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Abstract 
In the framework of radioactive waste geological disposal, the long term evolution of the 
nuclear wastes packages and the release of the radionuclides from the wastes have to be 
studied. Regarding compacted wastes (cladding tubes) coming from reprocessing of spent fuel, 
the Zircaloy-4 (zirconium alloy) cladding tubes have been activated and oxidized in reactors. In 
the disposal, the radioactive waste is exposed to humid air in a first phase and to water after 
the resaturation phase. In order to better assess the degradation process of these nuclear waste 
package, the influence of wet air proton radiolysis on the behavior of surface oxidized 
Zircaloy- 4 has been investigated. Radiolysis experiments were performed using an irradiation 
cell which is associated to an extracted beam. Samples are exposed to wet air, under and 
without radiolysis, during 12 and 24 h. The water partial pressure has been fixed at 6 and 
50 mbar in order to have, respectively, localized adsorbed water molecules and a thin film of 
adsorbed water. Before and after each treatment, sample surfaces were characterized by X-ray 
Photoelectron Spectroscopy (XPS) in order to identify the elements at the topmost surface of 
the solid. 
The wet air radiolysis causes changes at the surface of oxidized Zircaloy-4 and influences the 
corrosion phenomenon. Indeed, an enrichment of tin and the presence of nitrogen species 
were observed. It could be due to the formation of tritin(II) tetrahydroxide dinitrate and a Zr4+ 
tetramer on the topmost oxide surface. 

KKeeyywwoorrddss::  

Zircaloy-4; Radiolysis; Wet air; XPS 

I. Introduction 
At the end of the light water reactor operations, Zircaloy (zirconium alloy) cladding tubes have 
been activated and oxidized. In France, the reprocessing of nuclear fuel assemblies gives rise to 
the formation of compacted wastes [1]. Indeed, the metal pieces are sheared, compacted in a 
wafer form, placed into a steel container and then into a concrete over-pack. Surfaces of the 
Zircaloy-4 are contaminated by activation products, fission products and actinides. In a 
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possible repository in deep geological layer, the release of radionuclides contained in the 
compacted wastes would take place after the alteration of Zircaloy in contact with water 
resaturation site [2]. This water, at first in vapor phase, then in liquid form, is irradiated. The 
irradiation induces a phenomenon called water radiolysis which may accelerate the corrosion 
of oxidized Zircaloy-4. 
In this context, this study is performed to highlight the effects of wet air radiolysis on the 
oxidized Zircaloy-4 surface. In order to simplify the conceptual model, we synthesized a 6 µm 
porous oxide layer to establish a model of the oxidized Zircaloy-4 layer formed in reactor. The 
porous oxide preparation was controlled by thermogravimetry [3]. We have chosen to simulate 
alpha radiolysis by proton irradiations. An experiment cell has been performed. 
In this paper, we will study the corrosion of an oxidized Zircaloy-4 layer in contact with 
irradiated wet air which is irradiated by 1.5 MeV protons to induce radiolysis. In order to better 
identify the radiolysis effects on sample surfaces, experiments without irradiation were 
performed: samples are only in contact with wet air (blank). By comparing the experiments 
with and without radiolysis, the effect of radiolysed wet air on the oxide topmost surface is 
highlighted. 

II. Materials and methods 
IIII..11..  SSaammpplleess  

Samples are 420 m thick Zircaloy-4 foils cut to 10 mm  10נ mm. The zirconium alloy is 
composed of tin (1.4 wt%), iron and chromium (less than 0.2 wt% each). Samples are oxidized 
during 52 h in a mixed O2/He atmosphere in order to form an oxide layer thickness equal to 
6 µm [3]. In these conditions, the kinetic transition is reached and the formed oxide contains 
several cracks which are parallels and perpendiculars to the metal oxide interface [4]. Those 
cracks are likely to accelerate transport of chemical species deep in the material and thus to 
accelerate chemical reactions. 
In the following, it will be referred as the initial state. 

IIII..22..  PPrroottoonn  iirrrraaddiiaattiioonnss  

Irradiation experiments are performed using a 1.5 MeV energy proton beam using the Van de 
Graaff accelerator of the "Institut de Physique Nucléaire de Lyon" [5]. Figure 1 illustrates the 
experimental set up. Protons are extracted from a 10 µm Havar window foil to the atmospheric 
pressure. They entered into air at 673 keV kinetic energy and stopped at 2 mm from the 
oxidized surface. In these conditions, only the gas is irradiated. The irradiation cell 
characteristics and humid air formation have been described in detail in a previous paper [3]. 
Samples are putted in contact with wet air without irradiation (referred as blank) and with 
radiolysed atmosphere (referred as radiolysed) during 12 and 24 h. For 12 h experiments, the 
irradiation fluence is equal to 1.4 x 1016 protons cm−2. Two water partial pressures are used, 6 

and 50 mbar, in order to have water under two states at the topmost surface of the oxidized 
solid: at 6 mbar, the water is localized adsorbed, whereas, at 50 mbar, the water absorbed 
forms a thin water layer [6]. 

IIII..33..  OOxxiiddee  cchhaarraacctteerriizzaattiioonn  

XPS analysis are carried out at the "Ecole Nationale Supérieure des Mines de Saint Etienne" 
using a spectrometer with an unchromated Al Kα(1486.6 eV) radiation. Figure 2 displays the 
XPS spectrum of a typical initial sample. 
Binding energy positions are corrected using the C 1s carbon contamination peak (284.8 eV 
[7]). Oxygen, zirconium, carbon and tin are presents on the topmost surface of the initial 
sample. The peak position allows the determination of the chemical state of each element. 
Iron and chromium signals are not detected because their concentrations are below the XPS 
detection limit (1 wt%). In this study, in order to compare the evolution of each sample, we 
have realized a semi-quantitative analysis and we have calculated the atomic ratios compared 
to zirconium (O/Zr, Sn/Zr). 
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III. Results 
IIIIII..11..  SSttuuddyy  ooff  ooxxyyggeenn  ssppeecciieess  ffoorrmmaattiioonn  

The initial sample 1s O peak shows a major contribution close to 530 eV attributed to the 
oxygen in the zirconia [8] and [9]. By comparison of the signal after each treatment (blank and 
radiolysis), we note that the O 1s peak shape changes and the peak maximum is shifted towards 
higher energy as soon as samples are exposed to wet air (Figure 3(a) and (b)). At 6 and 
50 mbar, topmost surface modifications occur characterized by several oxygen chemical states. 
To identify new oxygen species at the sample surface, we use processing CASAXPS software to 
separate each component. We have proposed and attributed the presence of three components 
in the overall peak (Figure 4). The first one, at 529.8 eV, corresponds to O2− in the zirconia 

signal [8] and [9]. The second component close to 531.7 eV is attributed to the OH- from the 
adsorbed water [10] and [11]. At 532.8 eV, the third component is assigned to H2O species 
which correspond to physisorbed water [12] and [13]. 
The signal intensity Ii, is defined by the follow relationship: 

. . .i i i
i

d
I K N

d

σ λ =  Ω 
 (1) 

where K , iN , 
i

d

d

σ 
 Ω 

 and iλ  are, respectively, the device constant, the number of atoms i, the 

photoionisation cross-section [14] and the mean free path of photoelectron.  
Using this relationship for two elements i and j, we determine the atomic ratio by the Equation 
(2). 
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We have followed the atomic ratio evolution for each oxygen group as a function of irradiation 
time. Figure 5 represents the evolution of O2− form (a) and OH− form (b) atomic ratios 

compared to zirconium. Each experiment is performed twice. The blank experiment results are 
represented for an irradiation time equal to zero. 
Theoretically, the stoichiometry of oxygen in zirconium oxide is equal to 2 (ZrO2). The OO2-/Zr 
atomic ratio keeps constant at 6 mbar while at 50 mbar it decreases. For hydroxyl atomic ratio, 
despite a lack of reproducibility, we observe a maximum after the irradiations of 12 h. 

IIIIII..22..  TTiinn  eennrriicchhmmeenntt  aanndd  nniittrrooggeenn  pprreesseennccee  aatt  tthhee  ooxxiiddee  ssuurrffaaccee  

Figure 6 corresponds to the 3d Sn photoelectron signal at 6 mbar (a) and 50 mbar (b) for 
initial, blank and radiolysis samples. At 6 mbar, no difference is observed whatever the 
treatment. At 50 mbar, after radiolysis experiments, the signal to noise ratio put in evidence a 
tin enrichment. The binding energies of 3d Sn and 3s Zr photoelectrons are, respectively, equal 
to 486.4, 495.2 eV (3d5/2 and 3d3/2) and 433.1 eV. 
By comparing spectra obtained before and after irradiation experiments at 6 and 50 mbar, a 
peak appears after radiolysis experiment at a binding energy equal to 401.5 eV (Figure 7). This 
peak was attributed to nitrogen bounded to oxygen like NO3 species [7]. 
Like oxygen species, we calculated the atomic ratios of nitrogen and tin compared to the 
zirconium (Figure 8). 
Two different behaviors have been observed. At 6 mbar, whatever the element (tin or 
nitrogen), the atomic ratios increase with the duration of contact with radiolyzed atmosphere. 
At 50 mbar, in the same way as for hydroxyl, the tin and nitrogen atomic ratios present a 
maximum for 12 h. This last observation suggests that OH, Sn and NO3 species are correlated. 
Moreover, in a previous work [3], we showed that there was no oxide loss during irradiation. A 
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formation of a compound containing tin, hydroxyl and nitrate groups could explain the 
enrichment of tin and the nitrogen presence at the topmost surface after wet air radiolysis 
experiment. Cotton and Donaldson [15] and [16] have observed such a compound, the tritin(II) 
tetrahydroxide dinitrate which formula is Sn3(OH)4(NO3)2. In the way to verify this hypothesis, 
we have calculated OOH/Sn and N/Sn atomic ratios (Table 1). 
These results show important variations of ratios as a function of experimental conditions. 
At 6 mbar, ratio values vary strongly and, in these conditions, it is not possible to establish a 
correlation between OOH/Sn and N/Sn atomic ratios. 
At 50 mbar, the OOH/Sn and N/Sn atomic ratios are less dispersed than at 6 mbar. Despite this 
observation, the atomic ratio values are too high to correspond exactly to the Sn3(OH)4(NO3)2 
compound. The thickness probed by XPS analyses being about 10 nm, the detected signal 
results to the zirconia/Sn3(OH)4(NO3)2 mixture. Consequently, XPS calculations cannot indicate 
the stoichiometry of the compound. 
In order to put in evidence the water impact in the radiolysed species formation, we performed 
experiments using dry air. XPS analyses have not revealed a N signal in the binding energy 
range 400405 eV. We can then conclude that the presence of water is necessary to give rise to 
the surface modifications. 

IV. Discussion 
Without radiolysis, in contact with wet air, water molecules are adsorbed on the zirconia 
surface. At 6 mbar, the adsorption is localized whereas at 50 mbar, the water molecules form a 
thin film of water at the oxide surface. It results an increasing of the relative amount of OH and 
H2O groups at the zirconia surface. 
After radiolysis experiments, results show that nitrogen is present only if the radiolysed air 
contains water. The N binding energy indicates that nitrogen is surrounded by oxygen atoms 
[7]. This observation puts in evidence the formation of nitric acid during wet air radiolysis [17], 
[18] and [19]. The contact between nitric acid and the zirconia surface explains the nitrogen 
presence at 6 and 50 mbar on the zirconia surface. 
At 6 mbar, the presence of nitrogen is the main observation of oxide surface modification. At 
50 mbar, the tin enrichment is the major modification. Initially, the oxide contains 1.4 percents 
of tin. After the radiolysis experiments, the topmost surface tin atomic concentration is equal 
to 60%. To explain the different behavior of tin as a function of the water partial pressure, the 
water molecule system on the oxide surface must be considered. At 50 mbar, the adsorbed 
water forms a thin film. The acidic environment allows the formation of a tin compound such 
as the tritin(II) tetrahydroxide dinitrate Sn3(OH)4(NO3)2. We propose three steps to describe the 
formation of this compound: 

� Reduction of tin(IV) by reaction with hydrogen to form tin(II). Indeed, tin in zirconia 
is in SnO2 form [20]. 

� Reaction between tin(II) and hydroxyl group [21]  

- 4 2
2 33 4 [ ( ) ]Sn OH Sn OH +

+ + →  (3) 

� Reaction between 
4 2

3[ ( ) ]Sn OH +
 and 3NO−

 [16]  

[ ]2

3 4 3 3 4 3 2( ) 2 ( ) ( )Sn OH NO Sn OH NO
+ −+ →

 (4) 

At the same time in the tritin(II) tetrahydroxide dinitrate formation, another surface reaction 
could occur between Zr4+ and OH− ions. Indeed in acidity environment, the [Zr4(OH)8(H2O)16]8+ 

complex can be formed [15]. This Zr compound formation could explain the results obtained by 
XPS analysis. At 50 mbar, a maximum Sncompound/Zr atomic ratio is observed for 12 h (Figure 8). 
In agreement with this hypothesis, the Zr atoms quantity probed by XPS measurements would 
be more important for 24 h than for 12 h. The zirconium signal total intensity would contain 
two contributions: the signal due to the oxide and the signal due to the Zr compound present in 
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the water thin layer. On the other hand, the 2 /
O

O Zr−  atomic ratio is inferior to the values 

determined to the initial or blank samples as it is observed in Figure 5. This result consolidates 
the complex formation hypothesis. 

V. Conclusions 
This study has shown the influence of radiolysis of wet air in contact with zirconia on the 
degradation of the oxide layer. The apparition of nitrogen in topmost surface results in the 
presence of water in radiolysed air. This is due to the formation of nitric acid. When the water 
molecules are locally adsorbed (6 mbar), no chemical reaction takes place. New species are 
presents in topmost surface but no interaction occurs. On the contrary, when water is absorbed 
as a water thin film (50 mbar), the present species react. Two new compounds form: 
Sn3(OH)4(NO3)2 and [Zr4(OH)8(H2O)16]8+. 
In case of cycles of adsorption and put in contact with liquid water, these formed compounds 
would be evacuated by the surface allowing a new adsorption and surface reactions cycle. It 
would be then interesting to evaluate the protective properties of this film formed on surface. 
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Figures 

  

FFiigguurree  11::  SScchheemmaattiicc  rreepprreesseennttaattiioonn  ooff  tthhee  iirrrraaddiiaattiioonn  sseett  uupp  uunnddeerr  aa  11..55  pprroottoonn  bbeeaamm..  

 

FFiigguurree  22::  XXPPSS  ssppeeccttrruumm  ooff  aa  ttyyppiiccaall  iinniittiiaall  ssaammppllee  ooff  ooxxiiddiizzeedd  ZZiirrccaallooyy--44..  
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FFiigguurree  33::  OOxxyyggeenn  ssiiggnnaall  aafftteerr  eexxppeerriimmeenntt  aatt  ((aa))  66  mmbbaarr  aanndd  ((bb))  5500  mmbbaarr  wwiitthhoouutt  aanndd  wwiitthh  iirrrraaddiiaattiioonn,,  dduurriinngg  1122  
aanndd  2244  hh..  

 

FFiigguurree  44::  TTyyppiiccaall  ddeessssoommaattiioonn  ooff  ooxxyyggeenn  11ss  ssiiggnnaall..  
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FFiigguurree  55::  OO22--  aanndd  OOHH--  XXPPSS  aattoommiicc  rraattiiooss  ccoommppaarreedd  ttoo  zziirrccoonniiuumm  aatt  66  mmbbaarr  ((ddiiaammoonndd))  aanndd  5500  mmbbaarr  ((ttrriiaannggllee))  aass  aa  
ffuunnccttiioonn  ooff  iirrrraaddiiaattiioonn  ttiimmee..  TThhee  ssyymmbbooll  wwiiddtthh  rreepprreesseennttss  tthhee  eerrrroorr  bbaarrss..  

 

FFiigguurree  66::  TTiinn  ssiiggnnaall  aafftteerr  eexxppeerriimmeennttss  aatt  aa))  66  mmbbaarr  aanndd  bb))  5500  mmbbaarr  wwiitthhoouutt  aanndd  wwiitthh  iirrrraaddiiaattiioonn  dduurriinngg  1122  aanndd  2244  
hhoouurrss  
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(a) 6mbar (b) 50 mbar 

FFiigguurree  77::  NN  ssiiggnnaall  aafftteerr  eexxppeerriimmeennttss  aatt  ((aa))  66  mmbbaarr  aanndd  ((bb))  5500  mmbbaarr  wwiitthhoouutt  aanndd  wwiitthh  iirrrraaddiiaattiioonn  dduurriinngg  1122  aanndd  2244  
hhoouurrss..  

 

FFiigguurree  88::  XXPPSS  SSnn  aanndd  NN  aattoommiicc  rraattiiooss  ccoommppaarreedd  ttoo  zziirrccoonniiuumm  aatt  66  mmbbaarr  ((ddiiaammoonndd))  aanndd  5500  mmbbaarr  ((ttrriiaannggllee))..  TThhee  
ssyymmbbooll  wwiiddtthh  rreepprreesseennttss  tthhee  eerrrroorr  bbaarrss..  

Tables 

TTaabbllee  11::  OOOOHH//SSnn  aanndd  NN//SSnn  aattoommiicc  rraattiiooss  ffrroomm  XXPPSS  aannaallyyssiiss  

  OOHH//SSnn  NN//SSnn  

66  mmbbaarr  

BBllaannkk  113322  00  

RRaaddiioollyyssiiss--1122  hhoouurrss  112255--117755  88--2277  

RRaaddiioollyyssiiss--2244  hhoouurrss  11--7722  22--1166  

5500  mmbbaarr  

BBllaannkk  112288  00  

RRaaddiioollyyssiiss--1122  hhoouurrss  1177  11--22  

RRaaddiioollyyssiiss--2244  hhoouurrss  6677--7755  33--55  

 


