

Some research results of the DICE project

http://www.dice-consortium.fr/

L. Carraro¹, O. Roustant²

¹ Telecom St-Etienne, France
 ² Ecole des Mines de St-Etienne, France

14/07/2010

1 - The DICE project at a glance

- Organization and partners
- Scientific production and R packages

2 - Overview of the methodological issues

- Spotlight on 9 topics
- 3 Focus I: Construction of Space-Filling Designs
- 4 Focus II: Approximation of a target region

DICE project - The participants

Academic participants

Industria

partners

- <u>Mines St-Etienne (ARMINES/3MI size ≈ 5)</u> PROJ. LEADER
- Université Paul Cézanne (LMRE Pr. Michelle Sergent)
- Université d'Orsay (Pr. Georges Oppenheim)
- Université Joseph Fourier (Pr. Anestis Antoniadis)

- TOTAL petroleum
- EDF electricity, nuclear engineering
- IRSN nuclear engineering
- Renault automotive
 - ONERA aerospatial

DICE project - General description

- 3 years project Dec 2006 to Dec 2009
- Topic: analysis of time-consuming computer codes
- Sequenced in 6-months research periods
- Steering committee (2 days)
 - I.5 days: presentation of scientific results
 - 0.5 days: organization & case studies def.
- Ticket for each "industrial" partner

DICE project - Outputs (1/2)

Defended PhD thesis

- J. Franco, research engineer at Total
 - Keywords: design of computer experiments, SFDs
- D. Ginsbourger, ass. Prof. at Bern University
 - Keywords: metamodelling, Kriging-based optimization
- V. Picheny, post-doc. at Ecole Centrale de Paris
 - Keywords: metamodelling, Reliability

Outstanding:

- B. Gauthier, EMSE, started in 2007
 - Keywords: RKHS, Continuous constraints
- N. Durrande, EMSE, started in 2008
 - Keywords: Dimension reduction, Additive functions, Kernels

DICE project – Outputs (2/2)

- ≈ 10 publications
- 30 internal research reports restricted access
- 4 R packages
 - DiceDesign, DiceKriging, DiceOptim, DiceEval
 - Now published on CRAN, <u>http://cran.r-project.org/</u>
 - Supplementary materials
 - General presentation in preparation
 - Vignette for DiceKriging&DiceOptim, www.emse.fr/~roustant

DICE project - "Closing" conference

• At least another conference dedicated only to computer experiments!

Link: <u>http://www.emse.fr/enbis-emse2009/</u>

DICE project – Publications list (1/3)

1. Sergent M., Dupuy D., Corre B., Clayes-Bruno M., Comparaison de méthodes de criblage pour la simulation numérique, HAL,

http://hal.archives-ouvertes.fr/inria-00386602/fr/

- 2. Franco J., Bay X., Dupuy D. et Corre B. (2008), Planification d'expériences numériques à partir du processus ponctuel de Strauss, HAL, http://hal.archives-ouvertes.fr/hal-00260701/fr/
- 3. Ginsbourger D., Dupuy D., Badea A., Roustant O. et Carraro L. (2009), A note on the choice and the estimation of Kriging models for the analysis of deterministic
 - computer experiments, *Applied Stochastic Models for Business and Industry*, **25** (2), 115–131.
- Ginsbourger D., Helbert C. et Carraro L. (2008), Discrete mixtures of kernels for Kriging-based optimization, *Quality and Reliability Engineering International*, 24 (6), 681–691.
- 5. Ginsbourger D., Le Riche R. et Carraro L., A Multi-points Criterion for Deterministic Parallel Global Optimization based on Gaussian Processes, *Journal of Global Optimization*.

DICE project – Publications list (2/3)

- 6. Helbert C., Dupuy D. et Carraro L. (2009), Assessment of uncertainty in computer experiments : from Universal to Bayesian Kriging, *Applied Stochastic Models for Business and Industry*, **25**, 99–113.
- 7. Picheny V., Ginsbourger D., Roustant O., Haftka R.T. et Kim, N.–H., Adaptive Designs of Experiments for Accurate Approximation of Target Regions, to appear in *Journal of Mechanical Design*.
- 8. Ginsbourger D., Bay X. et Carraro L., Noyaux de covariance pour le Krigeage de fonctions symétriques, to appear in *C. R. Acad. Sci. Paris, section Maths*.
- 9. Pujol G. (2009), Simplex-based screening designs for estimating metamodels, *Reliability Engineering and System Safety*, 94, 1156–1160.
- Roustant O., Franco J., Carraro L. et Jourdan A. (2010), A radial scanning statistic for selecting space-filling designs in computer experiments, in A. Gio- vagnoli, A.C. Atkinson, B. Torsney (éditeurs) et C. May (editeur) "mODa 9 – Advances in Model-Oriented Design and Analysis, Contributions to statistics", Springer (Physica-Verlag), p. 189–196.

DICE project – Publications list (3/3)

Submitted or in preparation

J. Franco, X. Bay, B. Corre and D. Dupuy, "Strauss Processes: A new approach in Computer Experiments"

D. Dupuy, C. Helbert, J. Franco, "DiceDesign and DiceEval: new R packages for Design and Analysis of Computer Experiments." In preparation.

O. Roustant, D. Ginsbourger, Y. Deville, "DiceKriging, DiceOptim: two R packages for the analysis of computer experiments by kriging-based metamodelling and optimization", submitted to Journal of Statistical Software,

http://hal.archives-ouvertes.fr/hal-00495766/fr/

General overview

General overview – Kriging-based Optimization

• Extension of EGO method for parallel computing

- EGO method: EI criterion with analytical gradient, EI maximization with a genetic algorithm
- Parallel computing: Constant liar heuristic, multipoints EI

3 iterations of Constant Liar with 8 parallel searches

Related package: DiceOptim

Scientific production. R Package « DiceOptim », D. Ginsbourger thesis (part I & III), 1 deliverable, 2 publications ([4], [5]).

General overview - Uncertainty propagation

- Uncertainty propagation in a Bayesian framework
- Bayesian interpretation of Universal Kriging

- UK formulas can be obtained assuming an improper uniform prior for beta... but constant variance and correlation
- Get informative priors from a degraded simulator. Test and comparison on a 3D case study

Scientific production. 1 deliverable, 1 publication ([6])

General overview - Design of experiments (1)

 Construction of space-filling designs for a first investigation with Strauss point processes

UCM 2010 – 11-14 July – Some research results of the DICE project – L. Carraro, O. Roustant

General overview – Design of experiments (2)

- Evaluation and selection of SFDs designs with the Radial Scanning Statistic
 - Fact: dimension reduction techniques -> variables of the form $\beta'x$ -> we want more than good properties onto marginals
 - Aim: check <u>automatically</u> good properties of SFDs onto <u>oblique</u> directions

General overview - Design of experiments (2)

- Evaluation and selection of SFDs designs with the Radial Scanning Statistic
 - Underlying maths: law of a sum of uniforms, GOF tests for uniformity based on spacings

UCM 2010 – 11-14 July – Some research results of the DICE project – L. Carraro, O. Roustant

General overview - Design of experiments (2)

Evaluation and selection of SFDs designs with the Radial Scanning Statistic

Comparison of 80-point 8D SFDs

Design type ^a	Statistic value ^b
Uniform	0.039 (0.003)
Maximin Latin hypercube	0.048
Audze-Eglais Latin hypercube	0.037
Halton sequence	0.244
Faure sequence	0.161
Sobol sequence	0.101
Sobol sequence, with Owen scrambling	0.041 (0.006)
Sobol sequence, with Faure-Tezuka scrambling	0.088 (0.010)
Sobol sequence, with Owen + Faure-Tezuka scrambling	0.041 (0.006)
Strauss	0.040 (0.004)

 Table 1 Worst value of Greenwood statistic for 8-dimensional SFDs of size 80

General overview - Design of experiments (3)

- Adaptive designs for the approximation of a target region
 - -> see focus II

Scientific production. R package « DiceDesign », J. Franco thesis, V. Picheny thesis (chapter 5), 1 deliverable, 3 publications ([2], [7], [10])

- Comparison of some famous metamodels
- Various case studies (mostly internal)
 - Kriging
 - Linear regression
 - MARS, polyMARS
 - Neural networks
 - Additive models
 - Case studies for ddimensional problems (1≤d≤30)

Related packages: DiceKriging, DiceEval

Case of stochastic simulators

- Adaptation (and implementation) of Kriging for noisy observations
- First answer to the question: given a total budget, how do we distribute runs?

Related package: DiceKriging

UCM 2010 – 11-14 July – Some research results of the DICE project – L. Carraro, O. Roustant

- Taking into account additional information
 - Example: symmetries with a suitable kernel

Benchmark paramétrique de réseau serré de crayons

21/N UCM 2010 – 11-14 July – Some research results of the DICE project – L. Carraro, O. Roustant

RCF

• Taking into account additional information

Example: symmetries with a suitable kernel

Gaussian covariance, 9-point design – IMSE over a 21-point test design: 820.93

Taking into account additional information

Example: symmetries with a suitable kernel

Symmeterized Gaussian covariance, 9-point design – IMSE : 330.26

Scientific production. R packages DiceEval & DiceKriging, thesis: D. Ginsbourger (part II) & V. Picheny (chapter 6), B. Gauthier, N. Durrande, 2 deliverables, 2 publications ([3], [8]).

UCM 2010 – 11-14 July – Some research results of the DICE project – L. Carraro, O. Roustant

Taking into account additional information
The underlying maths

Symmeterized Gaussian covariance, 9-point design - IMSE : 330.26

UCM 2010 – 11-14 July – Some research results of the DICE project – L. Carraro, O. Roustant

General overview – Screening & Sensitivity Analys.

• A bibliography study + An original method

Simplex-based screening designs

- Few model assumptions (in the same spirit as Morris) â¹⁰⁰⁻
- The design can be re-used for modeling (the sample size does 50not collapse in projection onto subspaces)

 x_2 150 x_1 $\hat{\mu}^* = 80$ 2040 60 100

Scientific production. 2 deliverables, 2 publications ([1], [9]).

0

• Focus I

Construction of Space-Filling Designs

Strauss designs – Objectives

• First investigation of a costly simulator

Space Filling Designs

• Good behavior on projections

Randomness reduces « aliasing » phenomenons

Construction of designs with a fixed number of experiments

• e.g. Wooton, Sergent, Phan-Tan-Luu designs

Strauss designs – Algorithm and example

• Initial design : 5 points in the unit square [0,1]²

Strauss designs – Example, first iteration

 $n(S_{\chi})$ is the number of points in a ball of radius R centered on X.

Strauss designs – Example, after first iteration

Strauss designs - Example, second iteration

Strauss designs – Example, after 5 iterations

Here, only two points have been changed.

Strauss designs – A more realistic example

UCM 2010 – 11-14 July – Some research results of the DICE project – L. Carraro, O. Roustant

Strauss designs – Mathematical framework

The pdf of a Strauss design is, conditionally to the number of points in the hypercube is given by :

$$x = (x_1, ..., x_N), x_i \in \mathbb{R}^d$$

$$f(x_1, ..., x_N) = c\gamma^{S(x)} \ ou \ S(x) = \sum_{i < j} 1_{\|x_i - x_j\| \le R}$$

Strauss design is a particular case of Gibbs point process :

$$f(x_1,...,x_N) = c.\exp(-\beta U(x))$$

$$o\dot{u} \begin{cases} \beta = -\ln\gamma \\ U(x) = S(x) \end{cases}$$

Metropolis-Hastings algorithm (MCMC method)

U is the so-called potential

- interactions on 1-dimensional margins are possible

Strauss designs – With 1D margins interaction

Projections on margins are

$$\pi(x) \alpha e^{-U(x)}$$
approximately uniform
$$U(x) = \beta \sum_{i < j} \varphi \left(\left\| x^i - x^j \right\| \right) + \sum_{k=1}^d \beta_k \sum_{i < j} \varphi_k \left(\left| x_k^i - x_k^j \right| \right)$$

$$\beta = -\ln\gamma > 0; \quad \beta_k = -\ln\gamma_k > 0, \quad k = 1, ..., d$$

$$\varphi(r) = \left(1 - \frac{r}{R} \right)^{\alpha}$$

$$\int_{0}^{0} \int_{0}^{0} \int$$

UCM 2010 – 11-14 July – Some research results of the DICE project – L. Carraro, O. Roustant

Strauss designs – Conclusion

• Stochastic designs, governed by the potential U

- Regular U gives better designs
- Designs in constrained domains
- Good results on synthetic and industrial cases
- Package DiceDesign

• Focus II

Approximation of a target region

Approximation of a target region

- In frequent situations, global accuracy of metamodels is not required
- Example:

$$\begin{array}{ll}
\operatorname{Min}_{\mathbf{x}} & F(\mathbf{x}) \\
\text{s.t.} & G(\mathbf{x}) \leq T
\end{array}
\qquad P_{\mathrm{f}} = \operatorname{Prob}\left(G\left(\mathbf{X}\right) \geq T\right)$$

Good accuracy for $G(x) \approx T$

Approximation of a target region - Example (1)

Function to approximate:

UCM 2010 – 11-14 July – Some research results of the DICE project – L. Carraro, O. Roustant

Approximation of a target region - Example (2)

• Kriging based on a uniform design:

- Reeasonable variance everywhere
- Large errors in the target region

UCM 2010 – 11-14 July – Some research results of the DICE project – L. Carraro, O. Roustant

Approximation of a target region - Example (2)

• Customized design:

- Large variance in non-target regions
- Good accuracy in target regions

Approximation of a target region - Criterion (1)

- Target region = close to the threshold T $X_T = \left\{ \mathbf{x} \in D / \left| G(\mathbf{x}) - T \right| \le \varepsilon \right\}$
- Ideal criterion: MSE, with integration over X_T only:

UCM 2010 – 11-14 July – Some research results of the DICE project – L. Carraro, O. Roustant

Approximation of a target region – Criterion (2)

• Idea: replace $1_{X_T}(x)$ by $E(1_{X_T}(x)) = P(x \in X_T) = P(|G(x) - T| < \varepsilon)$ the probability of belonging to the target region, and replace G

the probability of belonging to the target region, and replace G by the conditional Gaussian Process.

Using the properties of Gaussian process, we get:

$$W_{\varepsilon}(x) \coloneqq P(x \in X_T) = \Phi\left(\frac{T + \varepsilon - m_k(x)}{s_k(x)}\right) - \Phi\left(\frac{T - \varepsilon - m_k(x)}{s_k(x)}\right)$$

where $m_k(x)$ and $s_k(x)$ are the kriging mean and s.d.

Approximation of a target region – Criterion (3)

• The criterion:
$$IMSE_T = \int MSE(x)W_{\varepsilon}(x)dx$$

- Limit case: ε → ∞, IMSE_T → IMSE
- Limit case: $\epsilon \rightarrow 0$, replace W_{ϵ} by the pure local W where

$$W(x) = \lim_{\varepsilon \to 0} \frac{W_{\varepsilon}(x)}{2\varepsilon} = f_{N(m_k(x), s_k(x)^2)}(T)$$

the density of the conditional distribution of the Gaussian Process.

- W(x) is large if:
 - G(x) is near the target region
 - x belongs to an unexplored area

Approximation of a target region – Illustration

Approximation of a target region – Algorithm

Iterative procedure:

- Create an initial design, compute the observations
- Estimate the Kriging model, and compute W(x)
- Find x* that minimize the practical criterion $IMSE_T(x^*) = \int MSE(x \mid X_i, x^*) W(x \mid X_i, Y_i) dx$
- Run the simulator at x*
- Continue until the maximal number of iterations is reached
- Kriging model parameters:
 - Estimated at the beginning, or re-estimated at each step

46/N

Approximation of a target region - 2D-example

- A 2-dimensional example (Camelback function)
 - Target region G(x,y) = 1.3
 - Optimal design after 11 iterations

UCM 2010 – 11-14 July – Some research results of the DICE project – L. Carraro, O. Roustant

Approximation of a target region - 2D-example

- A 2-dimensional example (Camelback function)
 - Evolution of Kriging target contour line

48/N UCM 2010 – 11-14 July – Some research results of the DICE project – L. Carraro, O. Roustant

Approximation of a target region - 2D-example

Application to the assessment of probability of failure

49/N

UCM 2010 – 11-14 July – Some research results of the DICE project – L. Carraro, O. Roustant

Approximation of a target region - 6D-example

A 6-dimensional example

 Function = 1 sample function of a Gaussian Process with linear trend and isotropic Gaussian covariance (known parameters)

Approximation of a target region – Comparison

- Good results in a numerical study comparing 4 methods -> see the poster of Ling Li in UCM 2010
 - Targeted IMSE performs as well as Stepwise
 Uncertainty Reduction, when W corresponds to the limit case (ε -> 0)
 - Both tIMSE and SUR seem to outperform the two other ones
 - Future research: theoretical link between tIMSE & SUR ?

Approximation of a target region – Conclusion

• An adaptive strategy

- Trade-off between exploration of target regions and global uncertainty reduction
- Model-believer
- Applications to the assessment of probability of failure
- Future research:
 - Influence of parameter estimation in Kriging
 - Adaptation for dimensions \geq 10
 - A R-package is in preparation

Thank you for your attention !

