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Abstract 

 

In biomedical field, fretting-corrosion between 316L SS femoral stem and bone cement is one of the significant causes of 

the hip prosthesis loosening. This article investigates wear by fretting-corrosion at the contact between 316L and PMMA . The 

influences of the ionic strength (NaCl solutions from 10-3 to 1 mol.L-1), a model protein (albumin) and electrochemical 

conditions on contact behaviour are studied. At OCP (Open Circuit Potential) conditions, the chlorides concentration, i.e. the 

ionic strength, increases the 316L wear; and albumin, concentration of 1g.L-1, does not play a significant role in total 316L 

wear. At cathodic applied potential E = -400 mV(SCE), a threshold concentration of 10-1 mol.L-1 (NaCl solution), Cth, indicates 

two behaviours: a protective effect below Cth, and an additional anodic dissolution above Cth. One might suggest that, beyond 

Cth, the passive layer is not efficient for protecting against the corrosion. At this potential, albumin reduces wear due to 

corrosion and amplifies mechanical wear induced by corrosion. Albumin seems to act as an anodic inhibitor. To determine the 

mechanisms of synergism, a “more cathodic” potential is applied, E = -800 mV(SCE), during fretting-corrosion experiments. 

Consequently, the corrosive wear can be neglected and the mechanical wear can be only measured.  

 

Keywords: Fretting-corrosion, 316L SS, PMMA, Ionic strength, Albumin. 

 
 
1. Introduction 

 

In Europe, each year, there are about 1 million hip replacements, and approximately the same number in 

USA. Nevertheless, after 10-15 years, approximately 10% of Total Hip Arthroplasties (THA) need a 

reintervention. Nowadays, the ageing of the population, injuries or diseases like arthrosis are public health issues. 

To avoid additional surgical reoperation and improve lifetime duration of implants, studies on orthopedic implants 
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are needed. Three different metal alloys can be used for femoral stem: cobalt–chromium alloy, titanium alloy or 

austenitic stainless steel. We focus our attention on cemented hip prostheses. In 1960, in order to decrease the 

number of femoral stem debonding, Sir John Charnley decided to insert hip prostheses with poly(methyl 

methacrylate) called bone cement [1]. For a cemented prosthesis (Fig. 1), the austenitic stainless steel (316L SS 

alloy) is usually used for femoral stem thanks to its biocompatibility and high resistance against corrosion in 

biological environment without friction. 

Because of the daily human gait and significant difference of mechanical properties (particularly, Young's 

moduli) between 316L SS and bone cement, stress shielding phenomenon appears. The metallic material and the 

polymer do not have the same strain properties, thereby leading to debonding between the femoral stem and the 

cement. It involves fretting (friction under small displacements, term precisely defined later) and friction. Finally, 

the upper part of femoral bone is unloaded and then becomes more susceptible to fracture; on the other hand, if 

bone around femoral stem tip is overloaded, it becomes stronger [2]. However, the bone cement acts as a 

“bumper” between femoral stem and bone, leveling peak forces acting around the prosthesis during the human 

gait.  

 

 

 

Fig. 1 Total hip joint cemented prosthesis components 

 

Femoral stem debonding and consequently friction between femoral stem and bone cement leads to cement 

degradation and cracking (Fig. 1). Debris from bone cement and femoral stem (metal oxides and ions) go through 

cement up to bone tissues [3]. Thus, the disturbance of osteoblasts cell activity and the tissue inflammation, 

respectively caused by bone cement particles and metallic oxides and ions, involve implant reoperation. It is the 

reason why fretting-corrosion between femoral stem and bone cement, particles generation, is one of the most 
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important causes of reintervention [4,5]. Consequently, fretting-corrosion experiments were carried out for 

understanding corrosion and mechanical influences, and improving the lifetime of implants. 

Fretting means friction under small reciprocal displacements, and the amplitude of displacement is lower than 

contact width. Rubin et al. found out, by numerical modeling, the amplitude of displacement is about 50 µm 

(depending on the location) between bone and stem under applied stresses during human gait [6]. Nonetheless, the 

displacement amplitude between bone cement and femoral stem is supposed identical [7].  

Wear of a metallic material under the conjugated effects of a mechanical solicitation (friction or fretting in 

this case) and of corrosion by a medium (physiological liquid) is named tribocorrosion [8]. Thus, fretting-

corrosion is fretting in a corrosive environment for a metal alloy. This phenomenon leads to passive layer 

destruction and debris generation, principally metal oxides (Fig. 2) and polymer particles [9-11].  

The fretting-corrosion phenomenon between femoral stem and bone cement is modelized by fretting-

corrosion between a 316L SS sample (the same material as that of femoral stem) and PMMA which has the same 

mechanical properties as bone cement. This polymer was chosen because of its optical transparency. In that way, a 

direct observation of the contact zone and the debris evolution between materials at contact are investigated. 

 

 

 

Fig. 2 (a) Fretting-corrosion between femoral stem (Exeter V40TM) and bone cement [7]; (b) fretting-corrosion between a head 

(316L) and a femoral neck (Ti-6Al-4V) 

 

Physiological liquid components are various, including numerous ions and proteins. Each component plays a 

different role in double layer constitution at material surface. To separate the contribution of each component, 

fretting-corrosion tests between 316L and PMMA were investigated in different solutions. The first one is Ringer 

solution. Its composition is close to physiological liquid. However, this solution is too complex: each ion may 

play a different role during a fretting-corrosion test. That’s why this work focuses on 1:1 solutions, i.e. solutions 

constituted by only NaCl. In this way, the role of chlorides on the passivity behaviour of 316L can be determined 

a) 
b) 
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during a fretting-corrosion test. To compare corrosion and mechanical behaviours in these solutions, this study 

aims at investigating the influence of ionic strength I: 

 


i

ii CzI 2

2

1
  (1) 

 

where zi: ion charge; Ci: ion concentration. Indeed, the ionic strength can interfere in the double layer constitution 

by the solution content and in the “attraction-repulsion” phenomenon betweenthe contact between two materials  

[12]. 

The role of proteins is also investigated. This work focuses on albumin, which is the main protein of blood 

plasma. Afonso et al. [13] have shown that bovine serum albumin, in NaCl 0.15 M at 37 °C, on UNS S31254 

stainless steel, stops anodic dissolution of chromium and decreases iron dissolution. Valero Vidal et al. [14] 

worked with 316L and CoCrMo alloy in NaCl 0.14 M at 37 °C, with or without albumin (0.5 g.L-1). They showed 

that for 316L, albumin does not modify open circuit potential (OCP) but it acts as an anodic inhibitor at applied 

potential, i.e. it increases cathodic reaction rate. Albumin also tends to decrease the polarization resistance, 

removing oxides from a protective layer and then exhibiting a material surface from corrosion. For CoCrMo alloy, 

albumin acts as a cathodic inhibitor and also increases anodic reaction rate, i.e. it accelerates corrosion. During a 

fretting-corrosion test between a Ti-6Al-4V alloy and alumina in pH buffered saline solutions at 37 °C, Hiromoto 

et al. [15] showed that albumin (1 g.L-1 bovine serum albumin) mostly modifies cathodic behaviour and acts as a 

cathodic inhibitor, i.e. it reduces cathodic reaction rate. From a mechanical point of view, albumin does not affect  

friction coefficient µ and wear volume. 

During a fretting-corrosion test, material wear is a combination of mechanical wear (fretting) and corrosion. 

However, the total material loss(W) is not only determined as the sum of two different material losses: (i) material 

loss due to mechanical wear obtained without the influence of corrosion(Wm) and (ii) the material loss due to 

corrosion obtained without fretting action(Wc). There is a synergistic effect between corrosion wear and 

mechanical wear. The synergy term(W) means that corrosion increases wear due to fretting(Wcm) and friction 

increases wear due to corrosion(Wmc) [16,17]. 

 

W = Wm + Wc + W = Wm +Wc + (Wcm + Wmc)  (2) 

 

This work aims at understanding the role of mechanical action and corrosion on a synergy term, and also 

calculating each of these terms for a fretting-corrosion test. In a first place, we focus on the percentage of wear 

due to corrosion obtained from the wear volume due to corrosion Vcorr (cm3), and the percentage can be found out 

with Faraday’s law: 
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M
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W
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

   (3) 
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where F is Faraday constant (F = 96500 C.mol-1), M is the molecular weight (M = 56.39 g.mol-1), n is the number 

of electrons involved in the anodic process (n = 2, hypothesis), t is the total duration of the fretting-corrosion test 

(t = 14,400 s),  is density ( = 8 g.cm-3) and i (A) is the difference between the average current during fretting 

and the current after fretting. 

Three electrochemical conditions were investigated for this study. First, the Open Circuit Potential (OCP) 

condition allows being as close as possible to the in vivo conditions. However, no information on current is 

available at OCP. Thus, fretting-corrosion tests are also carried out at cathodic applied potentials. -400 mV(SCE) 

is a threshold potential for anodic and cathodic transition of current. To remove (or to neglect) corrosion and to 

only obtain mechanical wear (Wm), the cathodic potential of -800 mV(SCE) is chosen. For each electrochemical 

condition, the role and the influence of albumin are investigated. 

 

2. Materials and methods 

 

2.1 Materials 

 

The 316L femoral stem is modeled by a plane 316L SS sample: 9 mm x 9 mm x 20 mm parallelepiped. One 

of the flat parts (9 mm x 20 mm) was polished with diamond paste down to 1 µm. This frictional surface exhibits 

3D roughness(Sa) of about 10 ± 2 nm (area of 1 x 2 mm, VeecoTM optic profilometer). 

The bone cement, involved in THA, is modeled by a cylindrical PMMA, a polymer which has the same 

mechanical properties as those of bone cement. A sample maintains the length of 15 mm and the radius of 

curvature of 10 mm. The cylindrical face was polished with 3 µm diamond solution, Altuglass Polish 1 and 2® and 

colloidal solution of silica (particles size of 0.06 µm). The 3D roughness (Sa) is about 35 ± 5 nm.  

The geometry of the contact, cylinder/plane, allows a better control of contact pressure and width. Before the 

fretting-corrosion test, 316L SS and PMMA samples were stored at least 24 hours in a desiccator. The 316L 

sample is electrically insulated with Zircalloy alloy sheets and some varnish. 

The composition of the 316L austenitic stainless steel (X2CrNiMo17-12, improved cleanliness and very low 

carbon content) is in accordance with ISO standard 5832-1 (Table 1). Mechanical properties of both materials are 

shown in Table 2. 

 

Table 1 Chemical composition of 316 L stainless steel 

Elements Cr Ni Mo Mn Si Co C Cu S Fe 

Composition (% w/w) 17.4 13.0 2.6 1.73 0.66 0.20 0.0165 0.097 < 0.001 Balance 
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Table 2 Mechanical properties of tested materials: 316L stainless steel and PMMA, *: obtained by ultrasonic measurements; 

**: manufacturer data 

Mechanical 
properties 

Young’s modulus 
E (GPa)* 

Poisson’s 
ratio * 

Yield stress 
(MPa)** 

Ultimate tensile 
strength (MPa)** 

316L 197 0.30 280 635 

PMMA 2.5 0.39 65 75 

 
2.2 Solutions 

 

Two types of solution are used: Ringer solution (composition in Table 3) and NaCl solution, with 

concentrations of 10-3, 10-2, 10-1 and 1 mol.L-1. Room temperature was of 22 ± 1 °C. To understand influence of 

proteins on fretting behaviour, albumin of 1 g.L-1 was added in each saline solution. 

 

Table 3 Ringer solution composition 

 NaCl KCl CaCl2 NaHCO3 

Concentration (g.L-1) 8.50 0.25 0.22 0.15 

 

2.3 Test device 

 

To reproduce fretting-corrosion phenomenon, micro-displacements measured in vivo (about 50 µm) and 

stresses applied in vivo (between 7 and 30 MPa) [6] must be replicated. A specific device (Fig. 3), conceived and 

developed in collaboration between ENSM-SE and Böse, was used for fretting-corrosion tests. An 

electromagnetic motor, first tried for fretting-corrosion, let us obtain the same results as those delivered by the 

device used previously [9-11]. The load cell is a piezoelectric transducer and the displacement measurer is a 

capacitive sensor. 

The mechanical parameters of fretting-corrosion tests are realistic:  

 the applied normal load (P) was 127.5 N, i.e. a pressure of about 22 MPa, which is spread from 7 to 

30 MPa, range of pressure applied in vivo [6]; 

 the amplitude of displacement was  ± 40 µm, close to the in vivo displacement [6]. Moreover, the 

displacement is sinusoidal and the frequency is 1 Hz, i.e. one cycle equals one second, 

corresponding to the frequency of the gait cycle.  

For these mechanical values, the gross slip condition was checked. 

To identify actual displacement  between both materials, the accommodation of the device must be 

considered. Based on the hypothesis that there is an elastic behaviour with compliance Cs, the actual displacement 

 is:  = r – acc = r – Cs * Q, where r and acc are respectively the monitored and accommodated displacements, 

and Q is the tangential load [18]. 

 



 7

2.4 Electrochemical measurements 

 

For electrochemical measurements (OCP), current density and Electrochemical Impedance Spectroscopy 

(EIS), a PARSTAT 2263 potentiostat with a three-electrode set up was used: 

 the working electrode was the stainless steel sample, 

 the counter electrode was a circular wire of Pt having the diameter of about 60 mm, 

 the reference electrode was a Saturated Calomel Electrode (SCE, E = +246 mV(SHE) at T = 22 °C). 

 
 

Fig. 3 Fretting-corrosion device: ENSM-SE and Böse prototype 

 

EIS measurements were investigated from 105 Hz to 10-1 Hz at a rate of 10 measurement frequencies/decade, 

with an AC amplitude of 10 mV. The potential was equal to OCP determined before EIS measurements or to 

applied potential (-400 or -800 mV(SCE) in our case). During friction tests, because of the non-stationarity 

conditions, EIS measurements should not be performed for actual values, but only the evolution of electrical 

parameters was considered [19]. One may notice that regular EIS measurements, during the fretting phase, have 

no influence on OCP or on current values after the EIS measurements. 

For each electrochemical condition, OCP or cathodic applied potential (-400 and -800 mV(SCE)), two 

experiments (steps defined in Table 4) were carried out for all solutions with or without albumin. 

 

 

 

 

 

 

 

 

 

P 
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Table 4 Electrochemical measurements steps for each electrochemical conditions, OCP or cathodic applied potentials (E = -

400 or -800 mV(SCE)) 

Electrochemical 
conditions 

OCP 
Potential applied: 

-400 or -800 mV(SCE) 

Step 1 Cathodic polarization: -1 V(SCE), 5 min 

Step 2 without fretting: 1 h + EIS without fretting: 10 min + EIS 

Step 3 with fretting: 4 h + 10 EIS regular distribution 

Step 4 
without fretting: 14 h + 2 EIS after 

fretting stop and 1 EIS after 14 h 
without fretting: 10 min + 2 EIS 

after fretting stop 

Step 5 
 without fretting: 14 h OCP 

measurement and 1 EIS after 14 h 

 

2.5 Wear profiles 

 

Thanks to VeecoTM WYKO NT9100 optic profilometer, the measurements of the total wear volumes for 316L 

and PMMA were performed. Three measurements were carried out on 316L and PMMA surfaces. The total wear 

volume was thus extrapolated for the total wear track length (15 mm). This value was compared with the total 

wear made on the whole length of the track. The wear volume error is about 10 %. Raw data were filtered by an 

automatic cylindrical shape. 

 

3. Results 

 

3.1 Open Circuit Potential conditions 

 

3.1.1 OCP evolution 

 

After cathodic polarization of 5 min at -1 V(SCE), the open circuit potential (OCP) is recorded without 

fretting during 1 hour (steps described in Table 4, OCP evolution on Fig. 4). From the beginning of fretting, OCP 

is significantly decreased and then slightly stabilized. Instantly after the end of fretting, OCP nearly recovers the 

value before fretting. At regular intervals (every 20 minutes), the polarization resistance (Rp) is determined with 

Electrochemical Impedance Spectroscopy (EIS) in order to investigate the behaviour of the metal surface. Rp is 

extracted from the simple electrical circuit: Rsol(CPE//Rp), Rsol is the solution resistance, CPE is a Constant Phase 

Element and Rp is the polarization resistance (resistances of the passive layer and the double layer at high 

frequencies). 
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Fig. 4 Detail of experiment: OCP measurement before, during and after fretting and Rp measurements from EIS. Rp: 

difference between Rp before and Rp after 2400 cycles of fretting; OCP: difference between OCP before fretting (Ebf) and 
OCP at the end of fretting (Eff). Solution is constituted by NaCl 10-3 mol.L-1, displacement amplitude is of ± 40 µm, 1 cycle is 

equal to 1 second 

 
Fig. 4 exhibits OCP and Rp values in a NaCl solution of 10-3 mol.L-1. It is worth noting OCP and Rp 

evolutions are the same as those of other solutions, only OCP and Rp vary in accordance with the different 

solutions (Fig. 5). 

Fig. 5 exhibits the decrease of OCP and Rp according to the ionic strength. Both electrical values are 

consistent and they are related to the evolution of the contact submitted to fretting, i.e. less passive behaviour of 

the AISI 316L SS. 

 

3.1.2 Mechanical behaviour  

 

From a mechanical point of view, the dissipated energy (Ed) during one cycle, which corresponds to the 

mechanical work of the tangential force, was monitored. For the total duration of the test, the cumulated dissipated 

energy (Edc), i.e. the sum of Ed for each cycle (1 cycle = 1 second), was calculated. The cumulated dissipated 

energy during fretting increases with ionic strength (Fig. 6). One may notice that experiments were investigated at 

two compliances. This fact substantiates that, the dissipated energy variation is controlled by the composition of 

the solution, not the mechanical device. 
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Fig. 5 Rp: difference between Rp before fretting and 2400 cycles after fretting start; and OCP: difference between OCP 
before fretting (Ebf) and that at the end of fretting test (Eff) versus ionic strength I 
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Fig. 6 Cumulated dissipated energy Edc during the fretting-corrosion test in a function of ionic strength I. Two compliances 
were investigated, : Cs = 0.0707 µm.N-1 and : Cs = 0.2563 µm.N-1 

 

: Cs = 0.0707 µm.N-1   
: Cs = 0.2563 µm.N-1 
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Fig. 7 Influence of albumin (1g.L-1) at OCP conditions on average OCP during fretting, the total wear volume of 316L SS and 
polarization resistance for NaCl 1 mol.L-1 

 
3.1.3 Albumin influence  

 

In order to satisfy in vivo conditions and to understand the role of proteins, experiments were carried out in 

the same electrochemical conditions and the same solutions with the presence of a protein: albumin with a 

concentration of 1 g.L-1. As shown on Fig. 7, albumin has no influence (ANOVA test,  = 0.05) on the average 

value of OCP during fretting and the total material loss for NaCl 1 mol.L-1. Edc, OCP and Rp are not 

significantly different in cases with and without albumin in NaCl 1 mol.L-1. The same conclusion is highlighted in 

other solutions. Nevertheless, albumin has influence on wear volume of PMMA: this one is slightly lower with 

albumin. 

 

3.1.4 SEM images  

 

Worn surfaces of 316L SS were observed with a Scanning Electron Microscope (SEM) 6400 JEOL combined 

with an Energy Dispersive X-Ray (EDX) probe. Fig. 8 presents surfaces of 316L samples submitted to fretting-

corrosion tests. Corrosion crevices (Fig. 8 a) are mostly localized at the border of the wear track (Fig. 8 b). At 1 

mol.L-1, corrosion seems more localized than that at 10-3 mol.L-1. With albumin, grooves are compacter and 

corrosion crevices follow friction direction (Fig. 8 c). 
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Fig. 8 SEM images of 316L SS in NaCl 1 mol.L-1 (a), (b) without albumin (c) with albumin, arrows show the direction of 
sliding 

 
 
3.2 Cathodic applied potential conditions (E = -400 mV(SCE))  

 

At OCP conditions, although we are close to the in vivo conditions, no information on current is available. 

That’s why the second part of this work focuses on cathodic applied potential, and more specifically E = -400 

mV(SCE). This value was chosen because the influence of ionic strength on current during fretting can be 

highlighted. 

 

3.2.1 Evolution of the current 

 

Significant values, as the average current during the last 3 hours of fretting (Imf),I, the difference between 

the current at the end of fretting (Iff) and the current after fretting (Iaf), were investigated in accordance with ionic 

strength. As shown on Fig. 9, fretting involves a higher impact on current values for NaCl solution of 1 mol.L-1 

(I ~ 11 µA) than that for NaCl solution of 10-3 mol.L-1 (I ~ 1 µA): the applied potential is enough to protect a 

surface during friction phase for NaCl 10-3 mol.L-1. In the same way, Imf is close to zero and is even positive, i.e. 

anodic for one experiment at NaCl 1 mol.L-1 even though it is cathodic (~ -15 µA) for NaCl 10-3 mol.L-1.  

 

100 µm 10 µm 10 µm 

a) b) c)
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Fig. 9 Average current during fretting-corrosion, Imf, and difference between current at the end of fretting (Iff) and that after 
fretting (Iaf), I versus ionic strength I 

 

3.2.2 Wear volume evolution 

 

As described in §2.5, wear volumes were measured on PMMA and 316L samples with the VeecoTM 3D optic 

profilometer (Fig. 10). Wear volume of PMMA is constant whatever the ionic strength (ANOVA test,  = 0.05) at 

OCP and E = -400 mV(SCE) is, but the wear volume of PMMA is slightly higher at OCP conditions. 
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Fig. 10 3D wear profiles of (a) 316L and (b) PMMA, in NaCl 1 mol.L-1 at OCP conditions, image size of 1x1 mm2 

 

As illustrated on Fig. 11, for 316L samples, total material loss increases with ionic strength for both 

electrochemical conditions. A threshold concentration is then highlighted, about 10-1 mol.L-1. For 10-3 and 10-2 

mol.L-1, wear volume measured in OCP conditions is higher than that for E = -400 mV(SCE). Moreover, for 

concentrations above 10-1 mol.L-1, wear volume measured in OCP conditions is lower than that at E = -400 

mV(SCE). 

 

 

 

Fig. 11 Total wear volume of 316L versus ionic strength for OCP conditions and E = -400 mV(SCE) 

 

3.2.3 Albumin influence 

 

Contrary to OCP conditions, albumin plays a significant role at the cathodic applied potential of E = -400 

mV(SCE). Mainly, two values are analyzed: the average current during fretting and the percentage of corrosive 

wear. In NaCl 1 mol.L-1 (Fig. 12), albumin largely (ANOVA test,  = 0.05) reduces the current during fretting 

(from ~ -0.5 µA without albumin to ~ -10 µA with albumin) and the percentage of corrosive wear (from ~ 80 % 

without albumin to ~ 50 % with albumin). One may suggest that albumin acts as an anodic inhibitor, as shown by 

Valero Vidal et al. [14]. 
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Fig. 12 Influence of albumin (1g.L-1) at E = -400 mV(SCE) on average current during fretting and the percentage of corrosive 

wear of 316L SS for NaCl solution of 1 mol.L-1 

 

3.2.4 SEM images 

 

At E = -400 mV(SCE), the main difference between Fig. 13 a and Fig. 13 b, i.e. NaCl 1 mol.L-1 with or 

without albumin, concerns the grooves inside crevices. Without albumin, grooves indicate that pulled out particles 

are enough hard to damage surfaces. With albumin, no groove is observed into crevices: particles are probably 

softer or are ejected more rapidly. At NaCl 10-3 mol.L-1 (Fig. 13 c), the central zone of the contact is not damaged 

and localized corrosion is not observed. 

 

 

 

Fig. 13 SEM images of 316L SS in NaCl 1 mol.L-1 (a) without albumin (b) with albumin (c) in NaCl 10-3 mol.L-1 without 

albumin, arrows show direction of sliding 

100 µm 
10 µm 10 µm 

a) b) c)
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3.3 Cathodic applied potential conditions (E = -800 mV(SCE))  

 

To neglect wear due to corrosion and to obtain wear due to mechanical wear (Wm), the cathodic potential of -

800 mV(SCE) was chosen. To validate this potential value, only extreme ionic strengths (10-3 and 1 mol.L-1) were 

tested. 

 

Table 5 Average current during fretting Imf and total wear volume W measured at E = -800 mV(SCE), with or without albumin. 
Influence of albumin and ionic strength is determined by an one-way ANOVA test ( = 0.05) 

 Imf (µA) Albumin 
influence? 

W (106 µm3) Albumin 
influence?  without albumin with albumin without albumin with albumin 

10-3 mol.L-1 -17.60 ± 0.30 -14.93 ± 0.32 YES 0.25 ± 0.07 0.19 ± 0.03 NO 

1 mol.L-1 -27.96 ± 9.31 -45.57 ± 3.11 YES 0.38 ± 0.14 0.35 ± 0.08 NO 

Ionic strength 
influence? 

NO YES  NO NO  

 

 As shown on Table 5, the average of current during fretting varies in a function of ionic strength and is 

modified by the presence or not of albumin. However, the total wear volume is same without regard to the 

condition (ionic strength and albumin). One may assume that the total wear volume equals the mechanical wear 

volume Wm , i.e.  Wm = 0.3 ± 0.1 106 µm3. 

 

4. Discussion 

 

4.1 Open Circuit Potential conditions 

 

The evolution of OCP before, during and after fretting is shown on Fig. 4. One may notice that Ebf 

logarithmically decreases with the ionic strength in accordance with [20]. Chloride ions, Cl-, accelerate anodic 

dissolution with the formation of an unstable compound MCln (or M(H2O)yClx) [21]. At high concentration of 

chloride ions, one may suggest that metallic dissolution is higher and leads to OCP decrease. 

The drastic drop of OCP occurs as soon as fretting starts (Fig. 4), expressing the surface degradation. The 

passive layer on 316L surface is partly destroyed and metal dissolution, i.e. anodic reaction, occurs. In addition, 

breakdown of the passive layer is highlighted by the polarization resistance (Rp) fall. Rp is indeed inversely 

proportional to corrosion rate (Stern-Geary equation): the Rp fall involves acceleration of corrosion.  

One may notice that these falls, OCP and Rp, decrease with the ionic strength (Fig. 5). According to 

Macdonald [22], when the concentration of Cl- increases, the passive layer reconstruction becomes more and more 

difficult. The result highlighted on Fig. 5 translates the difficulty of passive layer reconstruction during fretting 

when chlorides concentration increases.   
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The OCP and Rp upturn, directly after cessation of fretting (Fig. 4), confirms corrosion activation during 

fretting test. However, the OCP value after fretting is lower than Ebf. The electrochemical behaviour of 316L 

surface can indeed be modified by the less protective worn zone and the PMMA and oxides debris deposed on the 

316L surface. 

From a mechanical point of view, it is worth noting that the cumulated dissipated energy (Edc) during the 

fretting test increases with the ionic strength (Fig. 6). One may suggest that when the ionic strength increases, 

attraction between surfaces is reinforced [23]. 

As shown on Fig. 7, albumin has no influence on the average OCP during fretting and on total wear volume 

of 316L. Without friction, Valero Vidal et al. [14] showed that albumin does not modify OCP values. At this 

concentration, 1 g.L-1, albumin does not modify electrochemical behaviour: it has no influence on OCP during 

fretting and Rp values; nor on total wear volume. 

 

4.2 Cathodic applied potential conditions (E = -400 mV(SCE))  

 

The applied potential E = -400 mV(SCE) is a cathodic potential, i.e. the current is negative, thus the surface is 

protected against corrosion. However, this protection is not effective for all solutions. For example, in NaCl 10-3 

mol.L-1, this protection is effective: I ~ 1 µA while it is not effective in NaCl 10-1 or NaCl 1 mol.L-1, respectively 

I ~ 7 µA and I ~ 11 µA (Fig. 9). During the fretting-corrosion test, the current even becomes positive, i.e. 

anodic, for NaCl 1 mol.L-1. In fact, a threshold concentration and two surface behaviours can be determined (Fig. 

11). For concentrations below 10-1 mol.L-1, wear volumes at OCP condition are higher than those at E = -400 

mV(SCE): the applied potential protects surface. For concentrations above 10-1 mol.L-1, wear volumes at OCP 

condition are lower than those at E = -400 mV(SCE): the metal dissolution is higher and the passive layer is less 

protective against fretting.  
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Fig. 14 The total wear volume of 316L SS, W, as a function of wear due to corrosion, Vcorr, in the logarithmic scale. The 

dashed straight line: case where wear is only due to corrosion  W = Vcorr. Ionic strength decreases from the right to the left 

 

Fig. 14 allows underlining which of preponderant wear phenomena is highlighted: corrosion or mechanical 

wear. Experimental data close to the dashed straight line indicate preponderance of corrosive wear. Corrosion is 

also the preponderant wear phenomenon for high ionic strength: ~ 80 % in NaCl 1 mol.L-1 and 10-1 mol.L-1 

without albumin. One may notice that, in presence of albumin, the percentage of wear due to corrosion decreases: 

~ 50 % in NaCl solutions of 1 mol.L-1 and 10-1 mol.L-1, instead of 80 % without albumin. Especially, in the 

presence of albumin and for lower ionic strength, standard deviation values are large and the coefficient of 

variation is in the range from 10 to 100. The preponderant phenomenon is mechanical wear and in this case, the 

dispersion of corrosive and total wear values is larger. The main mechanical degradation, under albumin and NaCl 

solutions, should involve hazardous wrenching that should be related to the high standard deviation. 

 

4.3 Cathodic applied potential conditions (E = -800 mV(SCE))  

 

As explained in §1, the total wear volume of 316L SS is the sum of wear due to corrosion, Wc. and 

mechanical wear, Wm. The total wear volume, W, follows the equation (2). At E = -800 mV(SCE), no anodic 

current is measured during a fretting-corrosion test. In this electrochemical condition, anodic dissolution, i.e. 

metallic dissolution, is neglected without regard to ionic strength and the presence of albumin. The mechanical 

wear Wm is also determined: Wm = 0.3 ± 0.1 106 µm3. At E = -400 mV(SCE), thanks to Faraday’s law, the wear 

due to corrosion Vcorr can be calculated (equation (3)). In fact, in comparison with the total wear volume (equation 

Ionic strength  
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(2)), Vcorr = Wc + Wmc. By deduction, the term Wcm can be determined, as a function of ionic strength at E = -

400 mV(SCE). To set apart the synergy term W = Wmc + Wcm, the term Wc must be measured. From 

polarization resistance values, the dissolution current of the material, i, can be calculated: i = B/Rp, with B = 24 

mV (hypothesis coming from investigations in the COST 533 round robin). In that way, Wc is ~ 100 or 500 µm3 

depending on the ionic strength. Wc represents only 0.01% of Vcorr and this can be neglected. Iwabuchi et al. 

found the same ratio: Wc/W of ~ 0.01% [25].  

Fig. 15 a illustrates the contribution of Wmc, i.e. the increase of corrosive wear due to fretting. Levels can be 

defined from NaCl solution of 10-1 mol.L-1 without albumin: above this concentration, the contribution of 

corrosive wear is about 80%. Albumin at a concentration of 1 g.L-1 shifts the transition and the percentage of 

corrosive wear: above 10-2 mol.L-1, the contribution of corrosive wear is constant and about 50%. Thus, albumin 

decreases the percentage of corrosive wear. One may notice that material behaviour in Ringer solution is different 

from that in NaCl solutions. Because of the presence of other ions (Table 3), the contribution of corrosive wear 

decreases. For example, the role of carbonates could be determined in future work. Fig. 15 b illustrates the 

contribution of Wcm, the increase of mechanical wear due to corrosion.  No trend can be defined: mechanical 

wear is not a function of ionic strength, and this term matches with an arbitrary wrenching in the surface material.  
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Fig. 15 The contribution of the different synergy terms with albumin (empty symbols) or without albumin (full symbols) : 

(a) Wmc/W is the increase of corrosive wear due to fretting and (b) Wcm/W is the increase of mechanical wear due to 

corrosion 

 

Diomidis et al. [26] worked with a new expression of synergy term. Synergism is in fact the acceleration of 

material deterioration by corrosion because of mechanical removal and re-growth of a passive layer. Continuous 

and intermittent sliding tests are completed to measure the material loss in the sliding track. The intermittent 

sliding tests allow the removal and re-growth of the passive layer. However, the sliding conditions in a fretting-

corrosion test are not continuous and the passive layer destruction and re-growth must be different. 

 

a) b) 
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In future work, the influence of albumin concentration on metal behaviour will be studied. To be closer than 

in vivo conditions, experiments will be realized at 10 and 20 g.L-1. For example, the ISO standard indicates a 

concentration of proteins equal to 17.5 g.L-1 for improving the lifetime of hip implants [27,28]. 

As seen on Fig. 10 a, the characteristic shape of 316L wear track, ‘W’ wear shape as mentioned in [9,10], is 

the consequence of crevice corrosion. The evolution of local pH might lead to this particular shape. The influence 

of pH solution could give some information on the crevice corrosion effect. The crevice corrosion effect will be 

investigated in further investigations. 

 

5. Conclusions  

 

Under OCP conditions, the increase of chlorides concentration leads to higher corrosion and a more difficult 

passive layer reconstruction during the friction phase. From a mechanical point of view, the Edc increases 

according to the ionic strength; consequently one might suggest attraction between surfaces is reinforced. 

At E = -400 mV(SCE), a threshold concentration, around 10-1 mol.L-1, highlights that a surface protective 

phenomenon occurs below this concentration, while more metal dissolution appears above this value. 

At E = -800 mV(SCE), only the mechanical wear is determined: Wm = 0.3 ± 0.1 106 µm3. This value is 

needed to calculate the term of synergy between corrosive and mechanical wear. 

Albumin, at 1 g.L-1, has no influence at OCP conditions. However, at E = -400 mV(SCE), the percentage of 

corrosive wear is lower in presence of albumin. Albumin seems to play the role of an anodic inhibitor. 

When the chlorides concentration, i.e. the ionic strength in this study, increases, the 316L wear increases too. 

The most interesting result is: albumin promotes the mechanical degradation compared with the corrosive wear, 

under cathodic polarization. This assertion includes the pure mechanical degradation and the synergism 

mechanical wear assisted by the corrosion. One might suggest this synergistic term should be the key-point of the 

316L wear, under cathodic polarization.  
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