

Derivative free parametric optimization
concepts for material scientists

Rodolphe Le Riche
CNRS and Ecole des Mines de Saint-Etienne

ARCHIMAT 2011 workshop
First International school on architectured

materials, Autrans, France, May 2011

Purpose of this presentation

A short introduction to optimization for material
scientists :

● When is optimization useful ?
● Get oriented in the jungle of optimization algorithms,
● show some basic optimization principles (derivatives
free),
● provide references to state-of-the-art methods,
● where to add problem specific knowledge in tackling
difficult optimization cases.

Goal of parametric numerical optimization

Ex : 15 bars truss, each bar chosen out of 10 profiles
→ 1015 possible trusses. How to choose ?

How to choose ? The modeling, formulation,
optimization steps

1. Have a model, y , (analytical, finite elements, coupled
sub-models …) of the object you need to optimize.
2. Formulate the optimization problem

min
x∈S

f y x

g yx0

3. Try to solve the problem, either analytically (e.g.,
Karush Kuhn and Tucker conditions) or using optimization
algorithms.
[4. Almost never right the first time : go back to 1]

x : optimization variables
f : objective functions

g : optimization constraints
f , g : optimization (performance) criteria

Outline

1. Introduction : examples of optimization
uses in material engineering, general
numerical optimization points, why derivative
free ?

2. Deterministic optimization

3. Stochastic optimization

4. Adding problem specific knowledge

Application examples (1)
Structural design at various scales

macro

meso

micro

x, f and g can
be defined at

any
combination of

scales

Application examples (2) : Multi-disciplinary design

Coupled manufacturing and designCoupled material
design and control

(composite tow fiber placement machine at NLR)

x, f and g concern many disciplines

(from Advanced Ceramics Inc.)

→ more parameters, beyond the scope of mechanics of materials.

Application examples (3)
constitutive behaviour identification

̇ = C ̇ , ; x

minx∈S distance Experiment , Model x

 , internal variables
x , constitutive law parameters

full-field measures

point-wise measures

experience

t

σ , ε
experience

model

model

Outline

1. Introduction : examples of optimization
uses in material engineering, general
numerical optimization points, why derivative
free ?

2. Deterministic optimization

3. Stochastic optimization

4. Adding problem specific knowledge

Analytical optimization

Some optimization problems can be solved analytically or with 1
iteration methods. Expl. quadratic programming problems,
n<1000 :

x∈S⊂ℝn

f x =
1
2

xT H xA xB , H0

g x =C xD

Otherwise, use iterative optimization algorithms, dubbed
« optimizers ».

Optimization programs
An optimizer is an algorithm that iteratively proposes new x's
based on past trials in order to approximate the solution to the
optimization problem

 x(t+1) = Optimizer[x(1),f(x(1)) , … , x(t),f(x(t))]

OS
x(1)

x(1)
f(x(1))

OS
x(2)

x(t)
f(x(t)) x(t+1)

Optimizer Simulator

x

f(y(x)) + (FJB) dfdx(y(x)) + ...

The cost of the optimization is the number of calls to the simulator y
(usually = number of calls to f)

Local vs. global optimization (1)

min
x∈S

f x

local
optimum

x*xl

V xl

f

global
optimum

Here, we focus on

S ⊂ℝn or ℕn or {ℝn1∪ℕn2 }

i.e., continuous or
integer or mixte
optimization.
We don't discuss g.

Local vs. global optimization (2)

Local and global optimizers have different goals, hence
working principles.

Local optimizers use local information (typically gradient
based in Rn) and aim at efficiently finding a neighbouring
optimum.

Global optimizers compromise on efficiency and
exploration of the search space S. Global search is
computationally more costly than local search but is
sometimes needed (large n, periodic and noisy functions).

Composites often need global optimizers

maxi
A11 , longitudinal laminate stiffness

In composite design, there are often local optima.

sequence buckling strength

 9998.19 10394.81

9997.60 10187.93

9976.58 10187.93

902 /±452/902/±45/902/±456s

902/±4522/902/±45 /902/±453s
±45 /904/±45 /902 /±455/902/±45s

Expl., N y /N x=0.5 , length=20 in., width=5 in., graphite-epoxy

because stacking sequences offer an excess in design variables.
Expl :

Global optimization need, 2nd example : optical filters

(after T. Bäck)

minnb., mat., thickn.∫m

M

[Rcalc.−Rtarget]
2 d

filters (material, thickness, numbers)

target

calculated

reflected intensity
w

a
ve le n

g
th

Optical fibers example (cont.)

Distance objective function landscape.
x and y are two thicknesses, z the distance:

→ a local optimizer may get trapped at a local optimum.

Make can make optimizing difficult

local optima
(expl. composites)

difficulties

Ill conditioning

Noise

Calculation cost of f

minx∈S⊂ℝn f x Goal :

Number of
variables, n

Derivative free optimizers

Derivative free optimizers are useful

when gradients, ∇ x f , ∇ x g , are not available,

when gradients do not exist, x∈S⊂ℕn

 or f or g are non differentiable C0
.

When a gradient, an Hessian, … (sensitivity analysis) is
available, use it ! → See Franz-Joseph Barthold's presentation

Outline

1. Introduction

2. Deterministic optimization : local, global.

3. Stochastic optimization

4. Adding problem specific knowledge

A basic (yet fine) local derivative free
algorithm in Rn : Nelder-Mead

Nelder, John A.; R. Mead (1965). "A simplex method for function
minimization".

Principle : a simplex (a polytope of n+1 vertices in n dimensions)
undergoes geometrical transformations to go downhill. It is a « pattern
search method ».

2D example :

(from Simiprof, wikipedia, 2011)

Nelder-Mead (2)

The vertices of the simplex are n+1 points of the search
space where the objective function is evaluated

f x l f xs f xh

The geometrical transformations are :

xh

x s

xl

xh

x s

xl

xh

xs

xl

reflection

expansion

contraction

if
progress

if no
progress

Nelder-Mead (3) : flow chart (hard to read ;-()

Nelder-Mead (4)

Fine up to n=10, does something for you up to n=25.

May converge prematurly (aligned vortices → loss of dimension).

There are other convergent (slightly more expensive) pattern
search methods. Cf. Dolan, E.D.; Lewis, R.M.; Torczon, V.J.
(2003). "On the local convergence of pattern search". SIAM
Journal on Optimization. Expl.:

Recommended local derivative free
optimizers in Rn

NEWUOA, M.J.D. Powell, 2004 : derivative free efficient
optimizer based on a series of quadratic local approximations.
Up to 160 variables.

Improved Nelder-Mead, e.g., GBNM (Globalized and Bounded
Nelder-Mead algo., Luersen and Le Riche, 2004) : bounds on
variables, restarts to avoid degeneracy and make it global,
adaptive penalty for constraints. Up to 25 variables.

Outline

1. Introduction

2. Deterministic optimization : local, global.

3. Stochastic optimization

4. Adding problem specific knowledge

Global optimization : general points

Global optimization algorithms strike a compromise
between an extensive exploration of the search space S
(search in the volume ≠ line search of the gradient) and an
exploitation (or intensification) of already gathered
information to make the search more rapid.

Global optimizers tend to be more costly but more robust
than local optimizers.

Global derivative free deterministic
optimization in Rn : DIRECT

(D.R. Jones et al., 1993)

DIRECT = DIviding RECTangles = a strategy to divide S
into rectangular subregions which balances local and
global search. « Lipschitzian optimization without Lipschitz
constant ».

DIRECT : 2D example (1/3),
Initialization

0.1

Rectangles
[f at center ; largest side ∆] :

1 : [0.1 ; 1]

search space S

1

DIRECT : 2D example (2/3)

0.30.1

0.5

0.7

1.2

Which rectangles should now be divided (so that f is evaluated at
their centers) ?

Rectangles
[center ; largest side ∆] :

1 : [0.1 ; 0.33]
2 : [0.5 ; 0.33]
3 : [0.7 ; 0.33]
4 : [1.2 ; 1.00]
5 : [0.3 ; 1.00]

1

2

3

4 5

The initial rectangle has been divided in thirds (a center stays a
center).

DIRECT : 2D example (3/3)

0.3
0.1

0.5

0.7

1.2

● the best rectangles (low f) ← exploitation, 1.
● the unknown rectangles (largest side) ← exploration, 5.

Rectangles
[center ; largest side

∆] :

1 : [0.1 ; 0.33]
2 : [0.5 ; 0.33]
3 : [0.7 ; 0.33]
4 : [1.2 ; 1.00]
5 : [0.3 ; 1.00]

1

2

3

4 5

DIRECT : multi-objective interpretation

3−13−23−3 1
× 0/2

f

L

f −L×/2

 Lipschitz
constant

divided rect.
if L were
known

rectangles divided by DIRECT (for any L)
= Pareto front of (f, ∆)

(exploitation)

(exploration)

DIRECT : simplified flow chart

Initializations

While t < t
max

 do,

● Find the set of Pareto optimal rectangles, P
● For each rectangle j in P

Divide along the largest sides of j and calculate f
at the new centers

Update the rectangles list, f
min

, x
min

 and t
● End for each
End while

DIRECT : 2D example

(C.A. Baker et
al., 2001)

DIRECT : conclusions

DIRECT converges to the global optimum when t (the number of
calls to f) →∞ because it creates a dense series of points in S.

The determination of the Pareto front (sorting) has an O(t)
algorithmic complexity which is typically negligible w.r.t. the
simulation costs (finite elements ...) .

At constant number of calls to f the accuracy of DIRECT
degrades rapidly with the number of optimization variables n. OK
up to n ≈ 10.

No interaction between the f values at different rectangles explains the
poor scaling in dimension → EGO (Efficient Global Optimization, D.R.
Jones, 1998) is another, more mature deterministic global optimization
method in Rn based on kriging, ok up to n ≈ 30.

n

Outline

1. Introduction

2. Deterministic optimization

3. Stochastic optimization : continuous, discrete.

4. Adding problem specific knowledge

Introduction to stochastic optimization

Random numbers are versatile search engines (work both in Rn and /
or Nn). They can also yield efficient methods.

Let pt(x) denote the probability density function of x at iteration t (e.g.,
after t evaluations of f). It represents the belief at t that the optimum
x* is at x.

How to « sample pt(x) » once (Scilab notation) ?
● if x is uniform between m and M, X ~ U[m,M], call

x = m + rand(n,1).*(M-m)
● if x is (multi-)Gaussian with mean m and covariance matrix C, X ~
N(m,C),call

x = m + grand(1,'mn',0,C)

Flow chart of a general stochastic optimizer

● Initialize t and pt(x)

● Sample xt+1 ~ pt(x)

● Calculate f(xt+1)

● Update the distribution

 pt+1(x) = Update(x1, f(x1), … , xt+1, f(xt+1))
or more often pt+1(x) = Update(pt(x) , xt+1, f(xt+1))

● Stop or [t = t+1 and go back to Sample]

A simple example in Rn : ES-(1+1)

Initializations : x, f(x), m, C, t
max

.

While t < t
max

 do,

Sample N(m,C) --> x'
Calculate f(x') , t = t+1
If f(x')<f(x), x = x' , f(x) = f(x') Endif
Update m (e.g., m=x) and C

End while

N(m,C)

Normal law

Adapting the step size (C2) is important

(A. Auger et N.
Hansen, 2008)

Above isotropic ES(1+1) : C = σ2 I , σ is the step size.
With an optimal step size (≈ ║x║/ n) on the sphere function, performance
degrades only in O(n) (better than DIRECT).

Stochastic optimizer in Rn with a
population : simplified CMA-ES

(N. Hansen et al., since 1996, now with A. Auger)

CMA-ES = Covariance Matrix Adaptation Evolution
Strategy = optimization through sampling and updating of
a multi-normal distribution.

A fully populated covariance matrix is build : pairwise
variable interaction learned. Can adapt the step in any
direction.

The state-of-the-art evolutionary / genetic optimizer for
continuous variables.

flow-chart of CMA-ES

Initializations : m, C, t
max

, µ , λ

While t < t
max

 do,

Sample N(m,C) --> x1,...,xλ

Calculate f(x1),...,f(xλ) , t = t+λ
Rank : f(x1:λ),...,f(xλ:λ)
Update m and C with the µ bests,

x1:λ ,...,xµ:λ

End while

CMA-ES is an evolution strategy ES-(µ,λ) :

m et C are updated with
● the best steps (as opposed to points),
● a time cumulation of these best steps.

simplified CMA-ES : adapting C2 with
the last good steps

x i
= m yi

yi∝N 0,C
i = 1, ... ,

(A. Auger et N. Hansen, 2008)

m∈S , C= I , ccov≈2/n2
Initialization :

yw =
1
∑i=1

yi : mm yw

sampling

C1−ccovCccov yw yw
T

selection

rank 1 C update

update m

The state-of-the-art CMA-ES

(A. Auger and N. Hansen, A restart CMA evolution strategy with
increasing population size, 2005)

Additional features :

● Steps weighting,

● Time cumulation of the steps.

● Simultaneous rank 1 and μ covariance adaptations.

● Use of a global scale factor, C → σ2 C .
● Restarts with increasing population sizes.

Has been used up to n = 100 continuous variables.

yw =∑i=1

w i y i :

Comparison : DIRECT vs. ES-(1+1)

Sphere function.

ES(1+1) with a constant step size σ =
0.1, 15 repetitions, coloured lines.
DIRECT : black line.

→ DIRECT does not scale well with ↑ n.

n = 25

n = 5

n = 10

Outline

1. Introduction

2. Deterministic optimization

3. Stochastic optimization : continuous, discrete.

4. Adding problem specific knowledge

The Univariate Marginal Density Algorithm (UMDA)

(Baluja 1994 – as PBIL – and Mühlenbein 1996)

x∈S ≡ {1,2 , , A}n (alphabet of cardinality A)
e.g. {−45o , 0o , 45o , 90o

}
n (fiber orientations)

e.g. {matl1 , , matlA}n (material choice)

The algorithm is that of a population based stochastic optimization
(see CMA-ES) with different sampling and updating of pt.

pt assumes that the variables are independent (drop t),

p x =∏
i=1

n

pi xi

1 2 ... A
0

0,2

0,4

0,6

pi

xi

pi
A

pi
1

pi
2

∑
j=1

A

pi
j
= 1

UMDA (2)

For i=1, n ui ~ U [0,1]

If 0 ≤ ui ≤ pi
1 ⇒ xi=1

If ∑
j=1

k

pi
j
≤ ui ∑

j=1

k1

pi
j
⇒ xi=k

If ∑
j=1

A−1

pi
j
≤ ui ≤ 1 ⇒ xi=A

Sampling :

Learning :

u

0 p1 p1+p2 ... 1

1 2 Ak

Select the μ best points out of λ , f x1 : ≤ f x2 : ≤≤ f x :

pi
j
=

∑
k=1 :

 :

I xi
k
= j

1
, I xi

k
= j =1 if xi

k
= j , =0 otherwise

pi
j is the frequency of j at position i in the bests

pi
j
≥

 1
 (minimum frequency for ergodicity)

Application to a laminate frequency problem (1)

maxx f 1 x1 , , x15 , the first eigenfreq. of a simply supported plate
such that 0.48≤ eff x ≤ 0.52

where x i∈{0
o , 15o , , 90o}

the constraint is enforced by
penalty and creates a narrow
ridge in the design space

(from Grosset, L., Le Riche, R. and Haftka, R.T., A double-distribution statistical
algorithm for composite laminate optimization, SMO, 2006)

Application to a laminate frequency problem (2)

Compare UMDA to a GA
(genetic algorithm) and SHC
(Stochastic Hill Climber)

Reliability = probability of
finding the optimum at a given
cost.

UMDA performs fairly well on
this problem.

Optimum : [904
o /±75o/±602

o/±455
o/±305

o]s

Application to a laminate frequency problem (3)

density learned by UMDA
(2D)

contour lines of the
penalized objective function

Stochastic discrete optimization : learning the
variables dependencies

More sophisticated discrete optimization methods attempt
to learn the couplings between variables. For example, with
pairwise dependencies :

X
1:n

X
2:n ... X

n:n

p x = p x1 : n p x2 :n∣x1: n p xn : n∣xn−1 : n

Trade-off : richer probabilistic structures better capture the
objective function landscape but they also have more parameters
→ need more f evaluations to be learned (// complex constitutive
equations).

MIMIC (Mutual Information Maximizing Input Clustering) algorithm : De
Bonnet, Isbell and Viola, 1997.
BMDA (Bivariate Marginal Distribution Algorithm) : Pelikan and
Muehlenbein, 1999.

Outline

1. Introduction

2. Deterministic optimization

3. Stochastic optimization

4. Adding problem specific knowledge

Adding problem specific knowledge to
optimization problems

Problem specific knowledge can be used to

● change the formulation of the optimization problem to improve its
mathematical structure (conditionning, make it quadratic, …),
 Ex : x ≡ 1/EI for a displacement of a bended beam,

● decompose the problem into a series of easier subproblems,

● use a low fidelity simulator to capture variables dependencies in
stochastic optimization,
(implicit equivalent : add specific knowledge to an evolutionary

algorithm through coding, crossover, mutation choices)

● More importantly : calculate sensitivities (see Franz-Joseph
Barthold's talk).

Example in composites
Use of the lamination parameters

Simplifications : fewer V's than fiber angles. Often, the V's are
taken as continuous.

(Liu, Haftka, and Akgün, « Two-level composite wing structural optimization using response
surfaces », 2000.
Merval, Samuelides and Grihon, « Lagrange-Kuhn-Tucker coordination for multilevel optimization
of aeronautical structures », 2008.)

Example in composites : Use of lamination
parameters in problem decomposition

Optimize a composite structure
made of several assembled panels
by changing each ply orientation

→ many discrete variables

Structure level
Optimize a composite structure
made of several assembled panels
by changing the lamination
parameters of each panel

→ few continuous variables

Laminate level
Minimize the distance to target
lamination parameters
by changing the ply
orientations

→ few discrete variables

Decomposed problem : Initial problem :

optimal V's

o
b

je
ct

iv
e

fu
n

ct
io

n

x, ply orientations v, lamination
parameters

p(
x)

does not exist

v(x)

Expl : Use lamination parameters to capture
dependencies in stochastic optimization (1)

(DDOA, Double
Density Optimization

Algorithm,
Grosset, Le Riche et
Haftka, SMO 2006)

p
DDOA

(x) ~
p

X
(x).p

V
(v(x))

● p
X
(x) and p

V
(v) can be simple densities, without variables couplings (→

easy to learn), yet p
DDOA

(x) is a coupled density.

f(x) and selected points p X x =∏i=1

n
pi xi p

DDOA
(x)

● One half of the algorithm searches in a low dimension space.
● DDOA can be applied to other problems (use low fidelity model for v).

Expl : Use lamination parameters to capture
dependencies in stochastic optimization (2)

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57

