the crossing of  



longitudinal and transverse tows. Here, the final spatial resolution is 13 pixels. This value is very 

low  compared  to  other  geometric  methods,  such  as  digital  image  correlation,  or  simply  to  a 

derivation post-processing.

5. CONCLUSION AND PERSPECTIVES

Strain evaluation is a very critical task for mechanical engineers. Usual geometrical methods (image 

correlation, grid techniques) classically need a post-processing based on a low-pass filter combined 

with least  square fit.  Recently,  we proposed a frequency-based image analysis  code for random 

patterns. This code has been extended to direct strain evaluation using a phase derivation kernel.

First results show very promising performances if the noise level is controlled. Main advantage of 

the method should be its final spatial resolution. Two examples illustrate the first applications of the 

technique. The first one is a simulated experiment; the second one is on a carbon fiber reinforced 

composite. The fabric interlacing produces local strain peaks, visible with the described procedure.
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TABLE CAPTION

Table 1. Error quantification for a 32×32 window.

Table 2. Error sensitivity to parameters



Table 1. Error quantification for a 32×32 window.

0 GL noise 31 GL noise

Resolution (in pixels) 0.025 0.035

Bias (in pixels) 0.0044 0.0056



Table 2. Error sensitivity to parameters

Value Confidence level
Mean value β0 1.07 10-1 98.4 % ++++
ROI size effect β1 -7.85 10-2 98.3 % ++++
Speckle size effect β2 1.80 10-1 98.0 % ++++
Encoding effect β3 -7.40 10-2 98.5 % ++++
Intensity noise effect β4 1.1 10-1 98.0 % ++++
ROI size / Speckle size interaction β12 7.81 10-4 13.5 % -
ROI size / Encoding interaction β13 -1.89 10-3 73.1 % +++
ROI size / Intensity noise interaction β14 -7.97 10-2 97.8 % ++++
Speckle size / Encoding interaction β23 -3.86 10-3 93.6 % ++++
Speckle size / Intensity noise interaction β24 1.88 10-1 97.8 % ++++
Encoding / Intensity noise interaction β34 -7.17 10-2 98.3 % ++++



FIGURE CAPTIONS

Figure 1. Basic principle of sub-pixel algorithm.

Figure 2. Quality of identified displacements for a pure translation without and with noise.

Figure 3. Relative error on strain for the optimal test case (Spatial resolution 9 pixels). 

Figure 4. In-plane displacement maps for a simulated in-plane displacement (in pixels).

Figure 5. In-plane strain maps for a simulated case. a/proposed procedure b/classical approach (in

m/m).

Figure 6. Displacement maps obtained on a 1-fabric ply composite coupon under tension (in pixels).

Figure 7. Strain maps obtained on a 1-fabric ply composite coupon under tension a/εxx, b/εxy. Full

scale is 10-3 (in m/m).
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Figure 1. Basic principle of sub-pixel algorithm.
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Figure 2. Quality of identified displacements for a pure translation without and with noise.
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Figure 3. Relative error on strain for the optimal test case (Spatial resolution 9 pixels). 



Figure 4. In-plane displacement maps for a simulated in-plane displacement (in pixels).
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Figure 5. In-plane strain maps for a simulated case. a/proposed procedure b/classical 

approach (in m/m).
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Figure 6. Displacement maps obtained on a 1-fabric ply composite coupon under tension (in 

pixels).
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Figure 7. Strain maps obtained on a 1-fabric ply composite coupon under tension a/εxx, b/εxy. 

Full scale is 10-3 (in m/m).
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