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Abstract 

An aggregate may undergo a restructuring that leads to a change of its porosity. The cause of 

this morphology change is not only the colloidal forces between the primary particles but also 

the interaction between the primary particles and the flowing fluid. We investigate in this 

paper the restructuring of the aggregates with Van der Waals forces between the primary 

particles in the presence of the Brownian motion and a weakly turbulent flow. The motion of 

all the primary particles constituting the aggregate is studied thanks to a 1-D model based on 

the work of G. Narsimhan [Model for drop coalescence in a locally isotropic turbulent flow 

field, J. of Colloid & Interface Science, 272(2004)197-209]. A shrinking rate law, i.e. 

aggregate porosity versus time, is proposed after a transition to a 3-D model. Its characteristic 

time depends on the initial porosity, the number of primary particle and a characteristic time 

at the scale of the primary particle. 

   

Keywords: aggregate, restructuring, shrinking time, turbulent flow field 
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1. Introduction 

Aggregation of small particles often occurs during industrial processes. The first step of this 

phenomenon is the collision of particles, which can be due to differential sedimentation, 

Brownian motion or shear flow in a duct or an agitated vessel. The size of the resulting 

clusters or aggregates increases with time. However, aggregates become looser and looser and 

undergo breakage. There is a competition between the cohesive forces inside the aggregate 

and the shear stress due to the liquid flow. Thus, the final size of aggregates can be calculated 

from a balance between aggregation and breakage. Aggregation and breakage have been 

investigated by many researchers [1]. Under certain operating conditions (supersaturation, 

mass transfer inside the aggregate …), consolidation or strengthening of aggregates happens 

[2-7]. This takes place at the neck between adherent primary particles. The consolidation 

prevents the breakage of aggregates and leads to more porous clusters than the ones made 

without consolidation. At the same time, interaction between the flowing liquid and the 

aggregate can modify the internal structure of aggregates, breakage being the consequence of 

such a strong interaction. This results from the relative motion of primary particles inside the 

aggregates and leads to denser aggregates (see, for instance, [8-10]). Few works have been 

devoted to the study of the consolidation and the restructuring.  

Several phenomena cause densification without consolidation: physical forces between 

primary particles, e.g. Van der Waals forces, Brownian motion of the primary particles 

leading to thermal restructuring, relative motion of the primary particles due to the shear flow, 

fragmentation-reaggregation steps, i.e. fragmentation of a large and loose aggregate followed 

by aggregation of the two fragments. At our knowledge, the modelling of these phenomena 

has not yet been performed. However, only attempts have been published. Investigators 

established aggregate restructuring laws from experiments and computer simulations.  

Empirical equations 

Several experimental works and computer simulations show that large aggregates have fractal 

morphology. In fact, an aggregate containing i identical primary particles of radius R is 

characterized by: the fractal dimension Df and the outer diameter Ri. These two parameters are 

linked by the following relations:    

( )1/
/ fD

iR R i S=    (1) 

The structure factor S is depending on Df. Its value is close to 1. 

As a first approximation, clusters keep the same fractal dimension along the aggregation 

process. However, it follows from some experimental evidence [8-10] that the fractal 
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dimension value increases with time. So the simplest way for describing this observation 

makes use of a relaxation law: 

( )max/ /f fdD dt D D τ= −          (2) 

max, ,fD D τ  are respectively the actual fractal dimension, its maximum value and a relaxation 

time. The relaxation time includes the above-mentioned physical contributions. 

Relaxation time may have a constant value [11], may be a function of the actual aggregate 

size [12], or may be a function of the mean aggregate size at a given time [13-15]. The 

relaxation time [12-15] is expressed by means of empirical equations containing fitted 

parameters. So, 2 or 3 fitted parameters are used for each physical contribution. 

Selomulya et al. [13-14] propose: 

1
1 2 / /

n

i iA F
i i

c i c dn dt dn dtτ −   = +   
  
∑ ∑        (3) 

c1, c2 are constants. ni represents the number concentration in i-mer. A and F are relative to 

aggregation and fragmentation processes. 

Baldyga et al. [15] propose: 

( ) ( ) ( ),max 0 ,min ,min/f f A A A f F F F fdD dt C D D C K M D D C K D Dγ γγ= − + − + −&   (4) 

, ,A FC C Cγ  are constants. KA and KF are agglomeration and fragmentation kernels. M0 is the 

zero-order moment of the particle size distribution. γ&  is the shear rate. ,min ,min,A FD D are fitted 

fractal dimensions. 

Kostoglou et al. [12] suggest: 

piτ ∝             (5) 

The value of the asymptotic fractal dimension is also fitted:  

max 2.5D >   

These empirical equations well represent the reality, but can be only applied to the considered 

systems. 

 

Simulations  

Starting from assumed restructuring mechanisms at the primary particle scale, and being 

given an initial aggregate morphology, computer simulations lead to the morphology of the 

aggregate at a given time. As a result, the relaxation time can be deduced. So, in the case of 

thermal restructuring, Dalis [16] shows that the relaxation time depends on the temperature, 

the size and the number of primary particles in the aggregate: 
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( ), ,f i R Tτ ∝  

The computer simulations also give the maximum value of fractal dimension. 

Simulation of aggregation has been extensively studied [1]. We mention the work of 

Gmachowski [17] as he proposes a new approach of the aggregation modelling by considering 

an aggregation act for which the fractal dimension can vary along the process. The master 

equation is the following: 

( ) ( )1/ 1/1/ ji
D DDi j F i j+ = +  

Di, Dj, D are the fractal dimension of i-mer, j-mer, (i+j)-mer. F can be expressed as a function 

of the space dimension, the trajectory dimension and D. Restructuring may be taken into 

account [18] by changing the value of F. Kostoglou and Konstandopoulos [19] use a similar 

aggregation act for studying Brownian aggregation. 

Higashitani et al. [20] present a three dimensional discrete element method (DEM) to simulate 

the deformation and break-up of large aggregates in flowing viscous fluid (dynamic viscosity 

µ). They take into account the Van der Waals forces between submicronic primary particles, 

the drag forces acting on the particle surface exposed directly to the flow, and the elastic 

interaction between primary particles inside the aggregate. The model is applied to the 

behaviour of the aggregates in shear and elongational flows for 50Paµγ >& . Shear flow results 

in rotation, deformation and break-up of the aggregates. The averaged number of primary 

particles in the resulting fragments is only dependent on the ratio of the hydrodynamic drag 

force and the adhesive force at the scale of a two primary particle set: 

0.8722

2

6
27.9

/12

R
i

AR

πµ γ
−

 
=  ∆ 

         (6) 

where ∆ is the minimum separation distance between primary particle surfaces and A is the 

Hamaker constant. 

Zeidan et al. [21] consider the deformation and the fragmentation of 2D aggregates composed 

of sub-millimetric particles in a shear flow. Simulations are carried out by a combined 

approach of discrete element method and computational fluid dynamics. Van der Waals forces 

and drag forces are also considered. As expected, the ratio between the shear stress and the 

adhesive stress drives the dynamics of the morphology changes: for high ratio values, 

elongation and break-up dominate, whereas rotation, rounding and erosion occur for small 

ratio values. 
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Tatek et Pefferkorn [22] studied the cluster-cluster aggregation taking into account the 

connectivity inside the aggregate. Aggregation is described by all classical ways except the 

use of a stability criterion: 

if ( ) K
v

ji
j

i <+ 1
 then the collision (with i<j ) is efficient. 

v is the contact number between the two colliding aggregates. The K constant is chosen by the 

user. This criterion is closely related to an aggregation-fragmentation mechanism for the 

restructuring. They observe that the fractal dimension is a decreasing function of K. 

Population balance equation and restructuring 

Population balance equation (PBE) is a partial differential equation that gives the population 

density. The latter is a function of the time t and internal parameters for homogeneous 

suspension.  The phenomena acting on the population density are the nucleation, growth, 

agglomeration and breakage. The corresponding terms are classically included in the PBE.  

To take into account the aggregate restructuring a convective term including the restructuring 

law can be introduced in the PBE. So, 1-D PBE (one internal parameter) or 2-D PBE (two 

internal parameters) has been proposed by investigators [11-15]. Thus, the restructuring law, 

i.e. aggregate porosity or fractal dimension versus time, plays a crucial role in the modelling 

of the aggregation dynamics. 

The purpose of this paper is to establish the restructuring laws for aggregates formed in the 

conditions of perikinetic and orthokinetic aggregations. The section two presents the 

framework of the modelling of the restructuring and preliminary results. Emphasis is given to 

the restructuring in a motionless fluid. The section three is devoted to the search of 

restructuring laws for aggregates in a weakly turbulent flow. As a conclusion the results will 

be discussed in the section four. 
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2. Restructuring by attractive interaction between primary particles 

2.1. Modelling 

Let us consider the restructuring of an aggregate by attractive interaction between primary 

particles. Each primary particle undergoes attractive forces due to the other particles and the 

drag force in a still fluid. The restructuring will be considered as isotropic. As a consequence, 

we will study the behaviour of a particle chain along a radial line of the aggregate. We 

consider here that the orthoradial interactions have a negligible effect on the motion of 

primary particles. This point will be discussed in § 2.3 and 3.4. The figure 1 shows the chain 

of N mono-sized primary particles. The particles are assumed as spherical with the radius R. 

The primary particle at the center of the aggregate (denoted 1) will be located at one (left) end 

of the chain. It will be motionless by symmetry. The location of a given particle i is denoted 

by xi that is the distance between the centers of the actual particle and the particle 1. The 

primary particle at the (right) end of the chain is located at the surface of the aggregate. 

A given primary particle i undergoes the physicochemical interaction with its nearest 

neighbours i-1 and i+1 . The attractive interaction is due to Van der Waals forces. The 

interaction potential between two primary particles separated by the center-to-center distance 

r is expressed thanks to Hamaker [1]: 

( )
2 2 2 2

2 2 2 2

2 2 4
ln

6 4

A R R r R
V r

r R r r

 −= − + + − 
       (7) 

A is the Hamaker constant of the system constituted by the particle material and the fluid. 

The Van der Waals force obeys:   

( ) /F dV r dr= −           (8) 

The Newton’s second law is applied to the particle i: 

( ) ( )
2

12
6i i

i i

d x dx
m F h F h R

dt dt
πµ−= − −        (9a) 

with 

1i i ih x x+= −            (9b) 

As the particle Reynolds number is much smaller than 1, the drag force obeys the Stokes law. 

µ is the dynamic viscosity of the fluid. 

By rendering the Eq.9a-b dimensionless:  
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( ) ( )
2

12

' '
' ' ' '

' '
i i

i i

d x dx
H F h F h

dt dt−= − −         (10) 

with 

3' 72 /t t R Aτ τ πµ= =          (11a) 

2324
sAH

R

ρ
πµ

=           (11b) 

( )
( )22 32

4 ' 8 ' 8 4
' '

' 4 ' '' 4

r r
F r

r r rr
= − − −

− −        (11c) 

The dimensionless distances and the time are obtained respectively by the radius of the 

primary particle and τ. Usually H is much smaller than 1. As a consequence we will consider 

inertialess particles: 

( ) ( )1

'
' ' ' ' 1

'
i

i i

dx
F h F h i

dt −= − >         (12) 

Along the time course the primary particles collide inside the aggregate and form clusters as 

the particles become bound after the collision. The cluster size, i.e. the number of primary 

particles in the cluster, is increasing and the number of clusters is decreasing. Thus the 

interaction between clusters and not only the interaction between single primary particles will 

be considered (Figure 2). 

The force between two clusters denoted i and i+1 is the sum of all inter-particle forces: 

( )
1

1

1, 1

, 1 1
0, 0

' ' 2 2 2 2
i i

i i

M M
a

i i i i i i
m m

F F h m M m
+

+

− −

+ +
= =

= + + − −∑       (13) 

Mi is the number of primary particles inside the i cluster. 'ih is the distance between the centre 

of the last (right) particle of the i cluster and the center of the first (left) particle of i+1 cluster. 

A given cluster is marked by the coordinate of the center of its first (left) primary particle.  

The dimensionless drag for a cluster may be calculated following Batchelor [23] and Rogak 

and Flagan [24]: 

'
'

'
i

i i

dx
T

dt
= −Ω           (14a) 

with 

( )
2

1/ 22 32 0.307
1 0.426

3 1 0.5i iM
ε ε ε

ε
 +Ω = − + − 

       (14b) 

and 

( )1/ 2 iLn Mε =           (14c) 
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However the Stokes law is valid only for a cluster that is kept away from its neighbours. The 

lubrication theory leads to a corrective term for the Stokes law that takes into account the 

additional hydrodynamic resistance due to the proximity of the other particles.    

We will use the approach of Zeichner and Schowalter [25]: the attractive force on the particle 

i due to the particle i+1 is reduced by a factor:  

( ) ( ), 1 ' 2 / ' 2i i i iG h h C+ = − − +          (15) 

where C is a constant whose value is equal to 0.25.  

Finally the motion of the cluster i obeys the expression: 

( ) ( )( )1, 1 1, , 1 , 1

'
' ' / 1

'
a ai

i i i i i i i i i i i

dx
F h G F h G i

dt − − − + += − Ω >      (16a) 

with 

1

1

' 2 2 ' 1
j i

i j j
j

x M h i
= −

=

= − + >∑         (16b) 

A recursive computational program was involved to solve Eqs.16a-b. Suppose Na be the 

cluster number in the aggregate at a given time; Eqs 16a-b are solved till two clusters collide. 

As a consequence a new configuration of the chain appears with Na-1 clusters. This procedure 

is repeated until a single cluster is obtained. 

 

2.2 Results 

Generally 3D-aggregates contain a finite number (<105) of primary particles. Thus, the 

number N of primary particles inside the corresponding 1D-chain will be chosen smaller than 

40. We examine the case of initially identical inter-particle distances.  

The figure 3 shows the change with time of the morphology of a chain with 30 primary 

particles. A set (line) of horizontal dots represents the chain at a given time. Each line 

corresponds to a given dimensionless time. At time zero the dimensionless inter-particle 

distance is equal to 3, i.e. the surface-surface distance is equal to the particle radius. 

The restructuring of the aggregate happens by successive steps that can be a new location of 

primary particles either without global shrinking or with shrinking.  

Simulations have been performed with: 

- N : [4, 6, 10, 20, 30, 40] 

- ( )' 0h t =  : [3, 4, 6] i.e. 0 02 / 'hφ =  : [0.667, 0.5, 0.333] 

Time and position of each primary particle in a given chain are recorded at each collision. 

These records are achieved for each set of N, h’0.  The data are transformed into a graph 
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representing the mean solid volume fraction φ in the aggregate as a function of the time. The 

figure 4 shows the corresponding curves for h’0=1 and various N. 

Finally all the simulation results may be drawn on a unique graph (figure 5). 

X and Y are defined as: 

( ) 5.5

0 0' 1X t L φ −
= −             (17a) 

( ) ( )0 0/ 1Y φ φ φ= − −           (17b) 

L0  is the aggregate size, i.e. the centre to centre distance between the first and the last primary 

particles at time zero. Y is within the [0-1] range along the restructuring process. ( )0 01L φ−  is 

the porous volume (normalized by the radius of the primary particle) of the aggregate: several 

parameters have been tested and this one was the more relevant and efficient parameter for 

linking the various quantities of the system. Moreover it is expected that the porous volume is 

an important parameter for the restructuring dynamics. 

The non-unique interpolation function can be expressed:  
0.431 XY e−= −            (17c) 

The figure 5 shows that the shrinking of the aggregate is negligible when X<10-2, but will be 

completed at X≈0.1, i.e. for the dimensionless time: 

( ) 5.5

0 0' 0.1 1Ft L φ≈ −            (18) 

As a conclusion, one observes two successive stages: a restructuring without shrinking and 

the shrinking itself.  

 

2.3 Effect of the Brownian motion  

If the aggregate is composed of nanoparticles it may be expected that the Brownian motion 

significantly contributes to the restructuring. 

The motion of a nanoparticle in a fluid obeys the Langevin equation: 

( ) ( ) tmdv t fv t dt dW= − +          (19) 

v is the velocity of the particle. Wt is a Wiener process with a mean value zero and a standard 

deviation obeying 22f D dt . 

f is the drag coefficient (following Stokes: 6f Rπµ= ). D is the diffusion constant 

( /D kT f= ). The Langevin equation means that a driving force /tdW dt due to random 

collisions between the particle and the fluid molecules is counterbalanced by a friction 

force ( )fv t− . 
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Then, 

( ) ( ) 2 nmdv t fv t dt f Ddt R= − +         (20) 

nR  is a function that generates a random number for a Gaussian distribution with a mean 

value zero and a standard deviation equal to 1. We introduce the shortened notation dt  for 

practical reason as the standard deviation of the stochastic process is proportional to dt. 

If the inertia of the particle is negligible, then:  

0 2 nf dx f Ddt R= − +          (21) 

Let us consider a motionless particle and a Brownian particle interacting by a colloidal force 

F. The centre to centre distance( )h t  obeys the equation ([26]): 

( ) ( )
t

F h
dh t dt dW

f

 
= + 
 

         (22a) 

with 

2t ndW Ddt R=           (22b) 

By taking into account the hydrodynamic resistance between two primary particles (Eq.15) 

and after dimensionless transformation: 

( ) ( )( ) ( )1/2
' ' ' ' ' 'ndh F h dt b dt R G h= +        (23a) 

( )1/2
24 /b kT A=           (23b) 

The b value is equal to about 3 ( 2010 ; 300A J T K−≈ = ). 

From Eq.23a and Eq.16a one may deduce the stochastic equation for the motion of the cluster 

i taking into account the Van der Waals forces and the Brownian motion:  

( ) ( )( ) ( )1/ 23/ 2
1, 1 1, , 1 , 1 , 1' ' ' / ' ' 1a a

i i i i i i i i i i i i i j j n adx F h G F h G dt b G dt R i N−
− − − + + += − Ω + Ω < ≤

 (24) 

Na is the index of the farthest (last) cluster (or primary particle) from the center of the 

aggregate. G is the hydrodynamical resistance that is depending on the inter-particle distance. 

The value of the index j is discussed below.  

The Brownian motion moves the particle or cluster in two directions: the particles may go 

away or come near again. Practically a maximum value for the size Nx  of the aggregate has to 

be imposed along the simulations: if the size exceeds this value the simulation stops. Larger 

the maximum size value is, larger is the number of simulations leading to the total shrinking 

of the aggregate. One thousand simulations were performed for each chain configuration. 
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They were compared one to one to the deterministic case (b=0). The distribution of the 

restructuring time has been deduced.  

Two kinds of simulations corresponding to different conditions have been tested: 

 

a. The last particle or cluster ai N=  undergoes Brownian motion as the core particles or 

clusters do. As a consequence a great expansion of the aggregate may happen (the 

aggregate size can be multiplied by ten). The maximum size value will be fixed as:  

( )0Max
N Nx Kx t= =  

where K is a constant. 

then for ai N≤  

1j i= −  if 0nR <  

j i=   if 0nR >  

The table 1 reports the ratio P of simulations leading to the total shrinking and the 

median value T of the shrinking time for several K values. The studied aggregate 

contains four primary particles. It can be observed a quasi-proportionality between K 

and T. These T values have to be compared to the deterministic case (T = 147).  

b. The last primary particle or cluster does not undergo Brownian motion. This procedure 

maintains the wholeness of the aggregate; the aggregate size is always decreasing 

( 1P⇒ = ). This strict condition is coming from the lateral and strong bonds between 

the primary particles at the surface of the aggregate, and introduces a purely tri-

dimensional hindrance. This is the condition for the existence of the aggregate. Thus 

we assume: 

for ai N<   

1j i= −  if 0nR <  

j i=   if 0nR >  

and 1, 0Na NaG − =  

The figures 6a-b show the distribution density of the total shrinking time (for N=4) 

and the distribution density of the shrinking time at an intermediate event when the 

aggregate consists of two clusters. The median value of the shrinking time is equal to 

167.9 (the mean value is equal to 184) for a 4-aggregate. 

The two cases lead to two different results: however the second one (b) seems more consistent 

with a 3-D restructuring. Whatever the porosity and the number of primary particles the 
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Brownian motion increases the shrinking time by a factor equal to 1.5-3 whereas the 

intermediate shrinking time is decreased.  

The removal of the constraint, i.e. the finite K-value, may represent the break-up of the 

aggregate due to Brownian motion. However it is assumed along the paper that the dominant 

phenomenon is the attractive interaction. As a consequence the break-up would be negligible. 

It can be argued that the break-up will occur when the value of a selected parameter reaches a 

critical value. This parameter could be the K parameter. However a dimensionless parameter 

like the ratio between kT  and ( ){ }, 1min 'a
i i iV h+  (interaction potential between i and i+1 

clusters) would be more suitable. 

 

3. Restructuring in a turbulent flow 

3.1. Modelling 

Narsimhan [26] has studied the coalescence of two droplets which are close to each other in a 

turbulent flow. The two droplets undergo colloidal forces and a turbulent forceTF . The latter 

one is attractive and fluctuating. Its expression depends on the turbulence range: 

 ( )1/2
T TF F T S tδ= −           (25a) 

With the standard deviation δ such as TFδ =  and 

( ) tS t dt dW= .           (25b) 

Wt is a Wiener process with a mean zero and a standard deviationdt . In the viscous range of 

the turbulence, T and TF obey: 

( )1/ 2
/T ν ε=            (25c) 

 and 

( ) ( )22 / 2TF R h Rπ ρ ε ν= +          (25d) 

ε is the turbulence dissipation rate.  

The approach of Narsimhan is applied to the restructuring of an aggregate in a weakly 

turbulent flow. As the aggregate size is much smaller than the Kolmogorov scale, the 

restructuring takes place in the viscous range of the turbulence. 

The relative velocity of two inertialess particles is proportional to the sum of the forces: the 

colloidal force F, the Brownian force and the turbulent force. Then, Eq.23a becomes: 

( ) ( ) ( )( )( )( ) ( )2 2 1/ 2

1 2 , 3 ,32
' ' ' ' 2 ' ' 2 ' ' 'n ndh F h dt b h dt b h R b R dt G h= − + + + +    (26) 
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The two stochastic (Brownian and turbulent) processes are assumed to be independent. nR  is 

a function that generates a random number for a Gaussian distribution with a mean value zero 

and a standard deviation equal to 1.  

The b1, b2 et b3 dimensionless parameters are expressed as: 

( )5
1 12 / /b R Aπ ρ ε ν=          (27a) 

( ) ( )( )1/ 23/ 4 7
2 / 2 /b R Aρ ε ν π µ=         (27b) 

3b b=             (27c) 

The previous modelling (§2.1, §2.2) corresponds to1 2 3 0b b b= = = . .   

The extension of the modelling of the two-particle set motion (Eq.26) to the one of the 

particle chain follows the methodology leading to Eq.24 for Brownian motion: 

( ) ( )( ) ( ) ( )( )( )
( ) ( ) ( ) ( )( ) ( ) ( )

2 2 1
1, 1 1 1 1, , 1 1 , 1

2 2 1/ 2 1/21 1 3/ 2
2 ,2 1 1 ,2 3 , 1 ,3

' ' 2 ' ' 2 ' '

2 ' 2 ' ' '

a a
i i i i i i i i i i i i i i

i i
i i n i i n i i j j n

dx F h b h G F h b h G dt

b h A R h A R dt b G R dt

−
− − − − + +

− − −
− − +

= − + − − + Ω

+ + − + Ω + Ω  (28)  

With , 1k k kA G +=  if ( )
,2 0k

nR >  and 1kA =  if ( )
,2 0k

nR <  

We also assume that: 

- all the particles or the clusters of the chain undergo Brownian motion except the last 

one 

- only the last cluster but one 1aN −  and the last cluster aN undergo the turbulence 

The reasons are the following: 

- The Brownian motion is due to the collision between fluid molecules and particles. All 

the particles of the aggregate undergo this phenomenon. However, as mentioned in 

§2.3, the non-Brownian motion of the last particle guarantees the wholeness of the 

aggregate. 

- The main effect of the turbulence is expected on the particles close to the surface: the 

internal particles are shielded by the external particles. As shown below, taking into 

account the effect of the turbulence on the internal particles do not significantly 

modify the results of the simulations.  

 

3.2. Results 

Simulations have been realized for chains consisting of initially equidistant particles. The 

physical parameters are R, ε, N and h0. Their value ranges are:  
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The figure 7 shows the change with time of a chain having 30 primary particles. It can be 

observed that the shrinking of the aggregate is a progressive process unlike the previous case 

(fig. 3).  

Among the three dimensionless parameters, only b1 is a relevant parameter: the ratio b2/b1 is 

always smaller when the turbulence is taken into account, and b3 has a small effect on the 

restructuring in a turbulent flow. 

We define the new dimensionless variables: 

( ) 3/ 2

0 0' 1X t L φ −
= −             (29a) 

( ) ( )0 0/ 1Y φ φ φ= − −           (29b) 

3/ 2 2/3
0 1B bφ −=             (29c) 

The figure 8a shows the variable Y as a function of ( )1 0.05B B X+ . Each dot represents a 

simulation performed for a given set of R, ε, N and h0 parameters. The dots set is spread, but 

no dependence on the B-range can be observed. So, by using these new variables we have:  

( )4.5 1 0.05Y B B X= +  if B<25       (30a) 

Or as a first approximation: 

6.5Y BX=            (30b) 

The Eqs. 29c, 30a-b are obtained by an optimization procedure. 

Simulations have been also realized for initially fractal aggregates with the fractal 

dimension values: Df = 1.8 and Df = 2.2. A linear relation between Y and  ( )1 0.05B B X+  is 

also verified. However the proportionality coefficient is slightly different and equal to 5.6: 

 ( )5.6 1 0.05Y B B X= +          (31) 

From Eq.30a and Eq.31, we will retain the following expression whatever the aggregate 

morphology: 

( )5 1 0.05Y B B X= +           (32) 

A simulation has been realized as all the primary particles undergo the fluctuating shear 

whereas the previous simulation (figure 8a) has been realized as only the external primary 

particles undergo the fluctuating shear. The comparison of the two simulations confirms that 



 16

the effect of the turbulence on the internal primary particles has no consequence on the 

shrinking process. It can be simply noted that there is a slight discriminating effect of the B-

range on the function ( )( )1 0.05Y f B B X= + . 

 

3.3 Approximated expression 

We will perform some simplifications on the Eq. 26 that are justified by a thorough study: 

-  Cancellation of the stochastic terms  

- Approximating F’ by 2' 'F h −= −  : this approximation is only valid for small values of h’ 

whereas the magnitude of the colloidal force is much smaller than the turbulent force for high 

values of h’.  

- Performing successive applications of Eq. 33 to the last inter-particle spacing (denoted 

1aj N= − ) as the primary particle j is motionless whereas the cluster aN  with N-j primary 

particles is mobile with a drag coefficient 1j +Ω : 

( )( ) ( )22
1 1' ' 2 ' '/ 0.25 ' / 'jdh h b h h h dt−

+= − − + + Ω       (33) 

The first shrinking step corresponds to 1j N= − . 

Thus the shrinking duration (for the j-spacing) is: 

 ( )( ) ( )
0

10
22

1 1

'

' 2 ' '/ 0.25 ' / '
j

j j

h

h b h h h dhτ
−

−
+

 = − − + + Ω
 ∫      (34) 

As the shrinking consists of the series of events with the shrinking duration: 

 ( )
1 1

,0
1

, 2 2 1 2
N N k

k j k i
j N k i

T x k h k Nτ
− − −

= − =

= = + + ≤ ≤ −∑ ∑      (35a) 

( )
1

1 1
1

, 2 1
N

N j N
j

T x Nτ
−

− −
=

= = −∑          (35b) 

The total duration of the aggregate shrinking is 1NT T −= . 

0,' jh  is the initial distance between the primary particles j and j+1 . If this one has the same 

value  0'h  (whatever j), then: 

( )( ) ( ) ( )
0

10 1
22

1
1'

' 2 ' '/ 0.25 ' '
N

kh

T h b h h h dh k
− −

−

=

 = − − + + Ω
  ∑∫      (36) 

k is the number of primary particles in the cluster. ( )kΩ  is given by Eqs. 14b-c with iM k= .  
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The figure 8b represents the variable Y as a function of ( )1 0.05B B X+  by applying Eqs 34-

35. The same ranges of the various parameters have been used for the two calculations (Fig.8a 

and 8b). The figures 8a and 8b are very similar. The approximated expression Eq.36 is in 

agreement within 20% with Eq. 32. The scattering of the dots on the figures 8a-b is due at 

once to the stochasticity of the phenomena and to the simplicity of the modelling (Eq.32). The 

corresponding standard deviation is about 40%.  

 

3.4. From 1D model to 3D model 

Equation 32 gives the change of the aggregate radius with time. Solid volume fractions 0,φ φ  

are expressed in a 1-D space. The relationship between the 1-D volume fraction φ  and the 3-

D volume fraction Φ  is: 

3φΦ =  

The equations 29a-c and 32 become: 

1/ 2 2/3
0 1B b−= Φ            (37a) 

( ) ( )1/3 1/3 1/3
0 0/ 1 '/ ' /F Ft t t tΦ − Φ − Φ = =        (37b) 

with 

( ) ( ) ( )3/21 3/ 21/ 2 1/3
0 0' 5 1 0.05 2 1Ft B B V R

− −= + − Φ         (37c) 

Then the total shrinking time obeys: 

( )( ) ( )1/3 3/ 222 1/ 2 1/3
04 / / 1Ft AR Nµ ρ ε ν≈ − Φ       (38) 

The most important parameters are practically the shear rate ( )1/ 2
/γ ε ν=&  and the number N 

of primary particles. For typical parameter values 

( 20 3 3 3 2 310 ; 1 ; 10 ; 10 . ; 0.1A J R m Kgm Pa s m sµ ρ µ ε− − − −= = = = = ), the total shrinking time is 

equal to 335Ft s=  for 4
0 0.1; 10NΦ = =  and 25Ft s=  for 3

0 0.5; 10NΦ = = . These values are 

multiplied by 4.6 for smaller turbulent dissipation rate 2 30.01m sε −= . 

The restructuring time has to be compared to the aggregation time which obeys ( )5 /At γ= Ψ&  

[27].Ψ  is the solid volume fraction in the aggregating suspension. Typical value for Ψ in a 

aggregation experiment is 410−Ψ = . Thus the aggregation time is about 500s for 

2 30.01m sε −=  whereas the restructuring time is about 500s for large aggregate ( 410N = ) and 

50s for small aggregate ( 210N = ). Starting from a mono-disperse suspension and for these 
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representative parameters, the restructuring simultaneously occurs with the aggregation. 

Depending on the parameters values the restructuring rate can be faster or slower than the 

aggregation rate. Accordingly the aggregates will be more compact or more porous.  

The proposed 1D-3D extension is a bound for real systems. The main assumption in the one 

dimensional model is the autonomous behavior of a particle chain located along the aggregate 

radius. From symmetry arguments this represents well the effect of physical forces in a three 

dimensional aggregates. However we don’t take into account the steric hindrance due to the 

(orthoradial) neighboring particles. This effect is an increasing function of the internal solid 

volume fraction that has a high value at the end of the restructuring process. Thus the model 

overestimates the restructuring rate. During the competition between restructuring and 

aggregation in a suspension, lower the aggregation rate (for instance for low particle 

concentration) more completed is the restructuring; as a consequence our model does not well 

represent the suspension dynamics in this case. In contrast, if the aggregation is rapid our 

model of restructuring is valid.  

 

4. Discussion and conclusion 

The simulations of the restructuring of an aggregate show that the restructuring of the 

aggregate by only attractive Van der Waals forces begins by the rearrangement of particle set. 

This rearrangement goes on until the formation of two clusters, and is followed by the 

shrinking of this two-cluster set. Stochastic phenomena drastically change the sequence of 

restructuring. Brownian motion slows the shrinking or even destroys the aggregate. The 

restructuring of an aggregate in a weakly turbulent flow is a progressive shrinking that 

depends on morphological parameters as N and 0Φ but also on a characteristic time 

( )( )1/322
1 / /ARτ µ ρ ε ν= at the scale of the primary particle. Eqs.37b and 38 allow to 

calculate the porosity of the aggregate as a function of time. It is interesting to look for a 

physical meaning for1τ . One may use the classic dimensionless numbers in aggregation 

theory [1]: ( )3/ 36AC A Rπµγ= &  and ( )2
Re 2 /p Rρ γ µ= &  (with ( )1/ 2

/γ ε ν=& ). Then, 

( ) 1/3 1/3 2 /3 1
1 9 / 4 ReA pCτ π γ− − − −= & . The shear rate inverse is the time scale, Rep  is the Reynolds 

number based on the relative velocity between two colliding primary particles and AC  is 

directly connected to the aggregation efficiency. 
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Comparison of the present modelling with experimental results coming from the literature 

only concerns a few published studies. The latter ones propose expressions or values for the 

relaxation time τ present in Eq.2. Baldyga et al. [15] suggested for silica aggregates in a high 

shear device 5 110τ γ −= &  with a rough accuracy.  Selomulya et al. [14] found out 

( ) 0.1/
50 / fD

N Sτ −= for aggregates consisting of small polystyrene beads 

(R=0.405µm; 1100sγ −=& ) and ( ) 0.1/2 /3200 / fD
N Sτ γ −−= &  for aggregates consisting of smaller 

polystyrene beads (R=0.19µm). Soos et al. [11] reinterpreted experimental results by 

Selomulya et al. for 164sγ −=& and R=0.405µm: they obtained 520sτ = . So, Baldyga [15] and 

Selomulya [14] investigations showed very different relaxation time values for 1100sγ −=& . To 

compare Ft  calculated from Eq.38 with the experimental value τ, 0Φ in Eq.38 is estimated for 

fractal aggregates with Df = 1.8. Applying Eq.38 to the data of Selomulya [14] leads to a Ft  

value in the range [60s, 120s] whereas Selomulya found out 30s. Applying Eq.38 to the data 

handled by Soos [11] leads to a Ft  value in the range [140s, 250s] whereas Soos found out 

520s. The orders of magnitude are similar, but the consistence of the various experimental 

data and of the calculated values (Eq.38) is not yet definitive. 

Restructuring competes with the aggregation itself. In an aggregation process the morphology 

of aggregates is the result of the complicated coupling between several phenomena: 

aggregates collide to form a larger aggregate that partially restructures until the next collision. 

The suspension dynamics can be studied if the aggregates are described by at least two 

internal variables (for instance, particle size and porosity). A bivariate population balance 

equation (PBE) may manage the population density with two internal variables. Since the 

change of the particle size appears under the form of a growth law in the PBE, the 

restructuring rate (Eq.37b) may appear with the same status [28].  Such a modelling will be 

applied in the near future. 
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K 

 

2 

 

4 

 

6 

 

10 

 

20 

 

P 0.17 0.33 0.38 0.44 0.54 

T 13.2 33.5 49.7 66.6 134 

 

Table 1: effect of the maximum size of the aggregate on the restructuring kinetics  
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Figure 1: chain of N mono-sized primary particles ( 0t = ) 
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Figure 2: chain of Na clusters ( 0t ≠ ) 
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Figure 3: change with time of the chain morphology (N=30). The vertical axis represents the 

dimensionless time. 
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Figure 4: solid volume fraction as a function of dimensionless time for various N values  
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Figure 5: normalized solid volume fraction versus dimensionless time X. The dots correspond 

to simulations.  
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Figure 6a: distribution density of the total shrinking time (N=4) 
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Figure 6b: distribution density of the shrinking time at an intermediate event when the 

aggregate consists of two clusters (N=4) 
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Figure 7: change with time of the chain morphology (N=30). The vertical axis represents the 

dimensionless time. 
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Figure 8a: restructuring law for an aggregate in a weakly turbulent flow (equidistant inter-

particle distances); B<25. fluctuating shear at the surface of the aggregate 

B<0.1: black  0.1<B<1: green 1<B<10: blue  B>10: red 
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Figure 8b: restructuring law for an aggregate in a weakly turbulent flow (equidistant inter-

particle distances) following Eqs. 34-35; B<25.  

B<0.1: black  0.1<B<1: green 1<B<10: blue  B>10: red 

 
 


