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Purpose of this presentation

A short introduction to optimization for material 
scientists :

● When is optimization useful ?
● Get oriented in the jungle of optimization algorithms,
● show some basic optimization principles (derivatives 
free),
● provide references to state-of-the-art methods,
● where to add problem specific knowledge in tackling 
difficult optimization cases.



  

Goal of parametric numerical optimization

Ex : 15 bars truss, each bar chosen out of 10 profiles 
→ 1015 possible trusses. How to choose ?



  

How to choose ? The modeling, formulation, 
optimization steps

1. Have a model, y , (analytical, finite elements, coupled 
sub-models …) of the object you need to optimize.
2. Formulate the optimization problem

min
x∈S

f  y x

g  yx0

3. Try to solve the problem, either analytically (e.g., 
Karush Kuhn and Tucker conditions) or using optimization 
algorithms.
[ 4. Almost never right the first time : go back to 1 ] 

x : optimization variables
f : objective functions

g : optimization constraints
f , g : optimization (performance) criteria
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Application examples (1)
Structural design at various scales

macro

meso

micro

x, f and g can 
be defined at 

any  
combination of 

scales



  

Application examples (2) : Multi-disciplinary design

Coupled manufacturing and designCoupled material 
design and control

( composite tow fiber placement machine at NLR)

x, f and g  concern many disciplines 

( from Advanced Ceramics Inc.)

→ more parameters, beyond the scope of mechanics of materials.



  

Application examples (3) 
constitutive behaviour identification

̇ = C  ̇ , ; x 

minx∈S distance  Experiment , Model x 

 , internal variables
x , constitutive law parameters

full-field measures

point-wise measures

experience

t

σ , ε
experience

model

model
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Analytical optimization

Some optimization problems can be solved analytically or with 1 
iteration methods. Expl. quadratic programming problems, 
n<1000 : 

x∈S⊂ℝn

f x  =
1
2

xT H xA xB , H0

g x  =C xD

Otherwise, use iterative optimization algorithms, dubbed 
« optimizers ».



Optimization programs
An optimizer is an algorithm that iteratively proposes new x's 
based on past trials in order to approximate the solution to the 
optimization problem

  x(t+1) = Optimizer[x(1),f(x(1)) , … , x(t),f(x(t)) ] 

OS
x(1)

x(1)
f(x(1))

OS
x(2)

x(t)
f(x(t)) x(t+1)

Optimizer Simulator

x

f(y(x)) + (FJB) dfdx(y(x)) + ...

The cost of the optimization is the number of calls to the simulator y 
(usually = number of calls to f) 



  

Local vs. global optimization (1)

min
x∈S

f x

local
optimum

x*xl

V xl 

f

global 
optimum

Here, we focus on

S ⊂ℝn  or ℕn  or {ℝn1∪ℕn2 }

i.e., continuous or 
integer or mixte 
optimization. 
We don't discuss g.



  

Local vs. global optimization (2)

Local and global optimizers have different goals, hence 
working principles.

Local optimizers use local information (typically gradient 
based in Rn) and aim at efficiently finding a neighbouring 
optimum.

Global optimizers compromise on efficiency and 
exploration of the search space S. Global search is 
computationally more costly than local search but is 
sometimes needed (large n, periodic and noisy functions).



  

Composites often need global optimizers

maxi
A11 , longitudinal laminate stiffness

In composite design, there are often local optima.

sequence buckling strength

 9998.19  10394.81

9997.60 10187.93

9976.58  10187.93

902 /±452/902/±45/902/±456s

902/±4522/902/±45 /902/±453s
±45 /904/±45 /902 /±455/902/±45s

Expl., N y /N x=0.5 , length=20 in., width=5 in., graphite-epoxy

because stacking sequences offer an excess in design variables. 
Expl :



  

Global optimization need, 2nd example : optical filters

( after T. Bäck )

minnb., mat., thickn.∫m

M

[Rcalc.−Rtarget]
2 d 

filters (material, thickness, numbers)

target

calculated

reflected intensity
w

a
ve le n

g
th



  

Optical fibers example (cont.)

Distance objective function landscape.
x and y are two thicknesses, z the distance:

→ a local optimizer may get trapped at a local optimum.



  

Make can make optimizing difficult

local optima
(expl. composites)

difficulties

Ill conditioning

Noise

Calculation cost of f

minx∈S⊂ℝn f x Goal :

Number of 
variables, n



Derivative free optimizers

Derivative free optimizers are useful

when gradients, ∇ x f , ∇ x g ,  are not available, 

when gradients do not exist, x∈S⊂ℕn

 or f  or g  are non differentiable C0
.

When a gradient, an Hessian, …  (sensitivity analysis) is 
available, use it ! → See Franz-Joseph Barthold's presentation



  

Outline

1. Introduction 

2. Deterministic optimization : local, global.

3. Stochastic optimization

4. Adding problem specific knowledge 



A basic (yet fine) local derivative free 
algorithm in Rn : Nelder-Mead

Nelder, John A.; R. Mead (1965). "A simplex method for function 
minimization".

Principle : a simplex (a polytope of n+1 vertices in n dimensions) 
undergoes geometrical transformations to go downhill. It is a « pattern 
search method ».

2D example : 

( from Simiprof, wikipedia, 2011 )



Nelder-Mead (2)

The vertices of the simplex are n+1 points of the search 
space where the objective function is evaluated

f x l  f  xs  f  xh

The geometrical transformations are :

xh

x s

xl

xh

x s

xl

xh

xs

xl

reflection

expansion

contraction

if 
progress

if no 
progress



  

Nelder-Mead (3) : flow chart (hard to read    ;-(    )



Nelder-Mead (4)

Fine up to n=10, does something for you up to n=25.

May converge prematurly (aligned vortices → loss of dimension).

There are other convergent (slightly more expensive) pattern 
search methods. Cf. Dolan, E.D.; Lewis, R.M.; Torczon, V.J. 
(2003). "On the local convergence of pattern search". SIAM 
Journal on Optimization. Expl.:



Recommended local derivative free 
optimizers in Rn

NEWUOA, M.J.D. Powell, 2004 : derivative free efficient 
optimizer based on a series of quadratic local approximations. 
Up to 160 variables.

Improved Nelder-Mead, e.g., GBNM (Globalized and Bounded 
Nelder-Mead algo., Luersen and Le Riche, 2004) : bounds on 
variables, restarts to avoid degeneracy and make it global, 
adaptive penalty for constraints. Up to 25 variables.
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Global optimization : general points

Global optimization algorithms strike a compromise 
between an extensive exploration of the search space S 
(search in the volume ≠ line search of the gradient) and an 
exploitation (or intensification) of already gathered 
information to make the search more rapid.

Global optimizers tend to be more costly but more robust 
than local optimizers.



  

Global derivative free deterministic 
optimization in Rn : DIRECT 

(D.R. Jones et al., 1993)

DIRECT = DIviding RECTangles = a strategy to divide S 
into rectangular subregions which balances local and 
global search. « Lipschitzian optimization without Lipschitz 
constant ».



  

DIRECT : 2D example (1/3), 
Initialization 

0.1

Rectangles 
[f at center ; largest side ∆  ] : 

1 :  [0.1 ; 1]

search space S

1



  

DIRECT : 2D example (2/3) 

0.30.1

0.5

0.7

1.2

Which rectangles should now be divided (so that f  is evaluated at 
their centers) ?

Rectangles 
[center ; largest side ∆ ] : 

1 : [0.1 ; 0.33]
2 : [0.5 ; 0.33]
3 : [0.7 ; 0.33]
4 : [1.2 ; 1.00]
5 : [0.3 ; 1.00]

1

2

3

4 5

The initial rectangle has been divided in thirds (a center stays a 
center).



  

DIRECT : 2D example (3/3) 

0.3
0.1

0.5

0.7

1.2

● the best rectangles (low f ) ← exploitation, 1.
● the unknown rectangles (largest side) ← exploration, 5.

Rectangles 
[center ; largest side 

∆ ] : 

1 : [0.1 ; 0.33]
2 : [0.5 ; 0.33]
3 : [0.7 ; 0.33]
4 : [1.2 ; 1.00]
5 : [0.3 ; 1.00]

1

2

3

4 5



  

DIRECT : multi-objective interpretation 

3−13−23−3 1
× 0/2

f

L

f −L×/2

 Lipschitz 
constant

divided rect. 
if L were 
known

rectangles divided by DIRECT (for any L) 
= Pareto front of (f, ∆ )

( exploitation)

( exploration)



  

DIRECT : simplified flow chart

Initializations

While t < t
max

 do,

● Find the set of Pareto optimal rectangles, P
● For each rectangle j in P

Divide along the largest sides of j and calculate f 
at the new centers 

Update the rectangles list, f
min

, x
min

 and t
● End for each 
End while



  

DIRECT : 2D example 

(C.A. Baker et 
al., 2001)



  

DIRECT : conclusions

DIRECT converges to the global optimum when  t  (the number of 
calls to f) →∞ because it creates a dense series of points in S.

The determination of the Pareto front (sorting) has an O(t) 
algorithmic complexity which is typically negligible w.r.t. the 
simulation costs (finite elements ...) .

At constant number of calls to f  the accuracy of DIRECT 
degrades rapidly with the number of optimization variables n. OK 
up to  n ≈ 10.

No interaction between the f  values at different rectangles explains the 
poor scaling in dimension → EGO (Efficient Global Optimization, D.R. 
Jones, 1998) is another, more mature deterministic global optimization 
method in Rn based on kriging, ok up to n ≈ 30.

n
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Introduction to stochastic optimization

Random numbers are versatile search engines (work both in Rn and / 
or Nn ). They can also yield efficient methods.

Let pt(x) denote the probability density function of x at iteration t (e.g., 
after t evaluations of f). It represents the belief at t that the optimum 
x* is at x. 

How to « sample pt(x) » once (Scilab notation) ?
● if  x is uniform between m and M, X ~ U[m,M], call 

x = m + rand(n,1).*(M-m)
● if  x is (multi-)Gaussian with mean m and covariance matrix C, X ~ 
N(m,C),call

x = m + grand(1,'mn',0,C)



  

Flow chart of a general stochastic optimizer

● Initialize t and pt(x)

● Sample      xt+1  ~  pt(x) 

● Calculate   f(xt+1)

● Update the distribution
  

 pt+1(x) = Update( x1, f(x1), … , xt+1, f(xt+1) )
or more often   pt+1(x) = Update( pt(x) , xt+1, f(xt+1) )

● Stop or [ t = t+1 and go back to Sample ]



  

A simple example in Rn : ES-(1+1)

Initializations : x, f(x), m, C, t
max

.

While t < t
max

 do,

Sample N(m,C) --> x'
Calculate f(x') , t = t+1
If f(x')<f(x), x = x' , f(x) = f(x') Endif
Update m  (e.g., m=x) and C

End while

N(m,C)

Normal law



  

Adapting the step size (C2) is important

(A. Auger et N. 
Hansen, 2008)

Above  isotropic ES(1+1)  :  C = σ2 I  ,  σ is the step size. 
With an optimal step size ( ≈ ║x║/ n )  on the sphere function, performance 
degrades only in O(n) (better than DIRECT).



  

Stochastic optimizer in Rn with a 
population : simplified CMA-ES

(N. Hansen et al., since 1996, now with A. Auger)

CMA-ES = Covariance Matrix Adaptation Evolution 
Strategy = optimization through sampling and updating of 
a multi-normal distribution.

A fully populated covariance matrix is build : pairwise 
variable interaction learned. Can adapt the step in any 
direction.

The state-of-the-art evolutionary / genetic optimizer for 
continuous variables.



  

flow-chart of CMA-ES

Initializations : m, C, t
max

, µ  , λ

While t < t
max

 do,

Sample N(m,C) --> x1,...,xλ

Calculate f(x1),...,f(xλ) , t = t+λ
Rank : f(x1:λ),...,f(xλ:λ)
Update m and C  with the µ   bests, 

x1:λ ,...,xµ:λ

End while

CMA-ES is an evolution strategy ES-(µ,λ) :

m et C are updated with 
● the best steps (as opposed to points),
● a time cumulation of these best steps.



  

simplified CMA-ES : adapting C2 with 
the last good steps

x i
= m yi

yi∝N 0,C 
i = 1, ... ,

(A. Auger et N. Hansen, 2008)

m∈S , C= I , ccov≈2/n2
Initialization : 

yw =
1
∑i=1



yi : mm yw

sampling

C1−ccovCccov yw yw
T

selection

rank 1 C  update

update m



  

The state-of-the-art  CMA-ES 

(A. Auger and N. Hansen, A restart CMA evolution strategy with 
increasing population size, 2005)

Additional features  :

● Steps weighting,

● Time cumulation of the steps.

● Simultaneous rank 1 and μ  covariance adaptations.

● Use of a global scale factor, C → σ2 C  .
● Restarts with increasing population sizes.

Has been used up to n = 100 continuous variables.

yw =∑i=1



w i y i :



  

Comparison : DIRECT vs. ES-(1+1) 

Sphere function.

ES(1+1) with a constant step size σ =  
0.1, 15 repetitions, coloured lines.
DIRECT : black line.

→ DIRECT does not scale well with ↑ n.

n = 25

n = 5

n = 10
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The Univariate Marginal Density Algorithm (UMDA) 

( Baluja 1994 – as PBIL –  and Mühlenbein 1996)

x∈S ≡ {1,2 , , A}n  (alphabet of cardinality A  )
e.g. {−45o , 0o , 45o , 90o

}
n  (fiber orientations)

e.g. {matl1 ,  , matlA}n  (material choice)

The algorithm is that of a population based stochastic optimization 
(see CMA-ES) with different sampling and updating of pt.

pt  assumes that the variables are independent (drop t ),

p x =∏
i=1

n

pi xi

1 2 ... A
0

0,2

0,4

0,6

pi

xi

pi
A

pi
1

pi
2

∑
j=1

A

pi
j
= 1



  

UMDA (2)

For i=1, n ui ~ U [0,1]

If 0 ≤ ui ≤ pi
1 ⇒ xi=1

If ∑
j=1

k

pi
j
≤ ui ∑

j=1

k1

pi
j
⇒ xi=k

If ∑
j=1

A−1

pi
j
≤ ui ≤ 1 ⇒ xi=A

Sampling :

Learning : 

u

0 p1 p1+p2 ... 1

1 2 Ak

Select the μ best points out of λ  , f x1 : ≤ f  x2 : ≤≤ f x :

pi
j
=

∑
k=1 :

 :

I xi
k
= j 

1
, I  xi

k
= j =1  if xi

k
= j , =0  otherwise

pi
j  is the frequency of j  at position i  in the   bests

pi
j
≥



 1
 (minimum frequency for ergodicity)



  

Application to a laminate frequency problem (1)

maxx f 1 x1 , , x15 , the first eigenfreq. of a simply supported plate
such that 0.48≤ eff x ≤ 0.52

where x i∈{0
o , 15o , , 90o}

the constraint is enforced by 
penalty and creates a narrow 
ridge in the design space

( from Grosset, L.,  Le Riche, R. and Haftka, R.T., A double-distribution statistical 
algorithm for composite laminate optimization, SMO, 2006 )



  

Application to a laminate frequency problem (2)

Compare UMDA to a GA 
(genetic algorithm) and SHC 
(Stochastic Hill Climber)

Reliability = probability of 
finding the optimum at a given 
cost.

UMDA performs fairly well on 
this problem.

Optimum : [904
o /±75o/±602

o/±455
o/±305

o]s



  

Application to a laminate frequency problem (3)

density learned by UMDA 
(2D)

contour lines of the 
penalized objective function



  

Stochastic discrete optimization : learning the 
variables dependencies

More sophisticated discrete optimization methods attempt 
to learn the couplings between variables. For example, with 
pairwise dependencies : 

X
1:n

X
2:n ... X

n:n

p x = p x1 : n p x2 :n∣x1: n p xn : n∣xn−1 : n

Trade-off : richer probabilistic structures better capture the 
objective function landscape but they also have more parameters 
→ need more f evaluations to be learned ( // complex constitutive 
equations ).

MIMIC ( Mutual Information Maximizing Input Clustering ) algorithm : De 
Bonnet, Isbell and Viola, 1997.
BMDA ( Bivariate Marginal Distribution Algorithm ) : Pelikan and 
Muehlenbein, 1999.
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Adding problem specific knowledge to 
optimization problems

Problem specific knowledge can be used to 

● change the formulation of the optimization problem to improve its 
mathematical structure (conditionning, make it quadratic, … ),
 Ex : x ≡ 1/EI  for a displacement of a bended beam,

● decompose the problem into a series of easier subproblems,

● use a low fidelity simulator to capture variables dependencies in 
stochastic optimization,
(implicit equivalent : add specific knowledge to an evolutionary 

algorithm through coding, crossover, mutation choices)

● More importantly : calculate sensitivities (see Franz-Joseph 
Barthold's talk). 



  

Example in composites 
Use of the lamination parameters

Simplifications : fewer V's than fiber angles. Often, the V's are 
taken as continuous.



  

( Liu, Haftka, and Akgün, « Two-level composite wing structural optimization using response 
surfaces », 2000.
Merval, Samuelides and Grihon, « Lagrange-Kuhn-Tucker coordination for multilevel optimization 
of aeronautical structures », 2008. )

Example in composites : Use of lamination 
parameters in problem decomposition

Optimize a composite structure 
made of several assembled panels
by changing each ply orientation

→ many discrete variables

Structure level
Optimize a composite structure 
made of several assembled panels
by changing the lamination 
parameters of each panel

→ few continuous variables

Laminate level
Minimize the distance to target 
lamination parameters
by changing the ply 
orientations

→ few discrete variables

Decomposed problem : Initial problem : 

optimal V's 



  

o
b

je
ct

iv
e 

fu
n

ct
io

n

x, ply orientations v, lamination 
parameters

p(
x)

does not exist

v(x)

Expl : Use lamination parameters to capture 
dependencies in stochastic optimization (1)

( DDOA, Double 
Density Optimization 

Algorithm,
Grosset, Le Riche et 
Haftka, SMO 2006 ) 

p
DDOA

(x) ~ 
p

X
(x).p

V
(v(x))



  

● p
X
(x) and p

V
(v) can be simple densities, without variables couplings (→ 

easy to learn), yet p
DDOA

(x) is a coupled density.

f(x) and selected points p X  x =∏i=1

n
pi  xi p

DDOA
(x)

● One half of the algorithm searches in a low dimension space.
● DDOA can be applied to other problems (use low fidelity model for v).

Expl : Use lamination parameters to capture 
dependencies in stochastic optimization (2)
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