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SUMMARY 

The principal components analysis is applied to simulated full field displacement maps 
of 4569 measurement points thus allowing representation of any field within a certain 
domain as a linear combination of five basis vectors without losing significant 
information. A dimensionality reduction from 4569 to only 5 is thus achieved.    
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INTRODUCTION 

Optical full field measurement methods for displacements or strains typically provide 
large quantities of information since each pixel of the image represents a measurement 
point. This has the great advantage of allowing to measure field heterogeneities. The 
sheer size of the data can however also pose problems in some situations.  

Such a situation can arise if Bayesian identification needs to be applied to full field 
measurements. Bayesian identification of the elastic constants of a material differs from 
the usual identification schemes (such as finite element model updating) by accounting 
for uncertainties in the problems and also estimating the uncertainty in the identified 
material properties. Due to its statistical nature it handles probability distribution 
functions. In the case of full field methods we can have between thousands and millions 
of measurement points. Thousands-dimensional joint probability density functions for 
the measurements are however out of the realm of what can be numerically handled. A 
reduced dimensional representation of the measurements would thus be useful. 

A possible method for achieving such a dimensionality reduction is the principal 
components analysis (PCA). This method has its origin in statistical analysis and 
depending on the field of application it is also known as proper orthogonal 
decomposition (POD) or the Karhunen-Loeve expansion. 

The proper orthogonal decomposition method was initially used in computational fluid 
dynamics to represent complex, turbulent flows [1]. For a review of different uses of 
POD in computational fluid dynamics the reader can refer to [2].Other uses of POD 
include representing the structural response of non linear finite element under stochastic 



loading [3] or real-time nonlinear mechanical modeling for interactive design and 
manufacturing [4]. POD was also applied to a multidisciplinary optimization problem of 
an aircraft wing [5]. 

The POD method seeks a reduced dimensional basis for the representation of the 
response (full fields in our case). This basis is constructed from a set of fields (often 
called snapshots) obtained with input parameters within a certain domain. The 
decomposition ensures that any field within the corresponding domain can be written as 
a linear combination of fixed POD fields (usually called POD modes). The accuracy 
increases with the number of POD modes used for the field representation. Typically we 
seek to represent the fields as a linear combination of less than a dozen POD modes 
while keeping reasonable accuracy in the reduced dimensional representation. It is 
important to note that for a full field with thousand measurement points this represents a 
dimensionality reduction in the field representation of one thousand to only a few 
dozen. The POD method can potentially allow to achieve this goal without loosing any 
significant amount of information.  

The rest of the paper is organized as follows. In a first section we present the theoretical 
basis of proper orthogonal decomposition. We then present the simulated experiment for 
obtaining full fields. We then describe the dimensionality reduction problem applied to 
our specific case. Finally we present the proper orthogonal decomposition results. 

PROPER ORTHOGONAL DECOMPOSITION 

Let us consider a set of N vectors {Ui}i=1..N. A vector i nU ∈ , also called snapshot, can 
be the vector representation of displacement field for example. The aim of the proper 
orthogonal decomposition (POD) method is to construct an optimal reduced 
dimensional basis for the representation of the snapshots. For the POD method to work, 
it is necessary that the snapshot vectors have zero mean. If this is not the case the mean 
value needs to be subtracted from each vector.  

We denote { } 1..i i K=
Φ  the vectors of the orthogonal basis of the reduced dimensional 

representation of the snapshots. The POD method seeks to find the iΦ  that minimize 
the representation error: 
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Because { } 1..i i K=
Φ  is an orthogonal basis the coefficients αi,k is given by the orthogonal 

projection of the snapshots onto the basis vectors: 
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The achieved reduction in dimension is from N to K. The truncation order K needs to be 
selected such as to maintain a reasonably small error in the representations 

i
U  of  Ui. 

Selecting such a K is always problem specific. 

The POD approach provides however a construction method for obtaining the optimal 
basis vectors that minimize the error defined in Eq. 1. This means that for a given 
truncation order we cannot find any other basis that better represents the snapshots 
subspace. 

The basis { } 1..i i K=
Φ  is constructed using the following matrix: 
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The vectors { } 1..i i K=
Φ  are then obtained by the singular values decomposition of X, or 

equivalently by calculating the eigenvectors of the matrix XXT . The singular values 
decomposition allows writing that: 

TX = ΦΣΛ           (5) 

where Φ  is the matrix of the column vectors iΦ . Standard singular value 
decomposition routines (such as LAPACK [6]) typically provide the matrix Φ . 

In the rest of the paper we will apply the POD decomposition to full field displacement 
measurements. 

A truncation error criterion can be obtained by the following procedure. This criterion ε 
is defined for the sum of the error norms as shown in Equation 6. 
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, where σi are the diagonal terms of matrix Σ. 

 

SIMULATED EXPERIMENT 

Experiment 

The experiment we model is a tensile test on a composite plate with a hole. The 
laminate is made of graphite/epoxy with a stacking sequence of [45,-45,0]s. The plate 
has the dimensions given in Figure 1. The applied tensile force is 600 N. 

 



 
Figure 1: Specimen geometry. The specimen material is graphite/epoxy and the stacking 

sequence [45,-45,0]s. The tensile force is 600 N. 
 
 
 

Numerical model 

The previous experiment is modeled using Abaqus® finite element software. A total of 
8020 S4R elements were used. The virtual measurement is assumed to take place on a 
reference area of 2 mm x 2 mm at the center of the plate. This would be a typical area of 
an optical full field measurement (Moiré interferometry for example). The finite 
element mesh in the area of interest is represented in Figure 2 and the virtual 
measurements area highlighted in red. 

To illustrate the applicability of the dimensionality reduction method we used here finite 
element fields, thus the term virtual measurement. Note however that this does not mean 
that only finite element fields could be represented in the reduced dimensional space. 
Once the POD modes are determined, measured fields can very well be projected onto 
these modes and expressed in the corresponding basis. This can even have some 
advantages, such as noise filtering as we will mention later.  

 

 
Figure 2: Finite element mesh. The area of the virtual measurements (2 mm x 2 mm) is 

highlighted. 

 



DIMENSIONALITY REDUCTION PROBLEM 

Problem statement 

The general framework of the problem is in our case the following. We vary a certain 
number of model parameters such as elastic constants or plate dimensions and virtually 
measure each time the corresponding full field. The virtual measurements are 
considered here to be the displacement values at the 4569 nodes within the reference 
area (see Fig. 2).  

If such a virtual measurement needs to be repeated a large number of times (for 
statistical sampling for example) it is not practical to describe the fields by the value of 
each pixel. A major reason is because if statistical methods (such as Bayesian 
identification) need to be used on the fields, thousands dimensional probability density 
functions are far outside the realm of what the statistical methods can handle.  

The problem statement can then be formulated as follows. Can we find a reduced 
dimensional representation of the full fields for whatever combination of input 
parameters (elastic constants, plate dimensions in our case) within a certain domain?   

To address this problem we propose to use the proper orthogonal decomposition method 
described in the first section. 

POD implementation 

For our plate with a hole virtual experiment we are interested in accounting for 
variations of the following parameters: ply elastic constants E1, E2, ν12, G12 and ply 
thickness t. Accounting for variations in the elastic constants is typically of interest in 
material properties identification problems. We added here the ply thickness to illustrate 
a typical case for Bayesian identification. Bayesian identification allows to identify the 
elastic constants while accounting for other sources of uncertainty. The ply thickness 
was considered here to be one of such sources of uncertainty that potentially affects the 
identification. We will not carry out the Bayesian identification itself in this paper but 
for additional details on this method the reader can refer to [7],[8]. 

We are interested in variations of the parameters E1, E2, ν12, G12 and t within the bounds 
given in Table 1. Again these could be typical values for an identification problem.   

 

Table 1: Bounds on the input parameters of interest. 

Parameter E1 (GPa) E2 (GPa) ν12 G12 (GPa) t (mm) 

Lower bound 126 7 0.189 3.5 0.12 

Upper bound 234 13 0.351 6.5 0.18 

 

We obtain the snapshots required for the POD approach by sampling 200 points within 
the bounds of Table 1. The points are obtained by Latin hypercube sampling, which 
consists in obtaining the 200 sample points by dividing the range of each parameter into 
200 sections of equal marginal probability 1/200 and sampling once from each section. 



Latin hypercube sampling typically ensures that the points are reasonably well 
distributed in the entire space.  

At each of the 200 sampled points we run the finite element analysis and take a virtual 
full field measurement, which consists in the U and V displacement fields. Each of the 
200 virtual measurements for U (same for V) is stored as a column vector and represents 
one snapshot used for the POD decomposition. The virtual measurement area covers 
4569 finite element nodes so we obtain snapshots vectors of size 4569 x 1. The 
snapshots matrix X has then a size of 4569 x 200. Note that as mentioned in the POD 
theory section the snapshots need to have zero mean. In our case this was true for the U 
field but not for the V field, so we needed to subtract the mean value of each snapshot as 
shown in Eq. 7. 
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The POD modes of the 200 fields are then calculated using the singular value 
decomposition as shown in Equation 5. 

Two snapshots (snapshot 1 and 199) that led to substantially different fields are 
illustrated next. The input parameters of the two snapshots are provided in Table 2. 

 

Table 2: Input parameters for snapshots 1 and 199. 

Parameter E1 (GPa) E2 (GPa) ν12 G12 (GPa) t (mm) 

Snapshot 1 202.2 10.84 0.2142 4.989 0.1312 

Snapshot 199 233.1 9.915 0.2153 5.952 0.1445 

 

The fields of snapshot 1 are represented in Figure 3. Snapshot 199 has displacement and 
strain fields that are similar to those of snapshot 1. Among the notable differences are 
Max(U)= 0.0148 mm and Max(V)= 0.0105 mm for snapshot 199. 

 

POD RESULTS 

POD modes 

In total we obtained 200 POD modes. The first six are represented graphically in 
Figures 4 and 5. Note that the POD decomposition is applied twice, once for the U 
fields and once for the V fields, thus the different modes for the two displacement 
components.  



In Figure 6 we also provide the strain equivalents of the POD modes. Note that these are 
not calculated using the POD decomposition of the strain fields. Instead the 
displacement POD modes are derived to obtain the strain equivalents of the POD 
modes. In this study we are interested in the displacements POD decomposition so the 
strain equivalent POD modes are provided here mainly to facilitate understanding and 
qualitative comparison of the results. If one would work with strain fields rather than 
displacement fields than he should carry out the POD decomposition directly on the 
finite element strains which would lead to more accurate results.  

In order to differentiate the displacement POD modes two additional steps were 
required. The displacements were interpolated on a 256 x 256 grid using cubic 
polynomials (Matlab gridata command). They were then numerically differentiated 
pixel by pixel. These two steps can introduce numerical derivation artifacts (as we will 
see later) so they are not advised if accurate strain POD modes are sought.  

Note that we stop graphical representation at 5 strain equivalent POD modes (Figure 6) 
precisely because of numerical artifacts. For mode 5 some artifacts can already be 
noticed.  

POD truncation 

To recall, the POD decomposition allows to represent a displacement field obtained 
with any combination of input parameters within the bounds of Table 1 as a linear 
combination of the POD modes.  

Even though we obtained 200 POD modes, typically substantially fewer POD modes 
are required to represent the fields with reasonable accuracy. In the present section we 
seek the truncation order that still allows keeping reasonable accuracy. Table 3 provides 
the truncation error criterion defined in Equation 6.  

 

Table 3: Error norm truncation criterion. 

K 2 3 4 5 

ε for U fields 2.439 10-7 4.701 10-9 7.280 10-11 1.211 10-11 

ε for V fields 1.054 10-6 2.900 10-9 4.136 10-10 3.517 10-11 

 

Since ε is an overall error criterion, it is not easy to interpret in terms of error 
localization. Accordingly we will also seek to visualize what happens with the errors for 
individual snapshots. Figure 7 provides the truncation error maps in the reconstruction 
of snapshot 1 when using only the first 3, 4 and 5 POD modes. Similarly for snapshot 
199 in Figure 8. We can note that already with 3 modes the maximum displacement 
error in the field is about 1000 times less than the maximum value of the field. The error 
further decreases by one to two orders of magnitudes when reaching 5 modes. 
Furthermore we can note that with 5 POD modes we start seeing artifacts in the error 
maps that are not likely to have a physical meaning. Since for the displacement maps we 
don’t use any numerical derivation these artifacts are likely to be due to the finite 



element discretization. We also note a slight asymmetry in the artifacts of the V 
displacement errors. This asymmetry is likely due to a slight asymmetry of the mesh. 
Indeed the finite element V displacements have their origin at the edge of the plate. In 
order to carry out the POD decomposition we had to subtract the mean values from the 
snapshots. In case of slight mesh dissymmetry the numerical estimate of the mean might 
be slightly off the true value which causes a dissymmetry in the POD modes and thus 
subsequent error maps. Note that the dissymmetry of the mesh is quite small (see Figure 
2). The effects of the dissymmetry are noticeable only from mode 5 on, meaning that 
their corresponding error is of the same order of as the discretization error.  

Finally in Figures 9 and 10 we provide the strain equivalent truncation error. This is to 
check that the POD modes have not missed any important features that have small 
characteristics on the displacement fields but larger characteristics on the strain maps. 
Note that the equivalent strain error maps were again obtained using numerical 
derivation thus exhibit more numerical artifacts. We note however that the same trend 
as for the displacements is seen as far as truncation error.  

Truncating at K=5 means that the POD decomposition achieved a dimensionality 
reduction from 4569 to 5. The error maps show that this is achieved without loosing any 
significant displacement information. It is important to note that the obtained reduction 
does not depend on the number of measured points (4569 here). The reduction relies on 
expressing the fields as a linear combination of the determined POD modes. Whether 
describing each field and POD mode using 4569 or 1 Million points is irrelevant to the 
fact the field’s variations can be expressed with good accuracy as a linear combination 
of only five modes.  

Before concluding we also want to draw the reader’s attention on the fact that the POD 
reduction acts also as a filter. This can have beneficial effects in some situations. The 
filter effect is obvious when analyzing the truncation error maps. When truncating at 
K=4 for example, the corresponding field reconstruction will obviously not include any 
of the higher modes. If the higher modes start representing mainly finite element 
discretization errors, then truncating at K=4 will filter out these errors. A different 
filtering can arise when constructing the POD modes using finite element results, then 
projecting noisy fields (such as actual measurements) on the POD basis. The projected 
representation will then filter out the noise. A more detailed investigation of the filtering 
effect will be carried out in future studies. 

 

CONCLUSIONS 

In the present article we were interested in a reduced dimensional representation of full 
field displacement maps from a plate with a hole. For our problem we were interested in 
the variations of five parameters (four elastic constants and one plate dimension) within 
+/-30% bounds. We want to represent any field stemming from within this domain in a 
reduced dimensional basis of only a few vectors (less than a dozen). This is achieved by 
using the proper orthogonal decomposition (POD) method. We used virtual experiments 
based on finite element results to calculate the POD modes required for the reduced 
dimensional representation. We then showed that using only the first five POD modes 
allows a representation of two of the field snapshots with an error of less than 0.1%. We 
thus achieved in our case a dimensionality reduction of 4569 to 5 without loosing any 



significant information in the field’s representation. If required much higher reductions 
are possible. 
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Figure 3: Displacement and strain maps for snapshot 1 

 



 
POD modes for U displacements 
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Figure 4: First six POD modes for U displacement fields 



 
POD modes for V displacements 
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Figure 5: First six POD modes for V displacement fields 
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Figure 6: First five strain equivalent POD modes 

 



 

K=3 

 

 

 

Max error: 8.991e-007 mm Max error: 6.329e-007 mm 

K=4 

 

 

 

Max error: 9.479e-008 mm Max error: 2.526e-007 mm 

K=5 

 

 

 

Max error: 1.698e-008 mm Max error: 3.132e-008 mm 

Figure 7: Displacements truncation error in snapshot 1 using 3, 4 and 5 modes. The 
maximum error can be compared to the maximum of the U and V fields, Max(U) = 

0.0101 mm, Max(V)= 0.00806 mm. 



 

K=3 

 

 

 

Max error: 1.353e-006 mm Max error: 1.552e-006 mm 

K=4 

 

 

 

Max error: 6.929e-007 mm Max error: 1.355e-006 mm 

K=5 

 

 

 

Max error: 1.623e-007 mm Max error: 1.257e-007 mm 

Figure 8: Displacements truncation error in snapshot 199 using 3, 4 and 5 modes. The 
maximum error can be compared to the maximum of the U and V fields, Max(U)= 

0.0148 mm, Max(V)= 0.0105 mm. 
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Max error: 1.397e-006 Max error: 6.728e-007 Max error: 8.579e-007 

K=4 

 

 

 

 

 

Max error: 1.567e-007 Max error: 3.119e-007 Max error: 1.201e-007 

K=5 

 

 

 

 

 

Max error: 2.328e-008 Max error: 1.206e-007 Max error: 4.482e-008 

Figure 9: Strain equivalent truncation error in snapshot 1 using 3, 4 and 5 modes. 

 



 
Snapshot 199 

K=3  

 

 

 

 

 

Max error: 1.377e-006 Max error: 1.007e-006 Max error: 1.097e-006 

K=4 

 

 

 

 

 

Max error: 1.138e-006 Max error: 1.082e-006 Max error: 4.508e-007 

K=5 

 

 

 

 

 

Max error: 2.683e-007 Max error: 2.589e-007 Max error: 1.689e-007 

Figure 10: Strain equivalent truncation error in snapshot 199 using 3, 4 and 5 modes 
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