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Abstract

An aggregate may undergo a restructuring that lemadschange of its porosity. The cause of
this morphology change is not only the colloidalcks between the primary particles but also
the interaction between the primary particles amal ftowing fluid. We investigate in this
paper the restructuring of the aggregates with Wan Waals forces between the primary
particles in the presence of the Brownian motiod arweakly turbulent flow. The motion of
all the primary particles constituting the aggregatstudied thanks to a 1-D model based on
the work of G. Narsimhan [Model for drop coaleseeit a locally isotropic turbulent flow
field, J. of Colloid & Interface Science, 272(20097-209]. A shrinking rate law, i.e.
aggregate porosity versus time, is proposed aftemaition to a 3-D model. Its characteristic
time depends on the initial porosity, the numbepmary particle and a characteristic time

at the scale of the primary patrticle.

Keywords: aggregate, restructuring, shrinking tirnepulent flow field



1. Introduction

Aggregation of small particles often occurs durnndustrial processes. The first step of this
phenomenon is the collision of particles, which dmn due to differential sedimentation,
Brownian motion or shear flow in a duct or an dgithvessel. The size of the resulting
clusters or aggregates increases with time. Howexgregates become looser and looser and
undergo breakage. There is a competition betweercohesive forces inside the aggregate
and the shear stress due to the liquid flow. Tthesfinal size of aggregates can be calculated
from a balance between aggregation and breakaggregation and breakage have been
investigated by many researchers [1]. Under cerbgi@rating conditions (supersaturation,
mass transfer inside the aggregate ...), consolidaticstrengthening of aggregates happens
[2-7]. This takes place at the neck between adhgamary particles. The consolidation
prevents the breakage of aggregates and leads m® pooous clusters than the ones made
without consolidation. At the same time, interagtibetween the flowing liquid and the
aggregate can modify the internal structure of egagtes, breakage being the consequence of
such a strong interaction. This results from tHatree motion of primary particles inside the
aggregates and leads to denser aggregates (sessthonce, [8-10]). Few works have been
devoted to the study of the consolidation and és¢ructuring.

Several phenomena cause densification without diolasion: physical forces between
primary particles, e.g. Van der Waals forces, Brawnmotion of the primary particles
leading to thermal restructuring, relative motidrite primary particles due to the shear flow,
fragmentation-reaggregation steps, i.e. fragmeoriatf a large and loose aggregate followed
by aggregation of the two fragments. At our knowkedthe modelling of these phenomena
has not yet been performed. However, only attenmaige been published. Investigators
established aggregate restructuring laws from éxyeits and computer simulations.

Empirical equations

Several experimental works and computer simulatghesv that large aggregates have fractal
morphology. In fact, an aggregate containinglentical primary particles of radiuR is
characterized by: the fractal dimensibpnand the outer diamet&. These two parameters are

linked by the following relations:
R=R(il 9" (1)
The structure factd®is depending oby. Its value is close to 1.

As a first approximation, clusters keep the sanaetél dimension along the aggregation

process. However, it follows from some experimergaldence [8-10] that the fractal



dimension value increases with time. So the simiplesy for describing this observation

makes use of a relaxation law:
dD, /dt=(D,,, - D, )/7 )

D,,D,.,.T are respectively the actual fractal dimensionmgximum value and a relaxation

time. The relaxation time includes the above-metbphysical contributions.

Relaxation time may have a constant value [11], f@ya function of the actual aggregate
size [12], or may be a function of the mean aggeegéze at a given time [13-15]. The
relaxation time [12-15] is expressed by means opigoal equations containing fitted
parameters. So, 2 or 3 fitted parameters are ugeshth physical contribution.

Selomulya et al. [13-14] propose:

. +c2(2|dn/ d¢Aj(z| dn d|tFj ©)

Ci1, G are constantsy represents the number concentration in i-mer. @ farare relative to
aggregation and fragmentation processes.

Baldyga et al. [15] propose:

de /dt: ny( Dy,max_ Df)+ CA KA MO( DA,min_ Df)+ CF KF( DF,min_ Df) (4)
C,, C,, G are constants. Kand K- are agglomeration and fragmentation kernelgis the

zero-order moment of the particle size distributipns the shear rated D, . are fitted

A,min? F,min
fractal dimensions.

Kostoglou et al. [12] suggest:

raiP (5)
The value of the asymptotic fractal dimension sodltted:

D,. >25

These empirical equations well represent the gedliit can be only applied to the considered

systems.

Simulations

Starting from assumed restructuring mechanismshatprimary particle scale, and being
given an initial aggregate morphology, computerwations lead to the morphology of the
aggregate at a given time. As a result, the relaxdaime can be deduced. So, in the case of
thermal restructuring, Dalis [16] shows that thiaxation time depends on the temperature,

the size and the number of primary particles inapgregate:



r0f(i,R,T)

The computer simulations also give the maximumealiufractal dimension.

Simulation of aggregation has been extensively istldl]. We mention the work of
Gmachowski [17] as he proposes a new approacteatdgregation modelling by considering
an aggregation act for which the fractal dimensian vary along the process. The master

equation is the following:
(+1)" =F [0 41

Di, Dj, D are the fractal dimension of i-mer, j-mer, (i+jmF can be expressed as a function
of the space dimension, the trajectory dimensioth @n Restructuring may be taken into
account [18] by changing the value FefKostoglou and Konstandopoulos [19] use a similar
aggregation act for studying Brownian aggregation.

Higashitani et al. [20] present a three dimensialisdrete element method (DEM) to simulate
the deformation and break-up of large aggregaté®wing viscous fluid (dynamic viscosity
K). They take into account the Van der Waals folmetsveen submicronic primary particles,
the drag forces acting on the particle surface segadirectly to the flow, and the elastic
interaction between primary particles inside theragate. The model is applied to the

behaviour of the aggregates in shear and elongatilanws foruy >50Pa. Shear flow results

in rotation, deformation and break-up of the aggteg. The averaged number of primary
particles in the resulting fragments is only depricon the ratio of the hydrodynamic drag

force and the adhesive force at the scale of gtwoary particle set:

G]WRZJ/ -0.872
iy=279 —/—~_ 6
=2 d 20 ] ®

where4 is the minimum separation distance between prinpanyicle surfaces and is the
Hamaker constant.

Zeidan et al. [21] consider the deformation andftagmentation of 2D aggregates composed
of sub-millimetric particles in a shear flow. Siratibns are carried out by a combined
approach of discrete element method and computdtittid dynamics. Van der Waals forces
and drag forces are also considered. As expediediatio between the shear stress and the
adhesive stress drives the dynamics of the morglgolthanges: for high ratio values,
elongation and break-up dominate, whereas rotatammding and erosion occur for small

ratio values.



Tatek et Pefferkorn [22] studied the cluster-clustggregation taking into account the
connectivity inside the aggregate. Aggregationasadibed by all classical ways except the
use of a stability criterion:

if L(| + j)E <K then the collision (with<j]) is efficient.
j %

v is the contact number between the two collidingragates. Th& constant is chosen by the
user. This criterion is closely related to an aggteg-fragmentation mechanism for the
restructuring. They observe that the fractal dimamss a decreasing function l&f

Population balance equation and restructuring

Population balance equation (PBE) is a partial tbfital equation that gives the population
density. The latter is a function of the timeand internal parameters for homogeneous
suspension. The phenomena acting on the populdgosity are the nucleation, growth,
agglomeration and breakage. The corresponding tarm<lassically included in the PBE.
To take into account the aggregate restructuringnaextive term including the restructuring
law can be introduced in the PBE. So, 1-D PBE (onermal parameter) or 2-D PBE (two
internal parameters) has been proposed by invéstsggfL1-15]. Thus, the restructuring law,
i.e. aggregate porosity or fractal dimension vetsug, plays a crucial role in the modelling
of the aggregation dynamics.

The purpose of this paper is to establish the retstring laws for aggregates formed in the
conditions of perikinetic and orthokinetic aggregas. The section two presents the
framework of the modelling of the restructuring grdliminary results. Emphasis is given to
the restructuring in a motionless fluid. The sectibmee is devoted to the search of
restructuring laws for aggregates in a weakly tlebuflow. As a conclusion the results will
be discussed in the section four.



2. Restructuring by attractive interaction betweenprimary particles

2.1. Modelling
Let us consider the restructuring of an aggregatattractive interaction between primary
particles. Each primary particle undergoes attractorces due to the other particles and the
drag force in a still fluid. The restructuring wile considered as isotropic. As a consequence,
we will study the behaviour of a particle chainrgjoa radial line of the aggregate. We
consider here that the orthoradial interactionsehavnegligible effect on the motion of
primary particles. This point will be discussed i2.8 and 3.4. The figure 1 shows the chain
of N mono-sized primary particles. The particles ar@iagsl as spherical with the radiBs
The primary particle at the center of the aggre@@deaoted 1) will be located at one (left) end
of the chain. It will be motionless by symmetry. Tibeation of a given patrticle i is denoted
by x; that is the distance between the centers of theabparticle and the particle 1. The
primary particle at the (right) end of the chaitoisated at the surface of the aggregate.
A given primary particlei undergoes the physicochemical interaction with riesarest
neighboursi-1 and i+1. The attractive interaction is due to Van der Wdalses. The
interaction potential between two primary particéeparated by the center-to-center distance

r is expressed thanks to Hamaker [1]:

Al 2R 2R F-4FR
V(r):_g{rz_mz'*_ r2 +In r2 }

(7)

A is the Hamaker constant of the system constitoyetthe particle material and the fluid.

The Van der Waals force obeys:

F=-dv(r)/dr (8)

The Newton’s second law is applied to the patrticle i

m9% = F(h.)- F(h)-6m R (9)
dt dt

with

h=Xa-X (9b)

As the particle Reynolds number is much smallen thathe drag force obeys the Stokes law.
M is the dynamic viscosity of the fluid.

By rendering the Eq.9a-b dimensionless:



HIX R () - Fo(ny) -2 (10)

dt? U g
with
t=t'r r=72uR*/A (11a)
Ho  PA (11b)
324°R
()= 4t & __8__4
r.|2_4 (r|2_4)2 r 3 r 1 (110)

The dimensionless distances and the time are obtaespectively by the radius of the
primary particle and. UsuallyH is much smaller than 1. As a consequence we wibicler
inertialess patrticles:

Kook (ho)-F(n) i>1 12)
Along the time course the primary particles collidside the aggregate and form clusters as
the particles become bound after the collision. Thuster size, i.e. the number of primary
particles in the cluster, is increasing and the lpemof clusters is decreasing. Thus the
interaction between clusters and not only the atton between single primary particles will
be considered (Figure 2).

The force between two clusters denoted i and itth@dssum of all inter-particle forces:

a —

M; -1,M;,, -1
i+l —

F'(h+2m,, +2M - 2- 2m) (13)
m=0,m,;=0

M; is the number of primary particles inside theuistér. h', is the distance between the centre

of the last (right) particle of the i cluster ame tcenter of the first (left) particle of i+1 clast
A given cluster is marked by the coordinate ofdbeter of its first (left) primary patrticle.
The dimensionless drag for a cluster may be caledl&dllowing Batchelor [23] and Rogak
and Flagan [24]:

T =-Q % (14a)
dt’
with
2
Q = %(Mf -1)"” {—5 t0.30&" 0.42@3} (14b)
and
e=1/Ln(2M,) (14c)



However the Stokes law is valid only for a cludteat is kept away from its neighbours. The
lubrication theory leads to a corrective term foe {Stokes law that takes into account the
additional hydrodynamic resistance due to the pnayiof the other particles.

We will use the approach of Zeichner and Schow§®®}. the attractive force on the patrticle

i due to the particle i+1 is reduced by a factor:

G..=(h-2)/(h/-2+Q) (15)
whereC is a constant whose value is equal to 0.25.

Finally the motion of the cluster i obeys the exsien:

B (R (M) Gy~ () G )19 i1 (162)
with
X\ =S oM —2+h P> 1 (16b)

i=1
A recursive computational program was involved ¢tdves Eqgs.16a-b. Suppod¢, be the

cluster number in the aggregate at a given time;li6gsb are solved till two clusters collide.
As a consequence a new configuration of the chapears with\,-1 clusters. This procedure

is repeated until a single cluster is obtained.

2.2 Results
Generally 3D-aggregates contain a finite numberO{cDbf primary particles. Thus, the
numberN of primary particles inside the corresponding li2ia will be chosen smaller than
40. We examine the case of initially identical rparticle distances.
The figure 3 shows the change with time of the molgdyy of a chain with 30 primary
particles. A set (line) of horizontal dots reprdsethe chain at a given time. Each line
corresponds to a given dimensionless time. At t@eeo the dimensionless inter-particle
distance is equal to 3, i.e. the surface-surfas&dce is equal to the particle radius.
The restructuring of the aggregate happens by ssigeesteps that can be a new location of
primary particles either without global shrinkingwaith shrinking.
Simulations have been performed with:

- N:[4,6, 10, 20, 30, 40]

- h'(t=0) :[3,4,6]i.e.y=2/h", : [0.667, 0.5, 0.333]

Time and position of each primary particle in a givahain are recorded at each collision.

These records are achieved for each sdtdl,ofiyp. The data are transformed into a graph



representing the mean solid volume fractipim the aggregate as a function of the time. The
figure 4 shows the corresponding curveshfgel and various\.
Finally all the simulation results may be drawnaounique graph (figure 5).

X andY are defined as:
X=t[L(1-a)]"" (17a)
Y=(¢-a)/(1-a) (17b)

Lo is the aggregate size, i.e. the centre to cemgtarste between the first and the last primary
particles at time zerd( is within the [0-1] range along the restructurprocessL, (1—%) is

the porous volume (normalized by the radius ofgghmary particle) of the aggregate: several
parameters have been tested and this one was tleerglevant and efficient parameter for
linking the various quantities of the system. Mwe&oit is expected that the porous volume is
an important parameter for the restructuring dymami

The non-unique interpolation function can be expréss

Y=1->" (17¢)
The figure 5 shows that the shrinking of the aggieimnegligible when X<If but will be

completed at X0.1, i.e. for the dimensionless time:

, 5.5
t.'=0.0 L, (1-¢)] (18)
As a conclusion, one observes two successive stagesstructuring without shrinking and

the shrinking itself.

2.3 Effect of the Brownian motion
If the aggregate is composed of nanoparticles § beexpected that the Brownian motion
significantly contributes to the restructuring.

The motion of a nanoparticle in a fluid obeys thedenn equation:

mdyv( §) =- f § dt+ d\ (19)

v is the velocity of the particlaM is a Wiener process with a mean value zero andralard
deviation obeyind *2D dt.

f is the drag coefficient (following Stokest = 78R ). D is the diffusion constant
(D=KT/ f). The Langevin equation means that a driving fod®é/ dt due to random
collisions between the particle and the fluid males is counterbalanced by a friction

force—fv(t).

10



Then,

mdv( § =- i § dt+ /2 Ddt R (20)

R, is a function that generates a random number fGaassian distribution with a mean
value zero and a standard deviation equal to lintveduce the shortened notatigfut for

practical reason as the standard deviation oftthehastic process is proportionaldi

If the inertia of the particle is negligible, then:
0=-fdx+ f\/2Ddt R (21)
Let us consider a motionless particle and a Browpiarticle interacting by a colloidal force

F. The centre to centre distarit(e) obeys the equation ([26]):

dh(t) = (@J dt+ dw (22a)
with
dw =,/2Ddt R (22b)

By taking into account the hydrodynamic resistabeeveen two primary particles (Eq.15)

and after dimensionless transformation:
dh'=(F'(n) dt+ | o) R) ¢ B (23a)
b=(24kT/ A" (23b)

Theb value is equal to about 3&102°J ; T = 300K).

From Eqg.23a and Eq.16a one may deduce the stockgstition for the motion of the cluster
i taking into account the Van der Waals forces t@dBrownian motion:

ax, =(F% (M) Gy - () 6.)/Q dtr 892G ( of'* R 1< & N Y

N, is the index of the farthest (last) cluster (omyary particle) from the center of the
aggregateG is the hydrodynamical resistance that is dependimthe inter-particle distance.
The value of the indejxis discussed below.

The Brownian motion moves the particle or clustetwio directions: the particles may go

away or come near again. Practically a maximumevédu the sizex, of the aggregate has to

be imposed along the simulations: if the size edsdhis value the simulation stops. Larger
the maximum size value is, larger is the numbesimiulations leading to the total shrinking

of the aggregate. One thousand simulations werrmpeed for each chain configuration.

11



They were compared one to one to the deterministee (b=0). The distribution of the
restructuring time has been deduced.
Two kinds of simulations corresponding to differeanditions have been tested:

a. The last particle or cluster=N_ undergoes Brownian motion as the core particles or

clusters do. As a consequence a great expansitimafiggregate may happen (the

aggregate size can be multiplied by ten). The mawxirsize value will be fixed as:

Xy = Kx, (t=0)

whereK is a constant.

then fori <N,

j=i-1 if R, <0

j =i if R >0

The table 1 reports the ratl® of simulations leading to the total shrinking athe
median valueT of the shrinking time for severd values. The studied aggregate
contains four primary particles. It can be obseraeglasi-proportionality betwedf
andT. TheseT values have to be compared to the deterministie §a= 147).

b. The last primary particle or cluster does not undd&gwnian motion. This procedure
maintains the wholeness of the aggregate; the gatgesize is always decreasing
(= P =1). This strict condition is coming from the lateeld strong bonds between
the primary particles at the surface of the aggesgand introduces a purely tri-
dimensional hindrance. This is the condition fag #xistence of the aggregate. Thus
we assume:

for i <N,

j=i-1 if R, <0
j=i if R, >0
andGy,,; \,=0

The figures 6a-b show the distribution density loé total shrinking time (for N=4)
and the distribution density of the shrinking timean intermediate event when the
aggregate consists of two clusters. The medianevaluhe shrinking time is equal to
167.9 (the mean value is equal to 184) for a 4-egaye.

The two cases lead to two different results: howéve second one (b) seems more consistent

with a 3-D restructuring. Whatever the porosity ahd number of primary particles the

12



Brownian motion increases the shrinking time bya&tdr equal to 1.5-3 whereas the
intermediate shrinking time is decreased.

The removal of the constraint, i.e. the finite Klueg may represent the break-up of the
aggregate due to Brownian motion. However it isias=d along the paper that the dominant
phenomenon is the attractive interaction. As a equence the break-up would be negligible.
It can be argued that the break-up will occur wtienvalue of a selected parameter reaches a
critical value. This parameter could be the K patn However a dimensionless parameter

like the ratio betweerkT and min{’\/i";‘ﬂ(h;)‘} (interaction potential between i and i+1

clusters) would be more suitable.

3. Restructuring in a turbulent flow
3.1. Modelling
Narsimhan [26] has studied the coalescence of neplets which are close to each other in a

turbulent flow. The two droplets undergo colloidafces and a turbulent forée. The latter
one is attractive and fluctuating. Its expressiepahds on the turbulence range:

F =F, -oT"?s( ) (25a)
With the standard deviatiofisuch asd = F; and

S(t) dt= dw. (25b)
W, is a Wiener process with a mean zero and a stdrasiationdt. In the viscous range of

the turbulenceT and F; obey:

T=(vie)"” (25¢)
and
F, =nR*p(elv)(h+2R’ (25d)

£is the turbulence dissipation rate.

The approach of Narsimhan is applied to the resiring of an aggregate in a weakly
turbulent flow. As the aggregate size is much senathan the Kolmogorov scale, the
restructuring takes place in the viscous rangaetdrbulence.

The relative velocity of two inertialess particigsproportional to the sum of the forces: the
colloidal forceF, the Brownian force and the turbulent force. THem.23a becomes:

dn'=(F'(n) de- B(2+ H)* dee( b(2+ §° R+ BR)( &) 6 (26)

13



The two stochastic (Brownian and turbulent) proessse assumed to be independ&tis

a function that generates a random number for as$au distribution with a mean value zero
and a standard deviation equal to 1.

Theby, b, ethbs dimensionless parameters are expressed as:

b =12Rp (e Iv) I A (27a)
b, = ,0(5/|/)3/4(277R7 I A))llz (27b)
b, =b (27¢)

The previous modelling (82.1, §2.2) corresponds b, = b, =0.
The extension of the modelling of the two-partisiet motion (Eq.26) to the one of the

particle chain follows the methodology leading tp 2 for Brownian motion:
dx’ :(( Fiflj (hli—l)_ Q(2+ h_ ) ) G 1, ( i +1( i )_ Q(2+ h)z) iG,+])§I2_1 dt

((2+h) Fb‘ (2+ h 1) A, R ) (di)llz_'_ @2_3’2 ﬁ+1nR:( d):l/2 (28)
With A =G, if Rnkz) >0 and A =1if Rn,z <0

We also assume that:
- all the particles or the clusters of the chain wgdeBrownian motion except the last
one

- only the last cluster but ond, —1 and the last clusteN, undergo the turbulence

The reasons are the following:

- The Brownian motion is due to the collision betwé#eard molecules and particles. All
the particles of the aggregate undergo this phenomeHowever, as mentioned in
§2.3, the non-Brownian motion of the last partiglearantees the wholeness of the
aggregate.

- The main effect of the turbulence is expected enpéirticles close to the surface: the
internal particles are shielded by the externatigdas. As shown below, taking into
account the effect of the turbulence on the inepaaticles do not significantly
modify the results of the simulations.

3.2. Results
Simulations have been realized for chains congjstihinitially equidistant particles. The

physical parameters aRe & N and . Their value ranges are:

14



0.5um< R< 5um

0.0m*s®*<g< 10nf §°

0.5R<h < 4R

4<N <40

The figure 7 shows the change with time of a chreming 30 primary particles. It can be
observed that the shrinking of the aggregate igogrpssive process unlike the previous case
(fig. 3).

Among the three dimensionless parameters, bnlg a relevant parameter: the ratgb; is
always smaller when the turbulence is taken intmpact, andos has a small effect on the
restructuring in a turbulent flow.

We define the new dimensionless variables:

X=t[L(1-a)]"" (29a)
Y=(p-q)/(1-@) (29b)
B= %3/2q2/3 (29C)

The figure 8a shows the variabYeas a function (B(1+ 0.0SB) X. Each dot represents a

simulation performed for a given seti®Rf& N and I parameters. The dots set is spread, but
no dependence on tlBerange can be observed. So, by using these neablesiwe have:

Y =4.5B(1+ 0.05) X if B<25 (30a)

Or as a first approximation:

Y =6.5BX (30b)
The Egs. 29c, 30a-b are obtained by an optimizgtionedure.

Simulations have been also realized for initiallsactal aggregates with the fractal

dimension values: D= 1.8 and D= 2.2. A linear relation betweerand B(1+ 0.0EB) X is

also verified. However the proportionality coefént is slightly different and equal to 5.6:

Y =5.6B(1+ 0.05B) X (31)
From Eq.30a and Eqg.31, we will retain the followiagpression whatever the aggregate
morphology:

Y =5B(1+ 0.058) X (32)

A simulation has been realized as all the primaaytigles undergo the fluctuating shear
whereas the previous simulation (figure 8a) haslrealized as only the external primary

particles undergo the fluctuating shear. The comparof the two simulations confirms that

15



the effect of the turbulence on the internal priynparticles has no consequence on the

shrinking process. It can be simply noted thatehsra slight discriminating effect of tlige

range on the functiori = f( B(1+0.05B) X).

3.3 Approximated expression

We will perform some simplifications on the Eq.tR@at are justified by a thorough study:

- Cancellation of the stochastic terms

- ApproximatingF’ by F'=-h"? : this approximation is only valid for small vatief h’
whereas the magnitude of the colloidal force is Imsmaller than the turbulent force for high
values of h'.

- Performing successive applications of Eq. 33he last inter-particle spacing (denoted

] =N_ 1) as the primary particlg is motionless whereas the clustéy with N-j primary

particles is mobile with a drag coefficiefy,,, :
dh'=(=h"2-(2+ h)*) W(0.25+ h) ©,,, dt (33)

The first shrinking step correspondsjte N —1.

Thus the shrinking duration (for tlespacing) is:
0 -1
r,= [[(-n-n(2+n)) (025 h) @, | dh (34)

h'o;

As the shrinking consists of the series of eventls the shrinking duration:

N-1 N-k-1

T.= Y 1, %=2k+ > (2+h,) 1< ks N-2 (35a)
j=N-k i=1
N-1

Ty = 2,75 % =2(N-1) (35b)

The total duration of the aggregate shrinking #sT,,_; .
h'y; is the initial distance between the primary péeti¢ andj+1. If this one has the same
value h', (whatevep), then:
0 TN
T=[|(-h-n(2+ n)) ni(0.25+ h) | dny () (36)
'

k=1

k is the number of primary particles in the clus@(.k) is given by Egs. 14b-c witM, =k ..

16



The figure 8b represents the variablas a function (B(1+ 0.0EB) X by applying Egs 34-

35. The same ranges of the various parametersidesreused for the two calculations (Fig.8a
and 8b). The figures 8a and 8b are very similae &pproximated expression EQ.36 is in
agreement within 20% with Eq. 32. The scatteringhef dots on the figures 8a-b is due at
once to the stochasticity of the phenomena ankdeaimplicity of the modelling (Eg.32). The

corresponding standard deviation is about 40%.

3.4. From 1D model to 3D model
Equation 32 gives the change of the aggregate saiilh time. Solid volume fractiong, ¢

are expressed in a 1-D space. The relationshipdaetwhe 1-D volume fractiog and the 3-

D volume fraction® is:

=g
The equations 29a-c and 32 become:

B=d;"p"? (373)
(- @p?)/(1-®) =t =t /1, (37b)
with

t.'=[5B(L1+ 0.08)] "V ( R £ oi)” (37¢)

Then the total shrinking time obeys:
1/3
t, = 4,u/(ARp2 (g/v)z) N2 (1- o)™ (38)

The most important parameters are practically theas ratey:((s/v)l/2 and the numbeN

of primary particles. For typical parameter values
(A=10%J;R=1ump=10 Kgm®;;u = 10° Pasg = 0.1m7$), the total shrinking time is
equal tot. =335s for ®,=0.1;N =10 andt. =25s for ®,=0.5;N = 1G. These values are
multiplied by 4.6 for smaller turbulent dissipaticates = 0.0Im*s°.

The restructuring time has to be compared to tigeeamtion time which obeyts :5/(yw)

[27].W is the solid volume fraction in the aggregatingmnsion. Typical value fa¥ in a
aggregation experiment ¢ =10" . Thus the aggregation time is about 500s for
£ =0.01m’s® whereas the restructuring time is about 500s&ayd aggregateN =10%) and

50s for small aggregateN(=107). Starting from a mono-disperse suspension andhese
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representative parameters, the restructuring samedtusly occurs with the aggregation.
Depending on the parameters values the restrugtuate can be faster or slower than the
aggregation rate. Accordingly the aggregates wliibre compact or more porous.

The proposed 1D-3D extension is a bound for restesys. The main assumption in the one
dimensional model is the autonomous behavior aréigbe chain located along the aggregate
radius. From symmetry arguments this representbtiaeleffect of physical forces in a three
dimensional aggregates. However we don't take agimount the steric hindrance due to the
(orthoradial) neighboring particles. This effectais increasing function of the internal solid
volume fraction that has a high value at the enthefrestructuring process. Thus the model
overestimates the restructuring rate. During thenptition between restructuring and
aggregation in a suspension, lower the aggregatéde (for instance for low particle
concentration) more completed is the restructurasga consequence our model does not well
represent the suspension dynamics in this caseonirast, if the aggregation is rapid our

model of restructuring is valid.

4. Discussion and conclusion

The simulations of the restructuring of an aggregsitow that the restructuring of the
aggregate by only attractive Van der Waals foragirs by the rearrangement of particle set.
This rearrangement goes on until the formationved tlusters, and is followed by the
shrinking of this two-cluster set. Stochastic pheeoa drastically change the sequence of
restructuring. Brownian motion slows the shrinkiag even destroys the aggregate. The
restructuring of an aggregate in a weakly turbulifonv is a progressive shrinking that

depends on morphological parameters NMisand @, but also on a characteristic time

1/3
ley/(ARpZ(é‘/V)z) at the scale of the primary particle. Eqs.37b a®dalow to

calculate the porosity of the aggregate as a fonatif time. It is interesting to look for a

physical meaning far,. One may use the classic dimensionless numbeeggnegation
theory [1]: CA:A/(367zun) and Rep=,0(2R)2y//,1 (with y=(5/|/)1/2 ). Then,

r, =(977/4) " C;¥* Re?* . The shear rate inverse is the time scRle, is the Reynolds

number based on the relative velocity between teitidng primary particles andC, is

directly connected to the aggregation efficiency.
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Comparison of the present modelling with experimben¢sults coming from the literature
only concerns a few published studies. The lattesgoropose expressions or values for the
relaxation timer present in Eq.2. Baldyga et al. [15] suggestedsiioza aggregates in a high

shear devicer=10°y™" with a rough accuracy. Selomulya et al. [14] fduout

)—0.1/Df

r:50(N/S for aggregates consisting of small polystyrene bead

(R=0.405pmy =100s") and 7 = 200y7?"*(N /S)_O'”Df for aggregates consisting of smaller

polystyrene beads (R=0.19um). Soos et al. [11]tegineted experimental results by
Selomulya et al. for = 64s™and R=0.405um: they obtained 520s. So, Baldyga [15] and

Selomulya [14] investigations showed very differegitxation time values fgr=100s™. To
comparet. calculated from Eq.38 with the experimental vatu@,in Eq.38 is estimated for

fractal aggregates with¢3> 1.8. Applying Eq.38 to the data of Selomulya][le&ds to &,
value in the range [60s, 120s] whereas Selomulyadamut 30s. Applying Eq.38 to the data
handled by Soos [11] leads taavalue in the range [140s, 250s] whereas Soos fowhd

520s. The orders of magnitude are similar, butabwesistence of the various experimental
data and of the calculated values (Eq.38) is nbtigénitive.

Restructuring competes with the aggregation itdéeln aggregation process the morphology
of aggregates is the result of the complicated kogpbetween several phenomena:
aggregates collide to form a larger aggregatephstally restructures until the next collision.
The suspension dynamics can be studied if the ggtge are described by at least two
internal variables (for instance, particle size gulosity). A bivariate population balance
equation (PBE) may manage the population densitih Wwvo internal variables. Since the
change of the particle size appears under the fofma growth law in the PBE, the
restructuring rate (Eq.37b) may appear with theesatatus [28]. Such a modelling will be
applied in the near future.
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K (2 4 6 10 20
P (017 | 0.33 0.38 0.44 0.54
13.2 | 33.5 49.7 66.6 134

Table 1: effect of the maximum size of the aggreget the restructuring kinetics
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Figure 8a: restructuring law for an aggregate weakly turbulent flow (equidistant inter-
particle distancesB<25. fluctuating shear at the surface of the aggte
B<0.1: black 0.1<B<1: green 1<B<10: blue B>1@ re
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Figure 8b: restructuring law for an aggregate iweakly turbulent flow (equidistant inter-
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