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Outline of the talk

1. Introduction to optimization : uses, challenges.

2. Formulations of optimization problems with 
uncertainties 

3. Noisy optimization

4. Kriging-based approaches (spatial statistics)
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Goal of parametric numerical optimization

Ex : 15 bars truss, each bar chosen out of 10 profiles 
→ 1015 possible trusses. How to choose ?
Choose the position of the joints (continuous)
→ How to search in R+,15 ?
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How to choose ? The modeling, formulation, 
optimization steps

1. Have a model or « simulator », y , (analytical, finite 
elements, coupled sub-models …) of the object you need 
to optimize.
2. Formulate the optimization problem

min
x∈S

f ( y (x))

g( y (x))⩽0

3. Try to solve the problem, either analytically (e.g., 
Karush Kuhn and Tucker conditions) or using optimization 
algorithms.
[ 4. Almost never right the first time : go back to 1 ] 

x : optimization variables
f : objective functions

g : optimization constraints
f , g : optimization (performance) criteria
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Application example (1) : structural design

Max
x
 forward power

such that total power < powermax

parameterization = choice of x 

simulation model
y(x)

Luersen, M.A., Le Riche, R., Lemosse, D. and Le Maître, O.,
A computationally efficient approach to swimming monofin optimization, SMO 2006

http://www.emse.fr/%7Eleriche/paper_monofin_SMO_2.pdf
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Application example (2) : identification

x : material parameters
Min

x
 distance( ymeasured , y(x) )

and similarly in supervised learning from data points (regression, 
classification, … ) : x = model parameters, f = data representation or 
classification error (+ regularization).

Silva, G., Le Riche, R., Molimard, J., Vautrin, A. and Galerne, C., Identification of material properties using 
FEMU : Application to the open hole tensile test, J. of Appl. Mech. and Mat. 2007

A. Rakotomamonjy, R. Le Riche, D.Gualandris and Z. Harchaoui, A comparison of statistical learning 
approaches for engine torque estimation, Control Engineering Practice, 2008.
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Application examples (3)

Optimal control

x ≡ rudder_angle(t)
f(x) ≡ time to goal

Modeling

in mechanics
x ≡ nodes displacements
f(x) ≡ total potential energy
g(x) ≡ contact condition (non 
intrusion)
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Optimization programs

An optimizer is an algorithm that iteratively proposes new x's based on 
past trials in order to approximate the solution to the optimization problem.

OS
x(1)

x(1)
f(x(1))

OS
x(2)

x(t)
f(x(t)) x(t+1)

Optimizer Simulator

x

f(y(x))

The cost of the optimization is the number of calls to the simulator y 
(usually = number of calls to f) 

  x(t+1) = Optimizer[x(1),f(x(1)) , … , x(t),f(x(t)) ] 

If relevant , f → f and g , on other slides too.
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Make can make optimizing difficult

local optima
(expl. composites)

difficulties

Ill conditioning

Noise

Calculation cost of f

minx∈S⊂ℝn f x Goal :

Number of 
variables, n
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Outline of the talk

1. Introduction to optimization

2. Formulations of optimization problems with 
uncertainties 

3. Noisy optimization

4. Kriging-based approaches
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Formulations of optimization problems under 
uncertainties

G. Pujol, R. Le Riche, O. Roustant and X. Bay, L'incertitude en conception: formalisation, estimation, 
Chapter 3 of the book Optimisation Multidisciplinaire en Mécaniques : réduction de modèles, robustesse, 
fiabilité, réalisations logicielles, Hermes, 2009.
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Formulation of optimization under uncertainty

The double (x,U) parameterization

x is a vector of deterministic optimization (controlled) variables.
x in S, the search space.
We introduce U, a vector of uncertain (random) parameters that  
affect the simulator y.

y(x)  →  y(x,U)    ,  therefore f(x) → f(y(x,U)) = f(x,U)  
and  g(x) → g(y(x,U)) = g(x,U)

U used to describe
 noise (as in identification with noise measurement)
 model error (epistemic uncertainty)
 uncertainties on the values of some parameters of y. 

Ex : a +/- 1mm dispersion in the manufacturing 
of a car cylinder head  can degrade its 
performance (g CO2/km) by +20% (worst case).
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Formulation of optimization under uncertainty

The (x,U) parameterization is general

1. Noisy controlled variables

Expl : manufacturing tolerance U,

R = x
1
 + U

x = ( E(R), VAR(R) )

Two cases (which can be combined)

x
1

L

R

x

L+U

2. Noise exogenous to the optimization variables

Expl : U random part load added to load L, x is a 
geometric dimension.

Expl : y finite element code, f volume of the structure, g upper bound on stresses.

tolerance 
class

nominal
value
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Formulation of optimization under uncertainties

(1)  the noisy case

min
x∈S

f (x ,U )

g(x ,U )⩽0

U  random

Let's not do anything about the uncertainties, i.e., try to solve

It does not look good : gradients are not defined, what is the result of the 
optimization ? 
But sometimes there is no other choice. Ex : y expensive simulator with 
uncontrolled random numbers inside (like a Monte Carlo statistical 
estimation, numerical errors, measured input).
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Formulation of optimization under uncertainties 
(2) an ideal series formulation

Replace the noisy optimization criteria by statistical measures

G(x)  is the random event "all constraints are satisfied" , 
G(x) =∩

i
{gi (x ,U )⩽0}

min
x∈S

qα
c (x) (conditional α -quantile)

such that  P (G(x )) ⩾ 1−ε

where  P ( f (x ,U )⩽qα
c (x) | G(x)) = α

ε>0 , small
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Formulation of optimization under uncertainties

(3) simplified formulations often seen in practice

For bad reasons (joint probabilities ignored) or good ones (simple 
numerical methods, lack of data, organisation issues), quantiles are 
often replaced by averages and variances, conditioning is neglected, 
constraints are handled independently :

such that  P (G(x)) ⩾ 1−ε     or    P ( gi (x)⩽0 ) ⩾ 1−εi

where  ε   is the series system risk
and  εi   is the i th failure mode risk

min
x∈S

qα(x)   or  min
x∈S

E ( f (x ,U ))    and / or   min
x∈S

V ( f (x ,U ))

 or  min
x∈S

E ( f (x ,U ))+r √V ( f (x ,U ))

where  P ( f (x ,U )⩽qα ) = α    and   r>0
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Scope of the presentation

The field of optimization under uncertainties is extremely active.

From here on, the presentation focuses on methods for 
optimization under uncertainties developped in the 
neighborhood of the speaker i.e.,

the French national projects OMD and OMD2 (where OMD 
stands for Optimisation MultiDisciplinaire, MDO).

In other words, many useful contributions are not presented.

Related books : 

● OMD book : Multidisciplinary Design Optimization in Computational Mechanics, P. Breitkopf 
and R. Filomeno Coehlo Eds., Wiley/ISTE, 2010 
●A. Ben-Tal, L. El Ghaoui, A. Nemirowski, Robust Optimization, Princeton Univ. Press, 2009.
● R. E. Melchers, Structural Reliability Analysis and Prediction, Wiley, 1999.
● M. Lemaire, A. Chateauneuf, J.-C. Mitteau, Structural Reliability, Wiley, 2009.
● J. C. Spall, Introduction to Stochastic Search and Optimization, Wiley, 2003.
● A. J. Keane and P. B. Nair, Computational Approaches for Aerospace Design: The Pursuit of 
Excellence, Wiley, 2005.
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Outline of the talk

1. Introduction to optimization

2. Formulations of optimization problems with uncertainties 

3. Noisy optimization
● The general CMA-ES
●  Improvements for noisy functions : 

Mirrored sampling and sequential selection
Adding confidence to an ES

4. Kriging-based approaches
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Continuous, unconstrained, noisy optimization

min
x∈ℜn

f (x ,U ) and no control over U, seen as noise.
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Expl : convergence of a quasi-Newton method with finite differences. 
A classical optimizer is sensitive to noise. 

little noise more noise

f (x)=
1

100 ∑
i=1

100

∥x+ui∥
2 ui ~ N (0, I 2) f (x)=∥x+ui∥

2
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Noisy optimization

Evolutionary algorithms

Taking search decisions in probability is a way to handle the 
noise corrupting observed f values
 
→ use a stochastic optimizer,  an evolution strategy (ES).
Assumptions : none.

Initializations : x, f(x), m, C, t
max

.

While t < t
max

 do,

Sample N(m,C) --> x'
Calculate f(x') , t = t+1
If f(x')<f(x), x = x' , f(x) = f(x') Endif
Update m  (e.g., m=x) and C

End while

A simple (1+1)-ES

%(Scilab code)
x = m + grand(1,'mn',0,C)

« elitism »
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Noisy optimization

Adapting the step size (C2) is important

(A. Auger et N. 
Hansen, 2008)

Above  isotropic ES(1+1)  :  C = σ2 I  ,  σ is the step size. 
With an optimal step size ( ≈ ║x║/ n )  on the sphere function, performance 
degrades only in O(n).
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Noisy optimization

The population based CMA-ES

(N. Hansen et al., since 1996, now with A. Auger)

CMA-ES = Covariance Matrix Adaptation Evolution 
Strategy = optimization through sampling and updating of 
a multi-normal distribution.

A fully populated covariance matrix is build : pairwise 
variable interaction learned. Can adapt the step in any 
direction.

The state-of-the-art evolutionary / genetic optimizer for 
continuous variables.
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Noisy optimization

flow-chart of CMA-ES

Initializations : m, C, t
max

, µ  , λ

While t < t
max

 do,

Sample N(m,C) --> x1,...,xλ

Calculate f(x1),...,f(xλ) , t = t+λ
Rank : f(x1:λ),...,f(xλ:λ)
Update m and C  with the µ bests,     
x1:λ ,...,xµ:λ

End while

CMA-ES is a (non elitist) evolution strategy ES-(µ,λ) :

m et C are updated with 
● the best steps (as opposed to points),
● a time cumulation of these best steps.
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Noisy optimization

CMA-ES : adapting C2 with good steps

x i
= m yi

yi ∝ N 0,C 
i = 1, ... ,

(A. Auger et N. Hansen, 2008)

m∈S , C= I , ccov≈2/n2
Initialization : 

yw =
1
 ∑i=1



yi : m m yw

sampling

C 1−ccovCccov  yw yw
T

selection

rank 1 C  update

update m
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Noisy optimization

The state-of-the-art  CMA-ES 

(A. Auger and N. Hansen, A restart CMA evolution strategy with 
increasing population size, 2005)

Additional features  :

● Steps weighting,

● Time cumulation of the steps.

● Simultaneous rank 1 and μ  covariance adaptations.

● Use of a global scale factor, C → σ2 C  .
● Restarts with increasing population sizes (unless it is the 2010 

version with mirrored sampling and sequential selection, see later)

Has been used up to n = 100 continuous variables.

yw = ∑i=1



w i y i :
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Outline of the talk

1. Introduction to optimization

2. Formulations of optimization problems with uncertainties 

3. Noisy optimization
● The general CMA-ES
●  Improvements for noisy functions : 

Mirrored sampling and sequential selection
Adding confidence to an ES

4. Kriging-based approaches
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Noisy optimization, improved optimizers

Mirrored sampling and sequential selection (1)

(1+1)-CMA-ES with restarts surprisingly good on some functions 
(including multimodal functions with local optima).

But « elitism » of (1+1)-ES bad for noisy functions : a lucky 
sample attracts the optimizer in a non-optimal region of the 
search space.

Question : how to design a fast local non-elistist ES ?

D. Brockhoff, A. Auger, N. Hansen, D. V. Arnold, and T. Hohm. Mirrored Sampling and Sequential Selection 
for Evolution Strategies, PPSN XI, 2010

A. Auger, D. Brockhoff, N. Hansen, Analysing the impact of mirrored sampling and sequential selection in 
elitist Evolution Strategies, FOGA 2011
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Noisy optimization, improved optimizers

Mirrored sampling and sequential selection (2)

Derandomization via mirrored sampling : 
one random vector generates two 
offsprings.
Often good and bad in opposite 
directions.

Sequential selection : stop evaluation of 
new offsprings as soon as a solution 
better than the parent is found. Greedy !

Combine the two ideas : when an 
offspring is better than its parent, its 
symmetrical is worse (on convex level 
sets), and vice versa → evaluate in order 
m+y1 , m-y1 , m+y2 , m-y2 , … .
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Noisy optimization, improved optimizers

Mirrored sampling and sequential selection (3)

Results :

(1,4)-ES with mirroring and sequential selection faster than 
(1+1)-ES on sphere function.
Theoretical result: Convergence Rate ES (1+1)=0.202 , 

   Convergence Rate (1,4ms)=0.223  .

Implementation within CMA-ES, tested in BBOB'2010* (Black 
Box Optimization Benchmarking)
Best performance among all algorithms tested so far on some 
functions of noisy testbed

* http://coco.gforge.inria.fr/bbob2010-downloads
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Outline of the talk

1. Introduction to optimization

2. Formulations of optimization problems with uncertainties 

3. Noisy optimization
● The general CMA-ES
●  Improvements for noisy functions : 

Mirrored sampling and sequential selection
Adding confidence to an ES

4. Kriging-based approaches
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Noisy optimization, ES with confidence

Adding confidence to an ES

Assumption : evaluations of f(x,u) can be repeated (even 
without control of u), f(x,u1), … , f(x,us)

Evolutionary optimizers are comparison based. 
We now compare empirical averages of f, therefore solve

minx E ( f (x ,U ))

D. Salazar, R. Le Riche, G. Pujol and X. Bay, An empirical study of the use of confidence levels in RBDO with Monte 
Carlo simulations, in Multidisciplinary Design Optimization in Computational Mechanics, Wiley/ISTE Pub., 2010.

Note : this can also be done with functions of f . For example, replace 
f(x,U) by its estimated e-th quantile (batching),

q (x ,U ) = f (x ,U ⌊ e×b ⌋) , f (x ,U 1)⩽…⩽f (x , U b)
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Noisy optimization, ES with confidence

Hypothesis testing

M 1,2 =
1
s ∑

i=1

s

f (x1,2 , ui) , V 1,2 =
1

s−1 ∑
i=1

s

( f (x1,2 , ui)−M 1,2 )
2

Test : H0 the new point is better than the current one

HO , E ( f (x1 , U )) ⩾ E ( f (x2 ,U ))
H1 , E ( f (x1 ,U )) < E ( f (x2 ,U ))

Statistic : Accept H0  if 
M 2−M 1

√V 1/s+V 2/ s
< t 1−α ,

otherwise reject H0
where t 1−α  is the (1−α) 's quantile of a t -distribution
α  is the error rate at which H0 is wrongly rejected,

1-α

t
1-α

α

1
s
∑
i=1

s

f (x1 , ui)
?

> , = , <
1
s

∑
j=1

s

f (x2 , u j)

The decision to be made during the optimization, in the presence 
of noise, is (1 is current point , 2 the new point )

(same number of samples s 
to keep formula simple)

M and V are the empirical averages and variances,
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Noisy optimization, ES with confidence

ES and hypothesis testing

while cost < cost_max do
x' = x(t) + σ N(0,I)
calculate i.i.d. samples f(x',ui) , i = 1,s
cost = cost + s
Hypothesis testing : 
H0 , Ef(x',U) ≤ Ef(x(t),U)  against  H1 , Ef(x',U) > Ef(x(t),U)
Reject H0 with error α  ?

Yes : x(t+1) = x(t)
No :  x(t+1) = x'

t = t+1
end

The simplest ES-(1+1) evolutionary optimizer improved by hypothesis testing.

● α allows to change continuously the behavior of the optimizer 
from exploratory (low  α) to conservative (high α).
● Three parameters, whose optimal values are coupled : σ , s , α 
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Noisy optimization, ES with confidence

Test functions

F Q
ideal x = q90  f Q  x , U  

= q90 ∥xU∥2 

F H
ideal x = q90  f H  x ,U 

= q90 −1

∥x∥20.1
U 

decreasing signal / noise 
ratio as x → x*  (=0)

increasing signal / noise 
ratio as x → x*  (=0)

On unimodal noisy functions : test convergence speed in noise, not 
globality of the search
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Noisy optimization, ES with confidence

Parameters of the tests

σ : the optimizer step size (=0.05 to 4)
nb : number of batches (=s). High noise when nb=2, little noise 
when nb=50.
α : first type error rate where H0 is « the new point is better than the 
current one ». 

α=0.1  :  exploratory optimizer
α=0.5  :  traditional optimizer (no hypothesis testing)
α=0.9  :  conservative optimizer

( but also,
n : number of variables, n=2 or 10. n=2 here, results generalize. 
Crude Monte Carlo (shown here) versus Latin Hypercube Sampling. Prefer LHS.   
)

Each optimization is started from {2}n, 500,000 calls to f long , and 
repeated 30 times.
b = 20 (fixed, smallest number for a Gaussian percentile)
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Noisy optimization, ES with confidence

Number of MC simulations and step size

Lower bound on step sizes needs to increase with the noise 
(decreasing nb) to prevent comparison errors

nb = 50 : costly MC 
simulations, little noise

nb = 2 : cheap MC 
simulations, very noisy

Expl. on F
H
, traditional optimizer, the smallest step size (σ = 0.25) 

overlined in red.
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Noisy optimization, ES with confidence

Number of MC simulations

Low MC number at the beginning (nb = 2), increase nb later to 
converge accurately (observed on F

Q
 and F

H
).

Expl. on F
Q
, traditional optimizer, step size σ = 0.5 .
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Noisy optimization, ES with confidence

Traditional vs.  exploratory optimizer

The exploratory optimizer (with HT, α=0.1) tends to diverge 
and never converges faster on FQ and FH  
→ not useful on non-deceptive functions.
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Noisy optimization, ES with confidence

Conservative vs. traditional optimizer

Flat initial region (F
H
) with high probability of being mislead (nb = 2) 

→ the conservative optimizer is initially the best. 
In all other tests made, traditional optimizer is better.

∥x−x*∥
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Noisy optimization – Summary

 min
x
 f(x,U)

 Use general stochastic (evolutionary) optimizers, which can be 
relatively robust to noise if properly tuned.
 Useful for optimizing statistical estimators which are noisy.

 No control over the U's
 No spatial statistics (i.e. in S or S × U spaces), pointwise 

approaches only.

 Next : introduce spatial statistics to filter the noise → kriging 
based approaches.
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Outline of the talk

1. Introduction to optimization

2. Formulations of optimization problems with uncertainties 

3. Noisy optimization

4. Kriging-based approaches
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Kriging : quick intro (1)

0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1
- 1 . 5

- 1

- 0 . 5

0

0 . 5

1

1 . 5

x

f(
x)

space x 

f

black circles : observed values , f(x1), … , f(xt), with heterogeneous noise 
(intervals). 
Noise is Gaussian and independent at each point (nugget effect), 
variances δ

1
2 , … , δ

t
2 .

Assume : the blue 
curves are possible 
underlying true 
functions.
They are instances of 
stationary Gaussian 
processes Y(x) → 
fully characterized by 
their average μ and 
their covariance, 

Cov (Y (x),Y (x ' ))=Fct (dist (x , x ' ))
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Kriging : quick intro (2)

Kriging average  : mK (x) = μ+cT
(x)CΔ

−1
(f−μ1)

Kriging variance  : sK
2 (x) = σ2−cT (x)CΔ

−1 c(x)

f (x) represented by Y t
(x) = [ Y (x)∣ f (x1

),…, f (xt
) ]

Y t (x) ∼ N (mK (x), sK
2 (x)) (simple kriging)

c (x) = [Cov (Y (x),Y (x i)) ]i=1, t

CΔ = C+Δ

C = [Cov (Y (xi),Y (x j))] i , j

Δ = diag [δ1
2 , … , δt

2]

where

0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1
- 1 . 5
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f

mK (x) mK (x)±sK (x)
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Outline of the talk

1. Introduction to optimization

2. Formulations of optimization problems with uncertainties 

3. Noisy optimization

4. Kriging-based approaches
No control on U
With control on U
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No control on U. 

The variance of the observations f(xi), ∆ ,  is 

Kriging based optimization with uncertainties

No control on U

1. Estimated from the context
Expl : variance of a statistical estimator, 

     Quantile of f : cf. Le Riche et al., Gears design with shape uncertainties using 

Monte Carlo simulations and kriging, SDM, AIAA-2009-2257.

2. Learned from data
By maximizing the likelihood of the data (for ∆ and C parameters).
Cf. Roustant, O. et al., DiceKriging, DiceOptim : two R packages for the analysis of computer 
experiments by kriging based metamodeling and optimization, HAL, 2010

Average f : V (f (x)) =
1

s(s−1)
∑
i=1

s

(f (x ,ui)−f (x))
2
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The simplest approach.

Kriging based optimization with uncertainties, no control on U

Kriging prediction minimization

For t=1,tmax do,

Learn Yt(x) (m
K
 and s

K
2 ) from f(x1), … , f(xt)

xt+1 = min
x
 m

K
(x)

Calculate f(xt+1)
t = t+1

End For

e.g., using CMA-ES 
because multimodal

(Krisp toolbox in Scilab)

But it may fail : the minimizer of m
K
 

is at a data point which is not even a 
local optimum.

D. Jones, A taxonomy of global optimization 
methods based on response surfaces, JOGO, 2001.
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A sampling criterion for global optimization 
without noise :

Kriging based optimization with uncertainties, no control on U

Expected Improvement criterion (1)

Improvement at x  , I (x)=max( ymin−Y (x),0)

0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1
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- 0 . 5

0

0 . 5

1

1 . 5

2
n = 5

0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1
0

0 . 0 5

0 . 1

0 . 1 5

E I  c r i t e r i o n

0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1

- 1

- 0 . 5

0

0 . 5

1

1 . 5

2
n = 6

improvement instance, i

The expected improvement, EI(x) , can be 
analytically calculated. 

EI increases when m
K
 decreases and when 

s
K
 increases. EI(x) quantifies the 

exploration-exploitation compromise of 
global optimization.

EI (x) = s(x) [ a(x)Φ ( a(x)) + ϕ ( a(x)) ] ,

a(x)=
ymin−m(x)

s(x)
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A sampling criterion for global optimization 
without noise :

Kriging based optimization with uncertainties, no control on U

Expected Improvement criterion

Improvement at x  , I (x)=max( ymin−Y (x),0)
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n = 6

improvement instance, i

The expected improvement, EI(x) , can be 
analytically calculated. EI increases when 
m

K
 decreases and when s

K
 increases. 

EI(x) quantifies the exploration-exploitation 
compromise of global optimization.

Next iterate :    xt+1 = max
x
EI(x)

Not suitable for noisy functions because 
the noise can make y

min
 too small and 

create premature convergence around y
min

.

EGO (Efficient Global Optimization) algorithm, 
D. Jones, 1998 .
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Solution 1 : Add nugget effect and replace y
min

 by the best 
observed mean (filters out noise in already sampled regions) :

Kriging based optimization with uncertainties, no control on U

EI for noisy functions

EInoisy (x)=E [max ( min
i=1,t

mK (xi)−Y (x) , 0 )]
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Kriging based optimization with uncertainties, no control on U

Expected Quantile Improvement
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n = 4
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E Q I  c r i t e r i o n
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- 1

- 0 . 5

0

0 . 5

1

1 . 5

n = 5

Solution 2 : Add nugget effect and use the 
expected quantile improvement. A 
conservative criterion (noise and spatial 
uncertainties are seen as risk rather than 
opportunities).

EQI (x) = E [max ( qmin−Q t+1
(x) , 0 )]

qmin = min
i=1,t

mK (xi
)+α sK (xi

)

Q t+1(x) = mK
t+1(x)+α sK

t+1(x)

mK
t+1

(x) is a linear function of Y (x)

⇒ EQI (x) is known analytically

V. Picheny, D. Ginsbourger, Y. Richet, Optimization of 
noisy computer experiments with tunable precision, 
Technometrics, 2011.
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Kriging based optimization with uncertainties, no control on U

Related work

E. Vazquez, J. Villemonteix, M. Sidorkiewicz and E. Walter, Global 
optimization based on noisy evaluations: an empirical study of two 
statistical approaches, 6th Int. Conf. on Inverse Problems in 
Engineering, 2010.

J. Bect, IAGO for global optimization with noisy evaluations, 
workshop on noisy kriging-based optimization (NKO), Bern, 2010.
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Outline of the talk

1. Introduction to optimization

2. Formulations of optimization problems with uncertainties 

3. Noisy optimization

4. Kriging-based approaches
No control on U
With control on U
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Kriging based optimization with uncertainties

U control : uncertainty propagation

simulator

f  
x

u
f(x,u)

x and u can be chosen before calling the simulator and calculating the 
objective function. This is the general case.

Optimization : loop on x

Estimation of the performance 
(average, std dev, percentile of 
f(x,U)  ) : loop on u , Monte Carlo

Direct approaches to optimization with uncertainties have a double 
loop : propagate uncertainties on U, optimize on x. 

Such a double loop is very costly (more than only propagating 
uncertainties or optimizing, which are already considered as costly) ! 

xu

f
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Kriging based optimization with uncertainties, U controlled

(x,u) surrogate based approach

Assumptions : x and U controlled

Only one loop of f

(x,u) surrogate based 
approach

STAT [Y (x ,U )]

Y (x ,u)

f (x , u)(x , u)

Simulator

Optimizer

Direct approach

Multiplicative cost of two loops involving f

Monte Carlo
simulations

f x ,uu

Simulator

Y (x )

STAT [ f (x ,U )]+εx

Optimizer of 
noisy functions

Y :  surrogate model
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Kriging based optimization with uncertainties, U controlled

A general Monte Carlo - kriging algorithm

Hereafter is an example of a typical surrogate-based (here kriging) 
algorithm for optimizing any statistical measure of f(x,u)  (here the average).

Create initial DOE (Xt,Ut) and evaluate f there ;
While stopping criterion is not met:

● Create kriging approximation Yt in the joint (x,u) space from f(Xt,Ut)

● Estimate the value of the statistical objective function from Monte Carlo 
simulations on the kriging average m

Y
t.

 
Expl :  

● Create kriging approximation Zt in x space from

● Maximize EI
Z
(x) to obtain the next simulation point → xt+1   

ut+1 sampled from pdf of U

● Calculate simulator response at the next point, f(xt+1,ut+1). 
Update DOE and t

f̂ (xi
) =

1
s
∑
k=1

s

mK
t
(xi , uk

) ,  where uk  i.i.d. from pdf of U

( xi , f̂ (xi))i=1,t

MC – kriging algorithm

only call to f !
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Kriging based optimization with uncertainties, U controlled

Simultaneous optimization and sampling (1)

E [Y  x ,U ]

Y x , u

f  x ,u  x , u

Simulator

1. Building internal representation of 
the objective (mean performance) by 
«integrated» kriging.

Optimizer

J. Janusevskis and R. Le Riche, Simultaneous kriging-based sampling for optimization 
and uncertainty propagation,  ROADEF 2011 and HAL report.

Assumptions : x and U controlled, U normal. Solve
Y :  kriging model
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Kriging based optimization with uncertainties, U controlled

Integrated kriging (1)

: objective

 objective

E[Z x ]

EU [ f x ,U ]

u

x

u approximation

integrate 

: kriging approximation to deterministic

:   integrated process 
  approximation to 
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Kriging based optimization with uncertainties, U controlled

Integrated kriging (2)

-probability measure on U

The integrated process over U is defined as

Because it is a linear transformation of a Gaussian process, it is Gaussian, 
and fully described by its mean and covariance

Analytical expressions of m
Z
 and cov

Z
 for Gaussian U's are given in 

J. Janusevskis, R. Le Riche.  Simultaneous kriging-based sampling for optimization and 
uncertainty propagation, HAL report: hal-00506957



59

Kriging based optimization with uncertainties, U controlled

Simultaneous optimization and sampling (2)

E [Y  x ,U ]

Y x , u

f  x ,u  x , u

Simulator

1. Building internal representation of 
the objective (mean performance) by 
«projected» kriging.

Optimizer

2. Simultaneous sampling and 
optimization criterion for x and u
(both needed by the simulator to calculate f)
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Kriging based optimization with uncertainties, U controlled

EI on the integrated process (1)

Z is a process approximating the objective function 

Optimize with an Expected Improvement criterion,

Optimize with an Expected Improvement criterion,

I Z(x)=max (zmin−Z (x),0) , but zmin not observed (in integrated space).
⇒  Define zmin = min

x1,
… , x t

E ( Z (x))
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Kriging based optimization with uncertainties, U controlled

EI on the integrated process (2)

zmin

E[Z x ]

EU [ f x ,U ]

E[Z x ]STD [Z x]
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Kriging based optimization with uncertainties, U controlled

EI on the integrated process (3)

x ok. What about u ? (which we need to call the simulator)

EU
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Kriging based optimization with uncertainties, U controlled

Simultaneous optimization and sampling : method

xnext gives a region of interest from an optimization of the expected f 
point of view. 

One simulation will be run to improve our knowledge of this region 
of interest → one choice of (x,u).

Choose (xt+1,ut+1) that provides the most information, i.e., which 
minimizes the variance of the integrated process at xnext

(no calculation details, cf. article. Note that VAR of a Gaussian process 
does not depend on f values but only on x's ).
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Kriging based optimization with uncertainties, U controlled

Simultaneous optimization and sampling : expl.

EU
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Kriging based optimization with uncertainties, U controlled

Simultaneous optimization and sampling : algo

( 4 sub-optimizations, solved with CMA-ES )

Create initial DOE in (x,u) space;

While stopping criterion is not met:

● Create kriging approximation Y in the joint space 

● Calculate the covariance of Z from that of Y 

● Use EI of Z to choose

● Minimize       to obtain the next point                   for 
simulation

● Calculate simulator response at the next point 

xnext 

VAR Z xnext


f x t 1 , u t1

x ,u 

x t 1 , ut 1
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Kriging based optimization with uncertainties, U controlled

2D Expl, simultaneous optimization and sampling

 DOE and E [Y x ,u]

EU [ f x ,U ]

VARΩ[Z (x)(ω)]

test function

E[Z x ]

EI Z x 
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Kriging based optimization with uncertainties, U controlled

1st iteration

 DOE and E [Y x , u]

− x t 1 , u t1

− xnext ,

EU [ f x ,U ]

E[Z x ]

VAR [Z x]

EI Z x 
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Kriging based optimization with uncertainties, U controlled

2nd iteration

 DOE and E [Y x ,u]

− x t 1 , u t1

− xnext ,

EU [ f x ,U ]

E[Z x ]

VAR [Z x]

EI Z x 
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Kriging based optimization with uncertainties, U controlled

3rd iteration

 DOE and E [Y x ,u]

VAR [Z xnext] x , u

EU [ f x ,U ]

E[Z x ]

VAR [Z x]

EI Z x 
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Kriging based optimization with uncertainties, U controlled

5th iteration

 DOE and E [Y x , u]

− x t 1 , u t1

− xnext ,

EU [ f x ,U ]

E[Z x ]

VAR [Z x]

EI Z x 
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Kriging based optimization with uncertainties, U controlled

17th iteration

 DOE and E [Y x ,u]

EU [ f x ,U ]  and E [Z x]

VAR [Z x]
EI Z x 
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Kriging based optimization with uncertainties, U controlled

50th iteration

 DOE and E [Y x ,u]

EU [ f x ,U ]  and E [Z x]

VAR [Z x]EI Z x 
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Kriging based optimization with uncertainties, U controlled

Comparison tests

Compare « simultaneous opt and sampling » method to

1. A direct MC based approach : 
EGO based on MC simulations in f with fixed number of runs, s. 
Kriging with homogenous nugget to filter noise.

2. An MC-surrogate based approach : 
the MC-kriging algorithm.
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Kriging based optimization with uncertainties, U controlled

Test functions

f (x)=−∑i=1

n
sin(x i)[sin(ix i

2/π)]2

f x ,u=f x f u

Test cases based on Michalewicz function 

nx=1 nu=1 μ=1.5 σ=0.2

nx=2 nu=2 μ=[1.5 , 2.1] σ=[0.2, 0.2]

nx=3 nu=3 μ=[1.5 , 2.1 , 2] σ=[0.2 , 0.2 , 0.3]

2D:

4D:

6D:
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Kriging based optimization with uncertainties, U controlled

Test results

6D Michalewicz test case, n
x
 =3 , n

U
 =3 .

Initial DOE: RLHS , m=(n
x
+n

U
)*5 = (3+3)*5 = 30;

10 runs for every method.

Simult. opt & sampl.

MC-kriging

EGO + MC on f , s=3 , 5 , 10
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Optimization with uncertainties – Methods from the OMD projects

Concluding remarks (1)

Today's story was :
● Optimization → difficult in the presence of noise → formulation of 
optimization in the presence of uncertainties → noisy optimization → 
methods without U control → methods with U control.

● There was an increasing degree of sophistication, and a decreasing 
degree of generality.

Each method has its application domain : 
● Stochastic optimizers robust to noise cannot be directly applied to an 
expensive (simulation based) objective function. An intermediate surrogate 
is needed.
● Vice versa, kriging based method involve large side calculations : they 
are interesting only for expensive f's.
● The applicability of kriging based methods to high dimensional spaces is 
a topic for further research.
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Optimization with uncertainties – Methods from the OMD projects

Concluding remarks (2)

The following methods within OMD projects were not discussed : 

Method of moments 
● R. Duvigneau, M. Martinelli, P. Chandrashekarappa, Uncertainty 
Quantification for Robust Design, Multidisciplinary Design Optimization in 
Computational Mechanics, Wiley, 2010.

FORM / SORM, optimal safety factor methods for reliability  (constraints 
with uncertainties)
● G. Kharmanda, A. El-Hami, E. Souza de Cursi, Reliability-Based Design 
Optimization, Multidisciplinary Design Optimization in Computational 
Mechanics, Wiley, 2010.
● D. Villanueva, R. Le Riche, G. Picard, G., R.T. Haftka and B. Sankar, 
Decomposition of System Level Reliability-Based Design Optimization to 
Reduce the Number of Simulations, ASME 2011 conf.(IDETC).

(and of course a lot of the large litterature on the subject could not be 
covered).
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