
Solving an integrated job-shop problem with human

resource constraints

Olivier Guyon, Pierre Lemaire, Eric Pinson, David Rivreau

To cite this version:

Olivier Guyon, Pierre Lemaire, Eric Pinson, David Rivreau. Solving an integrated job-shop
problem with human resource constraints. Annals of Operations Research, Springer Verlag,
2014, 213 (1), pp.147-171. <10.1007/s10479-012-1132-3>. <emse-00707504>

HAL Id: emse-00707504

https://hal-emse.ccsd.cnrs.fr/emse-00707504

Submitted on 12 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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Abstract We propose two exact methods to solve an integrated employee-timetable and
job-shop-scheduling problem. The problem is to find a minimum cost employee-timetable,
where employees have different competences and work duringshifts, so that the production,
that corresponds to a job-shop with resource availability constraints, can be achieved. We
introduce two new exact procedures: 1) a decomposition and cut generation approach and
2) a hybridization of a cut generation process with a branch and bound strategy. We also
propose initial cuts that strongly improve these methods aswell as a standard MIP approach.
The computational performances of those methods on benchmark instances are compared
to that of other methods from the literature.

Keywords Employee Timetabling Problem· Job-shop· Job-shop with resource availability
constraints· Probing· Cut generation· Branch and Bound

Introduction

The purpose of a manufacturing factory is merely to produce some goods to meet some
demand. Due to limited resources, an optimal production plan is usually hard to compute.
The complexity lies mainly in two intertwined aspects: 1) a production schedule, that is an
allocation of human and material resources to the differenttasks (or jobs) that have to be
processed, and 2) an employee timetable, that ensures that the human resources required by
the production schedule are actually met.
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3 place Andŕe-Leroy 49008 Angers, France
E-mail:{pinson,rivreau}@uco.fr



2

Except for special cases, each aspect is per se a difficult problem, as shows the huge
literature on both scheduling problems (e.g., see Pinedo [Pin04] and Leung [Leu04]) and
timetabling problems (e.g., see Ernst et al. [EJKS04] and Soumis et al. [SPR05] for states
of the art). As a consequence, the resulting integrated problem has long been considered as
too complex to be solved in practice and it is usually decomposed into an assignment part
and a scheduling part, resulting in sub-optimal solutions.

Because of economical and financial pressure, higher performances must be sought for,
through elaborate and adequate optimization procedures. That is why some recent efforts
have been made to actually tackle the integrated problem, and this paper is one of them
(indeed, this is the continuation of a previous work on a simpler problem [GLPR10] to try
out the performances of cut generation processes for integrated problems).

In this paper, we propose two exact methods to solve an integrated employee-timetable
and job-shob-scheduling problem. First, we provide a precise description of the problem we
intend to solve, together with an integer linear formulation (Section 1), and we stress its
links with the existing works (Section 2). Then, we introduce our two new procedures: a
decomposition and cut generation approach (Section 3), anda hybridization of a cut genera-
tion process with a branch and bound strategy (Section 4). The computational performances
of those methods on benchmark instances are compared to thatof other methods from the
literature (Section 5). Some conclusions are finally drawn in Section 6.

1 A model integrating an employee timetabling and a job-shop scheduling problems

1.1 Problem description

Our purpose is to solve two decision levels which interact ina global optimization process:
a timetabling and a scheduling problem.

The job-shop problem consists in processing a setJ of n jobs on a setK of m different
machines. Each jobi is made of a sequence of operationsOi1,Oi2, . . . ,Oim which have to
be scheduled according to a given order. Each operationOi j has a processing timepi j ∈ N.
It can be processed exactly by one of them available machines. This performing machine
is denoted bymi j . For the sake of clarity, we denote byρik the processing time of jobi on
machinek. It is not allowed to preempt operations.

An operation can only be processed on machinek if an operator, able to use this resource,
is available. We thus introduce a setE of µ operators where each operatoremasters a subset
Ke of machines. We assume that the operators work on a three-shift system. Consequently,
the time horizonH we use is divided into a setS of σ consecutive and identical shiftss0,
s1, . . . , sσ−1. Each shift corresponds to a time period and has a fixed duration π (thus:
H = σ ·π). Each employeee is assumed to be available on a subset of shiftsSe. The cost
of its assignment to machinek during shifts is denoted byceks. Furthermore, regulation
constraints impose that an operator must not work more than one shift among each triplet of
consecutive shifts.

The objective of the problem is to find a minimum cost assignment of operators to both
machines and shifts in such a way that a feasible operating sequence exists for each machine
for a target makespanCmax≤ H (maximum of the completion times of operations).

A small illustrative instance is provided by Example 1 (shown in Figure 1). It consists
of 2 jobs, 2 machines, 3 employees and 3 shifts. The shift duration isπ= 8 hours (H = 24).
We want to schedule each operation before the end of the day, i.e.,Cmax= 24.
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In Figure 1.a), the job data (machines and durations) are provided. Employee data are
displayed in Figure 1.b). The costs to assign an employee to this machine are displayed for
all shifts for which the employee is assumed to be available.

Figure 1.c) illustrates an optimal solution (with a total cost of 9) for Example 1. In this
solution, a production plan with a makespan of 20, lower thanCmax, is obtained. Employee
e1 (respectivelye2) is assigned to machinem2 (resp.m1) during s0 in order to perform
operationsO11 andO22 (resp.O21). During the last shifts2, operationO12 is processed on
m1 by e3.

i mij pij

1 2 1 3 4

2 1 2 2 5

O11

160 8 24 = Cmax

m1

O21 O12

O22

e2 (4)

e1 (2)

e3 (3)

s0 s1 s2

m2

c) An optimal solution

a) Job data b) Employee data

e Se Ke ceks

1 0 1 2 2 2 4 7

2 0 2 1 4 - 3

3 1 2 1 - 5 3
2 - 6 8

Fig. 1 Example 1

1.2 An integer linear programming model

In this section, we propose an integer linear programming model [P] associated with the
problem at hand. For the sake of clarity, this mathematical formulation is split into four parts:
the objective-function, the employee timetabling sub-problem, the job-shop sub-problem,
and the coupling constraints.

Beforehand, we define the release date, or head (respectively the latency duration, or
tail), denotedr ik (respectivelydik), associated with the processing of jobi on machinek.
These dates are simply induced by the conjunctive constraints associated with the job se-
quences. They can be computed inO(n·m) time using the following recurrence relations:

{

r ik = 0 i = 1, . . . ,n k= mi1

r il = r ik +ρik i = 1, . . . ,n j = 1, . . . ,m−1 k= mi j l = mi( j+1)
(1)

{

dik =Cmax i = 1, . . . ,n k= mim

dik = dil −ρil i = 1, . . . ,n j = 1, . . . ,m−1 k= mi j l = mi( j+1)
(2)

Let us now define the two groups of binary decision variables involved in the model:

– xeks= 1 if and only if operatore is assigned to machinek during shifts, 0 otherwise
– yikt = 1 if and only if job i is processed on machinek at timet, 0 otherwise



4

Objective-function
[P] minΘ = ∑

e∈E
∑

k∈Ke

∑
s∈Se

ceks·xeks (3)

Employee timetabling specific constraints

∑
k/∈Ke

σ−1

∑
s=0

xeks= 0 e= 1, . . . ,µ (4)

∑
k∈Ke

∑
s/∈Se

xeks= 0 e= 1, . . . ,µ (5)

∑
k∈Ke

(xeks+xek(s+1)+xek(s+2))≤ 1 e= 1, . . . ,µ s= 0, . . . ,σ−3 (6)

xeks∈ {0,1} e= 1, . . . ,µ k= 1, . . . ,m s= 0, . . . ,σ−1 (7)

Job-shop specific constraints

dik−ρik

∑
t=0

t ·yikt +ρik ≤Cmax i = 1, . . . ,n k= mim (8)

dik−ρik

∑
t=r ik

yikt = 1 i = 1, . . . ,n k= 1, . . . ,m (9)

r ik

∑
t=0

yikt +
Cmax

∑
t=dik−ρik+1

yikt = 0 i = 1, . . . ,n k= 1, . . . ,m (10)

t

∑
u=r ik+ρik

yilu−
t−ρik

∑
u=r ik

yiku≤ 0 i = 1, . . . ,n j = 1, . . . ,m−1 k= mi j

l = mi( j+1) t = r ik +ρik, . . . ,dil −ρil (11)

n

∑
i=1

min(dik−ρik ,t)

∑
u=max(r ik ,t−ρik+1)

yiku≤ 1 k= 1, . . . ,m t= 0, . . . ,Cmax (12)

yikt ∈ {0,1} i = 1, . . . ,n k= 1, . . . ,m t= 0, . . . ,Cmax (13)

Coupling constraints

∑
e∈E

xeks−
n

∑
i=1

min(dik−ρik ,t)

∑
u=max(r ik ,t−ρik+1)

yiku≥ 0 k= 1, . . . ,m t= 0, . . . ,Cmax s= ⌊t/π⌋ (14)

In this formulation, assignment variablesxeksare fixed to 0 if employeeedoes not master
resourcek (4) or is not available during shifts (5) 1. Constraints (6) formalize the regula-
tion rules stating that an employee must not work more than one shift among each triplet
of consecutive shifts. Constraints (8) ensure that all jobsare completed prior to the target
makespanCmax. Each operation has to be processed within its time window (9)-(10) and
cannot start prior to the completion of its job predecessor (11). Furthermore, at most one op-
eration can be processed on a given machine at each instant (12). Lastly, coupling constraints

1 In our implementation, those variables are not created. Variablesxeks are thus created if and only if the
employeeecan work on machinek (k∈ Ke) and is available on shifts (s∈ Se)
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(14) ensure that an operation on a machine can be processed only if a qualified employee is
assigned to the machine at hand.

This model is at the core of this work: both procedures of Sections 3 and 4 aim at solving
it, using different decomposition strategies.

For the scheduling stage, one may remark that operators may be unavailable and/or not
assigned to some machines for some shifts over the time horizon. Therefore, we have to take
into account for each machine a collectionϒ of time periods on which it cannot process any
operation. Obviously, these periods depend on an instantiation x̄ of decision variablesxeks,
sincex̄ corresponds to a particular assignment of operators to bothmachines and shifts. This
leads to the so calledjob-shop scheduling problem with availability constraints.

However the problem can be reduced to a classical job-shop scheduling problem by
creating additional fictional jobs, as stated in the following proposition:

Proposition 1 Let us consider a time slotυ = Jαυ ,βυ K corresponding to an unavailabil-
ity period on machine k. To take into account this fixed inactivity period is equivalent to
consider the additional job iF composed of m operations with execution domainJ0,CmaxK

and a null processing time except one of them (without loss ofgenerality the first one) with
execution domainJαυ ,βυ K and a duration equals toρiF k = (βυ −αυ ).

Proof Operations ofiF with an execution domainJ0,CmaxK and a null processing time can
be processed at any moment. SchedulingiF thus only depends on the scheduling of the only
operation with a non-null processing duration, i.e., the one which has to be processed onk
during υ . Let us denote byOk

iF
this specific operation. Because all other operations ofiF

have a null duration,Ok
iF

can be placed at any rank of the sequence of operations ofiF .

Ok
iF

has a duration(βυ −αυ ) and a processing domainJαυ ,βυ K. SchedulingOk
iF

there-

fore implies that machinek is fully dedicated toOk
iF

during υ . No real job can indeed be
processed onk duringυ . Machinek is in fact not used duringυ . This complete the proof.

In the following, we will denote byJF the set ofnF fictional jobs associated with the
fixed inactivity periods ofϒ, with nF = card{ϒ}. Given an assignment vector ¯x, the schedul-
ing component associated with our problem consists in checking whether a feasible oper-
ating sequence associated with both real and fictional jobs (J∪JF ) exists for each machine
and for the target makespanCmax.

2 Existing works

As it has already been mentioned, the integrated approach isusually considered as too com-
plex to be solved in practice and, as a consequence, much of the literature deals either
with production scheduling problems (e.g., see [Pin04, Leu04] for states of the art) or with
timetabling problems (e.g., see [EJKS04,SPR05]). In what follows, the main works dealing
with integrated problems and/or decomposition proceduresare presented in Subsection 2.1.

Subsection 2.2 is dedicated to solution procedures for job-shop problems.

2.1 Integrated problems and decomposition procedures

Only few attempts exist that cope with an integrated solution method. To the best of our
knowledge, the existing works either deal with different production systems and/or solve it
using fundamentally different approaches.
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In Daniels and Mazzola [DM94], flow-shop scheduling contextsare considered, and
the authors assume that each operation must be processed by its machine parallel to a set
of operators devoted to this operation during its entire processing time. Moreover, each
employee can only be assigned to a subset of operations (because of skills considerations)
and no shift partitioning of the time horizon is considered.Consequently, operators can be
simply considered as additional parallel machines. They propose an enumerative approach
of brand and bound type for solving this problem.

In the context of project scheduling, Alfares and Bailey [AB97] propose an integer linear
programming model and dynamic programming based heuristics. Their problem is rather
simple since the only constraints are precedences among operations, and that the volume of
human resources on any given day is big enough for the operations of that day.

More recently, Chen [Che04] considers a parallel machine scheduling problem that in-
volves job scheduling coupled to a resource allocation component; the processing times are
inversely related to the amount of resources allocated and the objective is to minimize the to-
tal cost associated with both scheduling and resource allocation. A column generation based
branch and bound is proposed for solving this problem.

Several other authors use decomposition procedures. Such procedures originate from
Benders decomposition [Ben62]. In its basic version, it is ageneric method for solving
problems that contain groups of variables of different natures (e.g., MIPs with integer and
continuous variables). The key idea is to assign some trial values to a group of variables and
to find the best solution consistent with this particular instanciation. The major underlying
idea relies on dual inference with respect to Lagrangian relaxation and Dantzig-Wolfe de-
composition. Thus, the key element of this approach is the derivation of Benders cuts that
exclude superfluous solutions. Classical Benders cuts are formulated by solving the dual of
the subproblem obtained when the trial values are fixed, by exploiting a “nice” substructure
in the global problem. Such an approach is commonly used for problems involving strategic
as well as operational decisions.

During the last two decades, extensions of this powerful approach have been proposed:
in particular, hybridization with constraint programmingtechniques or logic based Benders
decompositions. One of the main pioneering works exploiting these ideas is due to Hooker
[HO03,Hoo05,Hoo07] jointly with some other contributors.For instance, in [Hoo05,Hoo07],
an hybrid method combining constraint programming techniques, mixed integer linear pro-
gramming and logic based Benders decompositions is designed for solving a “planning and
scheduling problem” in which tasks are to be assigned to facilities with some consumption
considerations.

Similar solution procedures have been used by Artigues et al.[AGRV09] to solve a
model linking a job-shop scheduling stage to an employee timetabling component. To the
best of our knowledge, their model is the previously studiedmodel that is the closest to the
one developed in this paper. More precisely, a setA of additional activities to be completed
by a setE of operators is introduced. The subset of activities each operator is able to perform
is known. Each operation associated with the job-shop problem is then assumed to require,
during its processing, a predefined number of these employees for each activitya∈ A. As
in our case, the time horizon is assumed to be partitioned in identical shifts. Clearly, the
processing of a given operationOi j during shifts induces a fixed requirementδas of op-
erators devoted to the execution of each activitya on this particular time slot. Notice that
this model allows an operator to work simultaneously on several machines. Moreover, an
employee shift can cover more than one scheduling period. Asa consequence, the authors
allow the aggregation of activity demands for the operations processed during a given shift.
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A lexicographic optimization problem where the makespan minimization is the primary ob-
jective whereas the employee cost minimization is the secondary objective is considered.
The problem tackled in our study corresponds to the second stage of the problem described
in [AGRV09].

As for the solution procedure, Artigues et al., unlike we, heavily rely on constraint pro-
gramming. Indeed, two constraint programming based formulations, in association with lin-
ear programming relaxations, are proposed. The first (direct) constraint programming for-
mulation models both job-shop scheduling and employee timetabling components by means
of global constraints. A linear programming relaxation based on the employee timetabling
part is used for search tree pruning and reduced cost reduction is proposed. The second
constraint programming formulation relies on a decomposition involving the domains of the
starting time variables, and leading to the definition of demand intervals associated with
each activitya∈ A. A new linear programming relaxation, including the scheduling compo-
nent, is introduced by means of additional binary variables. Energetic reasoning feasibility
checking techniques can thus be exploited. Both constraintprogramming formulations are
solved using a backtrack search strategy.

In [GLPR10], Guyon et al. investigate the integration of an employee timetabling and
a production scheduling problems. At the first level, they manage a classical employee
timetabling problem whereas at the second level, they aim atsupplying a feasible production
schedule for a set of interruptible tasks with qualificationrequirements and time-windows.
They propose two exact methods to solve the resulting problem. The former is based on a
Benders decomposition while the latter relies on a specific decomposition and a cut gen-
eration process. Although this second approach has some basic similarities with the first
one presented in this paper, most of the key components (cut structure, master and slave
problems, ...) differ. In particular, the scheduling stagein [GLPR10] (scheduling on parallel
machines with preemption) can be reduced to a polynomially solvable flow problem, while
in the present work the scheduling stage (a job-shop) is NP-complete and notoriously hard
to solve in practice.

2.2 Solution procedures for job-shop problems

As it is mentioned above, the scheduling stage is a job-shop problem, which is an NP-
complete problem. Hence an important issue is how to solve itefficiently. For this particular
sub-problem, we rely on the existing litterature.

More precisely, we want to solve a job-shop with availability constraints. This is NP-
hard since job-shop without unavailability periods is already strongly NP-hard [RK76,GJ79].
Due to their evident utility for applications, scheduling problems with availability con-
straints are specifically adressed in the scheduling literature [BFHS88,DM94,Lee96,SS98,
Sch00,Agg04a,GH05,WSC05,LS08,MCZ10].

In particular, Mauguìere et al. [MBB05] show that 5 categories of the job-shop schedul-
ing problem with availability constraints have to be distinguished. The type of problems
we consider in this paper corresponds to the class denotedJP2 which refers to the job-
shop problem withnon-crossableunavailability periods andnon-resumableoperations. In
[Agg02], Aggoune defines a method (based on the search of a shortest path problem) to solve
up to optimality problems ofJP2 with only two jobs. He also proposes an exact branch
and bound method (that exploits the classical disjunctive graph representation of the job-
shop problem [RS64]) for any problem ofJP2 [Agg04b]. Other effective attempts [MBB05,
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Zri05] to solve the job-shop scheduling problem with availability constraints clearly show
the growing interest of researchers for it.

As said before, the scheduling part of our problem can be seenas a classical job-shop
problem with fictional jobs. Since the concern of our paper was not to investigate that spe-
cific sub-problem but mainly to deal with the integrated problem, we chose to use the ded-
icated job-shop solver of [Riv99] as a black box. In brief, this solver is a classical branch
and bound process where the key point is the use of the immediate selections on disjunc-
tions [Car75], the immediate selections on ascendant/descendant sets [CP89,CP90] and the
shaving procedure [CP94, MS96] as elimination rules. A survey on these elimination rules
can be found in [CPPR04]. Since the aim of the solver is eitherto find a solution within
a givenCmax or to prove that there is no such solution in a given amount of CPU time, in
each node we try to build a feasible solution using serial scheduling based on the current
deadlines of operations. If this procedure fails, we relax the precedence constraints on jobs
and we build a feasible solution on each machine (using [Car82]). These solutions provide
us with earliest starting times and latest starting times for each operation. Clearly, most of
the time, these dates do not fulfill the precedence relationsconstraints of jobs (otherwise we
have a feasible solution and we are done). So in order to identify the greatest violation, the
earliest starting times and latest starting times are amended through the precedence relations
of each job by a forward and backward process. This gives us anevaluation of violation for
each job: we select the job with the lowest compliance level and then we develop two nodes
by halving the time window of one of its operations.

From a functional point of view, the solver is given a CPU timelimit, so it can fail to
prove that there is a solution or not (job-shop is not a particularly easy scheduling problem).
We can also select to use the shaving procedure or not: indeed, if for hard problems this
elimination procedure is essential, for easy problem it induces a CPU over-consumption
that may be sometimes avoided.

3 A decomposition and cut generation approach

3.1 Problem decomposition

Due to the intrinsic two-level decision structure of[P], it seems quite natural to investigate
decomposition methods based on the splitting of[P] into two interacting sub-problems:

– A master problem corresponding to the employee timetablingcomponent of[P]: [ETP]
– A slave or satellite problem corresponding to the scheduling component of[P]: [JobShop]

This approach clearly relies on the relaxation of the coupling constraints (14).

3.2 Master problem

The master problem[ETP] is an employee timetabling problem that attempts to find a min-
imal cost assignment of operators to both machines and shifts, where coupling constraints
binding operators and machines are relaxed. This problem, relying only on the decision
variablesxeks, is stated as follows:
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[ETP] : minΘ = ∑
e∈E

∑
k∈Ke

∑
s∈Se

ceks·xeks

Cut

(4), (5), (6), (7)

whereCut denotes a set of valid inequalities that are iteratively added to the model. They
invalidate solutions of[ETP] which do not lead to a feasible solution for the scheduling
component of[P].

3.3 Slave problem

Let us denote by ¯x an optimal solution to the current master problem[ETP]. Clearly, x̄ is
a particular assignment of operators to both machines and shifts. Moreover, ¯x is a feasible
solution for the global problem[P] if it satisfies the scheduling component[JobShop]. To
perform this test, we first define aggregate information based on x̄ in the following way :

z̄ks= min(∑
e∈E

x̄eks,1) k= 1, . . . ,m s= 0, . . . ,σ−1 (15)

Clearly, z̄ks= 1 if at least one operator is assigned to machinek during shifts, 0 other-
wise (the machinek is not used). Each machine requires an employee for its use. Therefore,
machinek can be used during shifts if and only if z̄ks= 1. Considering those entries, check-
ing whether or not[JobShop] is feasible for a given assignment ¯x can be performed by
solving the following decision problem:

[JobShop(z̄)] : Is it possible to find an assignment of decision variables satisfying:

n

∑
i=1

min(Cmax,(ῡ+1)·π)

∑
t=max(r ik ,ῡ ·π−ρik)

yikt = 0 k= 1, . . . ,m ῡ ∈ S̄k (16)

(8), (9), (10), (11), (12), (13)

whereS̄k = {s∈ S|z̄ks= 0} denotes the set of time slots during which machinek cannot be
used with respect to employee resources defined by ¯z.

[JobShop(z̄)] is a job-shop scheduling problem with fixed inactivity periods. It can be
reduced to a classical job-shop scheduling problem (see Proposition 1, Section 1.2). The
only difference with the job-shop specific constraints presented in Section 1.2 relies on con-
straints (16). These constraints prevent, with respect to ¯z, the use of any machine during a
shift for which no operator has been assigned.

3.4 Cut generation process

Let us denote by ¯z the vector determined, according to (15), by a feasible solution x̄ of [ETP].
If [JobShop(z̄)] is unfeasible, it implies that jobs cannot be processed withthe available
resources defined by ¯z. Consequently,[JobShop(z̄)] fails whenx̄ does not lead to a feasible
solution for problem[P]. x̄ must therefore be discarded from the set of feasible solutions.
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Trivially, z̄ (and thus ¯x) is unfeasible because at least one machine among those who
are temporarily not used should be available for executing ajob. A valid cut translating this
simple finding in mathematical terms is:

∑
e∈E

∑
k∈Ke

∑
s∈Se

β̄ks·xeks≥ 1 (17)

whereβ̄ks= 1 if z̄ks= 0, 0 otherwise.
This inequality should be added to the poolCut of the master problem[ETP]. Since

there is a finite number of eligible assignments of employeesto both machines and shifts,
the process stops in a finite number of steps.

3.5 Initializing the pools of valid inequalities

3.5.1 Introduction

In order to speed up the convergence of the process in such cutgeneration approaches,
it is often interesting to initialize the pool of cuts with a subset of inequalities allowing
to (partially) recover the feasibility when solving the master problem. In this section, we
propose three different valid inequalities leading to suchan initialization of the setCut of
[ETP].

3.5.2 Probing cuts

Basically, probing refers to an elimination technique usedfor enhancing MIP solvers [Sav94].
The underlying idea is to fix a decision variable to one of its bounds, and to measure the con-
sequence in terms of logical implications. If fixing this variable leads to an unfeasibility, it
clearly implies that no solution with the current variable value exists. In some cases, some
variables (namely binary variables) can thus be definitively fixed.

In our approach, this idea is exploited to identify shifts during which some machines
must be used. For this purpose, we specify for each machinek the listϒk of shifts during
whichk cannot be used. The exhaustive list of shifts where there is amachine which cannot
be used is denoted byϒ = ∪m

k=1ϒ
k. Notice that according to proposition 1 (see Section 1.2),

each inactivity shifts on machinek can be modeled by an additional fictional job. Clearly,
modeling this inactivity by a fictional job is equivalent to set z̄ks= 0. If the resulting job-shop
scheduling problem (with fixed inactivity periods) is unfeasible, then at least one inactivity
pair(k̄, s̄) involved inϒ must be removed, i.e., the associated machinek̄ must be used during
shift s̄. That leads to the following so-called probing cut:

∑
e∈E

∑
k∈Ke

∑
s∈Se

αks·xeks≥ 1 (18)

whereαks= 1 if s∈ϒk, 0 otherwise.
In our experiments, and for obvious computational considerations, we focused only on

configurations (machinek, shift s) of ϒ corresponding to singletons (e.g.(k1,s3)) or pairs
of couples (e.g.,(k1,s3)∧ (k2,s0)). Notice that if a probing cut is generated for a given
singleton, this implies that machinek has to be used during shifts. In the following, such
singleton will be refered to asfixed by probing.



11

3.5.3 Minimal number of working shifts per machine

The valid initial inequalities presented in this section are based on the computing of a lower
boundLBk for each machinek representing the minimum number of worked shifts which
are required to ensure the feasibility of[P]. The corresponding cut simply makes sure that
machinek will be used during at leastLBk shifts:

∑
e∈E|k∈Ke

∑
s∈Se

xeks≥ LBk k= 1, . . . ,m (19)

LBk relies on the computing of an upper boundσ ′ ≤ σ on the maximal number of shifts
during which machinek can be used. By symmetry,LBk can hence be defined as follows:
LBk = (σ−σ ′). It is computed by Algorithm 1.

Algorithm 1 Computing ofLBk

σ ′ ← max(LB1
k,LB2

k)
unfeasible← false
repeat

OF ← σ ′ fictional operations which have to be processed onk for a duration ofπ
[JobShopF ]← job-shop problem that aims to schedule each jobi ∈ J and each operation ofOF
if [JobShopF ] is unfeasiblethen

unfeasible← true
else

σ ′ ← σ ′+1
end if

until (unfeasible) ∨ (σ ′ > σ)
LBk← σ−σ ′

At the beginning of Algorithm 1, we use two auxiliary lower bounds:LB1
k and LB2

k.
Indeed, computingLBk from scratch can be time-consuming and those auxiliary bounds
greatly improve the performances. They are defined as follows:

– LB1
k is the number of pairs (machinek, shift s) fixed by probing(see 3.5.2):

LB1
k = card{s∈ S|(k,s) is fixed by probing}

– LB2
k is based on the sum of processing times of operations which have to be scheduled

on machinek:

LB2
k =

⌈

∑ j∈J ρik

π

⌉

3.5.4 Preventing multiple assignments

The two groups of cuts defined above do not prevent from generating solutions assigning
multiple operators to the same pair (machine, shift). Such solutions are clearly sub-optimal
since assignment costsceksare strictly positive and a machine needs only one operator to be
handled. This third collection of initial cuts ensures thatat most one operator is assigned to
any pair (machine, shift) :

∑
e∈E|(k∈Ke)∧(s∈Se)

xeks≤ 1 k= 1, . . . ,m s= 0, . . . ,σ−1 (20)

Even if they could seem redundant, according to our experiments, these additional cuts
are quite efficient in solving the master problem[ETP].
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3.5.5 Algorithm

The overall process underlying the cut generation approachpresented in this section is sum-
marized in Algorithm 2:

Algorithm 2 Exact cut generation process
LB← 0
repeat

x̄← optimum of[ETP], with a cost:Θx̄
if x̄ is definedthen

LB←Θx̄
∀(k,s) ∈ {K×S} z̄ks←min(∑e∈E x̄eks,1)
feasible← solve[JobShop(z̄)]
if ¬ feasiblethen

add cut (17) to the poolCut of [ETP]
end if

end if
until (feasible)∨ (x̄ is not defined)
return LB

4 An hybridization of a cut generation process with a branch and bound strategy

4.1 Introduction

In this section, we present a second exact solution strategy. Two classic approaches for
tackling hard combinatorial optimization problems are hybridized: branch and bound and
cut generation process. Like in the decomposition and cut generation process (see Section
3), we also decompose the problem[P] into two independent sub-problems. The method’s
main particularity relies on the fact that the global process control is ensured by a vector ¯z
of indicatriceswhich decides whether a machinek is available for processing jobs during a
given shift or not. ¯z is instantiated by an enumerative process.

The underlying global process is explained in Section 4.2. The main components asso-
ciated with the branch and bound approach are detailed in sub-Sections 4.2.1 to 4.2.4, while
implementation issues and the overall algorithm is presented in sub-Section 4.2.5.

4.2 The global process

Let us define, for any couple(k,s) of machine/shift, anindicatrice representing the avail-
ability of machinek during shifts (implying that at least one operator is assigned tok during
s):

∀(k,s) ∈ {K×S} z̄ks=







−1 if machinek is not constrained during shifts
0 if machinek must not be used during shifts

+1 if machinek must be used during shifts

In this alternative approach, the vector ¯z is exploited to guide the global process, and its
instantiation is performed by means of an enumerative approach of branch and bound type,
as described in Sections 4.2.1 to 4.2.4.
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Thus, each node of the search tree corresponds to a partial availability planning on the
set of machinesM. A given vector ¯z leads to two sub-problems[ETP(z̄)] and[JobShop(z̄)]
derived from the decomposition principle exploited previously. The employee timetabling
sub-problem[ETP(z̄)] can be formulated as follows:

[ETP(z̄)] : min Θz̄ = ∑
e∈E

∑
k∈Ke

∑
s∈Se

ceks·xeks

∑
e∈E

xeks= z̄ks ∀(k,s) ∈ {{M×S}|z̄ks 6=−1} (21)

Cut

(4), (5), (6), (7)

whereCut denotes a set of valid inequalities (17), already defined in Section 3, that are
iteratively added to the model.

Clearly, [ETP(z̄)] aims at finding a minimal cost assignment of operators to bothma-
chines and shifts, the solution space being limited to assignmentsx consistent with con-
straints (21).[JobShop(z̄)] is exactly the same as in Section 3.3.

In our approach,[JobShop(z̄)] is first solved. If it is feasible, the linear relaxation of
[ETP(z̄)] is then solved up to optimality thanks to a LP solver. The corresponding optimal
solution clearly gives a lower boundLB(z̄) associated with the current node(z̄).

Let us denote byUB the value of the incumbent solution (best solution found so far).
If either 1) LB(z̄) > UB, 2) the LP-relaxation of[ETP(z̄)] has no feasible solution or 3)
[JobShop(z̄)] is unfeasible, then the current distribution ¯z is not consistent. The associated
node in the enumeration search tree is discarded and a backtracking occurs.

Otherwise, the collection of implication rules detailed inSection 4.2.3 is performed, as
well as a consistency test consisting in forcing any non constrained pair (machinek, shift
s) (z̄ks = −1) to be inactive(z̄ks = 0), and solving the resulting sub-problems[ETP(z̄)]
and[JobShop(z̄)]. If the solution ¯y of [JobShop(z̄)] is once again feasible, then the optimal
solution(x̄) of [ETP(z̄)], if defined, yields a feasible solution(x̄, ȳ) of valueΘz̄ to the global
problem[P]. If Θz̄ < UB, then an improved solution to[P] has been exhibited: it becomes
the new incumbent solution, andUB is updated. Otherwise, a cut (17) is added to the pool
Cut in problem[ETP]. Notice that inequalities (17) are valid for any node of the search tree.

Section 4.2.5 provides the detailed implementation issuesrelated to this procedure.

4.2.1 Branching strategy

The enumerative strategy we use is a binary branching scheme. To expand the current active
node, a pair (machinek, shift s) is selected by the means of a branching heuristic. Two child
nodes are then created, corresponding respectively to ¯zks= 0 (machinek must not be used
during shifts) andz̄ks= 1 (machinek must be used during shifts).

In our implementation, the node associated to ¯zks = 0 is systematically explored first.
The reason for this choice is that prohibiting machine activity leads to a more constrained
problem, and thus to a much more reduced search tree size.

The branching heuristic we use selects the pair of machine/shift (k̄, s̄) defined as follows:
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– k̄ is the machinek ∈ K with the minimal difference between the number of available
shifts and the lower boundLBk of the number of worked shifts onk (see 3.5.3):

k̄= argmaxk∈K|∃s∈S,z̄ks=−1 (card{(k,s) ∈ {K×S}|z̄ks∈ {−1,1}}−LBk)

– s̄ is the mosttardiveshift such that no decision has been taken on pair(k̄, s̄):

s̄= argmax(s∈ S|z̄k̄s=−1)

Several other branching heuristics have been investigated. The one presented above has
been the most efficient in the experiments.

4.2.2 Lower bound

As mentioned before (see 4.2),[ETP(z̄)] aims at finding a minimal cost assignment of op-
erators to both machines and shifts consistent with the current distribution ¯z. Clearly, an
optimal solution to problem[ETP(z̄)] gives a valid lower bound associated to the related
node in the search tree. For obvious computational reasons,we only solve the linear relax-
ation of[ETP(z̄)] for each node of the search tree.

4.2.3 Implication rules

In order to reduce the search space and thus to speed up our process, two implication rules
have been defined.

Probing based implication ruleThe first implication rule is based on the probing strategy
detailed in Section 3.5.2. It aims at checking if successivedecisions about the absence of
work for some pairs (machine, shift) are not too restrictive. Such restrictions could indeed
prevent any descendant of the branching node from leading toa feasible complete solution.
For this purpose, each non constrained pair (machine, shift) in the current distribution ¯z (i.e.,
z̄ks=−1) is in turn forced to inactivity(z̄ks= 0). The resulting sub-problem[JobShop(z̄)] is
solved, and if unfeasibility is detected, we can set ¯zks to 1, i.e., any subsequent distribution
in the sub tree ¯z satisfies that machinek is used.

Implication rule based on the minimal number of working shifts per machineThis implica-
tion rule ensures that, for each machinek∈ K, the lower boundLBk on the minimal number
of working shifts (see 3.5.3) is verified. This logical rule can be expressed as follows:

(card{s∈ S|z̄ks 6= 0}= LBk)⇒ (z̄ks= 1 ∀s∈ {S|z̄ks=−1})

4.2.4 Consistency checking

As mentioned in Section 4.2, we perform a consistency test for eachnon prunednode of the
search tree. This test aims at checking if the partial distribution z̄associated with the current
branching node is already a complete feasible solution for the problem.

To do so, we first get a complete instantiation of ¯zby settingz̄ks= 0 for any pair (machine
k, shifts) that the current partial distribution ¯zdoes not constraint (i.e., ¯zks=−1). For the re-
sulting complete distribution ¯z, we check the feasibility of both[ETP(z̄)] and[JobShop(z̄)].
If these two sub-problems are feasible, the associated optimal solutions yield a feasible solu-
tion for the global problem[P]. They can hence be compared to the best incumbent solution.
Otherwise, adding the cut (17) to the poolCut of valid inequalities in problem[ETP] pre-
vents us from generating such a non consistent distributionby enumeration.
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4.2.5 Algorithm

The hybridbranch and bound / cut generationmethod described above is summarized in
Algorithms 3 to 8. Algorithm 3 is the main algorithm; it refers to algorithms 4 to 8 described
hereafter. In our implementation, we used the two followingspecific data structures:

– P: a typical stack which is used to store the nodes of the search tree in a Last In, First
Out (LIFO) order

– γ: a node of the search tree. Each nodeγ is characterized by 5 attributes:
– k∈M: the machine of the selected branching variable used to constructγ
– s∈ S: the shift of the selected branching variable used to constructγ
– explored∈ {true, false}. If true, the node has already been explored and its two

children have been (if necessary) generated. Iffalse, it is the first time the node is
met.

– value∈ {−1,0,1}: fixed value for the branching variable used to constructγ
– decisions: list of the decisions (due to the branching variable selection and the impli-

cations rules) related to nodeγ. By construction, each descendant node ofγ respects
all these decisions.
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Algorithm 3 Hybrid Branch and Bound and cut generation procedure
UB←+∞
∀k∈M ∀s∈ Sz̄ks←−1
P←{Node(k=0, s=0, value=-1, explored=false, decisions=/0)}
repeat

γ← node at the top ofP
if ¬ γ.exploredthen

γ.explored← true
z̄γ.kγ.s = γ.value
if [JobShop(z̄)] is not unfeasiblethen

imply(γ, z̄)
f ← evaluate(γ, z̄)
if ( f 6=−1) ∧ ( f <UB) then
∀(k,s) ∈ {K×S} (z̄ks)

′← z̄ks
∀(k,s) ∈ {K×S|z̄ks=−1} z̄ks← 0
x̄← optimal solution of[ETP(z̄)]; cost:Θz̄
if (x̄ exists)∧ (Θz̄ <UB)∧ ([JobShop(z̄)] is feasible) then

UB←Θz̄
else

add cut (17) to the setCut of [ETP]
end if
∀(k,s) ∈ {K×S} z̄ks← (z̄ks)

′

if ¬ leaf(z̄) then
branch(P, z̄)

else
remove(P, z̄)

end if
else

remove(P, z̄)
end if

else
remove(P, z̄)

end if
else

remove(P, z̄)
end if

until P= /0
return UB
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Algorithm 4 Implication rules: imply(γ, z̄)
if γ.value= 0 then

if card
{

s∈ S|z̄γ.ks 6= 0
}

= LBγ.k then
for all s∈ Sdo

if z̄γ.ks=−1 then
z̄γ.ks← 1
γ.decisions← γ.decisions∪

{

z̄γ.ks= 1
}

end if
end for

end if
for all s∈ Sdo

if z̄γ.ks=−1 then
z̄γ.ks← 0
if [JobShop(z̄)] is unfeasiblethen

z̄γ.ks← 1
γ.decisions← γ.decisions∪

{

z̄γ.ks= 1
}

else
z̄γ.ks←−1

end if
end if

end for
end if

Algorithm 5 Evaluation: evaluate(γ, z̄)
result← -1
x̄← optimal solution of the LP-relaxation of[ETP(z̄)]; cost: LP
if x̄ existsthen

result← LP
end if
return result

Algorithm 6 Branching: branch(P, z̄)
k̄← argmaxk∈K|∃s∈S,z̄ks=−1 (card{(k,s) ∈ {K×S}|z̄ks∈ {−1,1}}−LBk)

s̄← argmax(s∈ S|z̄k̄s=−1)
P← P∪Node

(

k=k̄, s=s̄, value=1, decisions={z̄k̄s̄ = 1}
)

P← P∪Node
(

k=k̄, s=s̄, value=0, decisions={z̄k̄s̄ = 0}
)

Algorithm 7 Removing: remove(P, z̄)
∀d ∈ γ.decisions z̄d.kd.s←−1
P← P\γ

Algorithm 8 Leaf: leaf(z̄)
for all (k,s) ∈ {K×S} do

if z̄ks=−1 then
return false

end if
end for
return true
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5 Computational experiments

In this section, we first describe the instances used as a testbed and the methods used as
comparison (section 5.1). We then briefly evaluate the interest of the initial inequalities
(section 5.2). Finally, we investigate the experimental behavior of the methods proposed in
this paper (section 5.3).

5.1 Test bed and methods

To test the methods proposed above, we used the generator of instances of [AGRV09].
We have defined 6 categories of instances of increasing size.For each category, two sets
of 25 “feasible” (respectively “unfeasible”) instances have been generated. The parameters
used as inputs by the instance generator are displayed in Table 1.

In Table 1, columnµ refers to the total number of employees, of whomµextra areextra
employees. Those extra employees ensure that the production requirements can always be
mathematically met (as in [AGRV09]). However we make a distinction between the two
types of instances. In the case of “feasible” instances, theproduction requirements can ac-
tually be met in pratice: virtually no extra employees are needed and, even though more
expensive, they do not incur a prohibitive cost (they are typically outsourced personel or
regular staff working overtime). In the case of “unfeasible” instances, it is not possible to
meet production requirements without extra employees, andthose have a prohibitive cost,
making the instances unfeasible in practice (an extra employee has a cost of 1000, that dom-
inates the sum of all other costs; hence, if a solution has a cost of e.g., 8028, that means that
8 extra employees are needed).

In Table 1,Θ∗ is the best known solution for[P]. It is the optimum for 57.7% of all
cases; otherwise it corresponds to the best solution found by either the hybrid branch and
bound / cut generation method described in Section 4 or a MIP solver applied to the formal-
isation[P] (within a CPU time limit of 2 hours for each method). For the 15compatible in-
stances picked out from [AGRV09],Cmax is the optimal makespan of the job-shop problem.
For the 285 other generated instances,Cmax is computed as follows: 1) a heuristic makespan
Cheur

max to the job-shop problem is found thanks to our job-shop solver (cf. Section 2.2), 2) the
numberδ of shifts is fixed to

⌈

Cheur
max/π

⌉

and 3)Cmax is fixed to(δ ·π).
We try to solve every instance with the two exact methods proposed above:

– Cut: the decomposition and cut generation approach described in Section 3 ;
– HyBB: the hybrid branch and bound / cut generation method described in Section 4.

As a basis for comparison, we also try to solve each instance with :

– MIP: a MIP solver applied to the formalisation[P].
– AGRV09: a slightly modified version of the method proposed in [AGRV09]. Indeed, Ar-

tigues et al. solve a lexicographic optimization problem where the makespan minimiza-
tion is the primary objective whereas the employee cost minimization is the secondary
objective. We thus defineAGRV09 as the second stage, the minimal makespan value being
directly fixed in a preprocessing stage.

– Heur: a heuristic solution. A heuristic solution to the job-shopproblem is found thanks
to our job-shop solver (cf. Section 2.2) and every pair (machine, shift) that is worked is
fixed. The employees are then assigned optimaly using a MIP solver. (Note: a simpler
heuristic, where employees are assigned greedily instead of optimaly, has also been tried



19

type category n m µextra

# max
π Cmax Θ∗µ skills per

(incl. µextra) employee

fe
as

ib
le

ejs6×4×25 6 4 25 10 2 8 ∈ [37,56] ∈ [17,33]
ejs6×6×25 6 6 25 10 4 10 ∈ [48,70] ∈ [24,73]
ejs8×8×40 8 8 40 20 4 8 ∈ [44,64] ∈ [70,106]
ejs8×8×50 8 8 50 20 4 10 ∈ [60,80] ∈ [40,64]

ejs10×10×40 10 10 40 20 4 8 ∈ [72,80] ∈ [174,286]
ejs10×10×50 10 10 50 20 4 10 ∈ [80,100] ∈ [81,133]

un
fe

as
ib

le

ejs6×4×25 6 4 25 21 2 8 ∈ [40,56] ∈ [8009,12013]
ejs6×6×25 6 6 25 19 4 10 ∈ [50,70] ∈ [8028,18015]
ejs8×8×40 8 8 40 32 4 8 ∈ [64,64] ∈ [22040,32034]
ejs8×8×50 8 8 50 42 4 10 ∈ [60,90] ∈ [19040,28031]

ejs10×10×40 10 10 40 30 4 8 ∈ [72,80] ∈ [39056,50055]
ejs10×10×50 10 10 50 40 4 10 ∈ [80,100] ∈ [35056,47068]

Table 1 Parameters of the 300 instances (25 instances per category)

out; it is barely faster thanHeur and produces drastically worse solutions, and thus it has
been discarded.)

CPU time has been limited to 5 minutes for the two categories of small instances ejs6×
4× 25 and ejs6× 6× 25. Is has been limited to 10 minutes for the four categories of big
instances ejs8×8×40, ejs8×8×50, ejs10×10×40 and ejs10×10×50.

In the remaining (if it is not specified), the initial inequalities of Section 3.5 are added
to the three methodsCut, HysBB andMIP. We did not experiment the interest of the initial
cuts forAGRV09.

5.2 Initial inequalities

To evaluate the initial inequalities described in Section 3.5, we first compare in Table 2 the
results of the LP-relaxation of[P] with and without the initial inequalities. In this table,
columnLP/Θ∗ gives the deviation between the optimum of the LP-relaxation of [P] (LP)
and the best known solution for[P] (Θ∗).

category
linear relaxation (LP) of [P] linear relaxation (LP) of [P] with initial inequalities

LP/Θ∗ time LP/Θ∗ # initial preprocess LP total
inequalities time time time

ejs6×4×25 83.3% 0.3s 98.1% 48.3 0.2s 0.2s 0.4s
ejs6×6×25 66.9% 1.0s 87.8% 69.3 1.1s 1.0s 2.1s
ejs8×8×40 65.8% 4.4s 87.7% 127.8 5.7s 3.9s 9.6s
ejs8×8×50 70.3% 8.7s 85.9% 123.4 10.3s 9.9s 20.2s

ejs10×10×40 62.4% 21.5s 82.3% 211.6 49.1s 22.3s 71.4s
ejs10×10×50 61.9% 44.4s 70.6% 194.5 74.7s 52.3s 127.0s

Total 68.4% 13.4s 85.4% 129.1 23.5s 14.9s 38.4s

Table 2 Impact of the initial inequalities on the LP-relaxation. Instances are not distinguished by type, since
the results are almost identical in both cases.

For each type and each category of instances, the LP-relaxation is much better with the
initial inequalities: the average ratioLP/Θ∗ is indeed 17% higher when the initial inequal-
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ities are used, and the extra computing time remains moderate(24s in average and about
128s for the worst case).

To further chalenge the initial inequalities, we compare the rate of success of the three
exact methods (Cut, HyBB, MIP), depending on whether the initial inequalities are used (Ta-
ble 3).

category

Cut HyBB MIP

without with without with without with
initial cuts initial cuts initial cuts initial cuts initial cuts initial cuts

ejs6×4×25 0.0% 98.0% 72.0% 100.0% 86.0% 100.0%
ejs6×6×25 0.0% 44.0% 28.0% 74.0% 46.0% 76.0%
ejs8×8×40 0.0% 20.0% 0.0% 52.0% 26.0% 60.0%
ejs8×8×50 0.0% 16.0% 0.0% 28.0% 12.0% 28.0%

ejs10×10×40 0.0% 12.0% 0.0% 18.0% 2.0% 16.0%
ejs10×10×50 0.0% 2.0% 0.0% 4.0% 0.0% 0.0%

Total 0.0% 32.0% 16.7% 46.0% 28.7% 46.7%

Table 3 Impact of the initial inequalities on the exact methods. Instances are not distinguished by type, since
the results are almost identical in both cases.

It is very clear from these results that the initial inequalities proposed in Section 3.5
strongly improve all three methods. The improvements is particularly important forCut and
HyBB. Indeed, these two methods cannot solve instances larger than 6 jobs without initial
inequalities. As a matter of fact, the initial cuts are an integrated part of the two exact meth-
odsCut andHyBB proposed in this article and they are nicely complementary to the other
components of those methods.

As stated before, the initial inequalities are added to eachmethod described in the re-
maining (except forAGRV09).

5.3 Exact methods

In this section, we compare the resultats of the two exact methods we have proposed in this
paper (Cut andHyBB) with other approaches (MIP, AGRV09 andHeur).

Table 4 reports the performances of each method. Columnsuccessgives the percentage
of instances solved to optimality within the time limit. Column time displays the average
computation time. Columngapgives the average deviation to the best known solutionΘ∗
2. The statistical significance of those results is verified byan exhaustive computation of
Kruskal-Wallis tests for every pair of methods and every measure; when relevant, p-values
are provided in the following discussion.

Table 5 compares the successes of the different methods. This table can be read as a
matrix ai j whereai j is the number of instances the methodi solves to optimality within the
time limit whereas the methodj does not.aii gives the number of successes of the methodi.

Furthermore, Table 6 provides a direct comparison between the two best performing
methods:HyBB andMIP. In this table,successis the number of instances solved to optimality
by both methods;time(S)is the CPU time in case of success (that is for the instances solved
to optimality by both approaches); andgap(F) is the average deviation to the best known
solution in case of failure (that is when at least one method fails).

2 gap= min
(

1, |value−Θ∗|
Θ∗

)

if a solutionvaluehas been found, 1 otherwise
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category
Cut HyBB MIP AGRV09 Heur

success time gap success time gap success time gap success time gap success time gap
ejs6×4×25 100% 2s 0% 100% 1s 0% 100% 1s 0% 88% 53s 1% 8% 0s 17%
ejs6×6×25 60% 122s 5% 76% 86s 0% 84% 65s 0% 44% 182s 31% 0% 0s 49%
ejs8×8×40 36% 387s 7% 68% 234s 4% 68% 264s 2% 32% 478s 47% 0% 0s 35%
ejs8×8×50 16% 504s 10% 24% 461s 5% 28% 454s 2% 8% 568s 45% 0% 0s 24%

ejs10×10×40 8% 548s 17% 16% 529s 8% 20% 525s 43% 0% 601s 51% 0% 1s 28%
ejs10×10×50 4% 588s 28% 8% 571s 6% 0% 594s 92% 0% 601s 73% 0% 1s 28%

Total 37% 358s 11% 49% 314s 4% 50% 317s 23% 29% 414s 41% 1% 0s 30%
(a) “feasible” instances

category
Cut HyBB MIP AGRV09 Heur

success time gap success time gap success time gap success time gap success time gap
ejs6×4×25 96% 27s 0% 100% 3s 0% 100% 4s 0% 0% 298s 26% 0% 0s 27%
ejs6×6×25 28% 239s 9% 72% 115s 2% 68% 131s 1% 0% 299s 42% 0% 0s 44%
ejs8×8×40 4% 576s 11% 36% 436s 4% 52% 367s 1% 0% 600s 31% 0% 0s 27%
ejs8×8×50 16% 510s 15% 32% 432s 9% 28% 463s 18% 0% 600s 34% 0% 0s 34%

ejs10×10×40 16% 514s 15% 20% 493s 2% 12% 543s 57% 0% 601s 25% 0% 1s 17%
ejs10×10×50 0% 600s 30% 0% 601s 2% 0% 600s 96% 0% 601s 33% 0% 1s 20%

Total 27% 411s 13% 43% 347s 3% 43% 351s 29% 0% 500s 32% 1% 0s 28%
(b) “unfeasible” instances

Table 4 Performance of each method (average values)
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dominated dominated
i \ j Cut HyBB MIP AGRV09 Heur Cut HyBB MIP AGRV09 Heur

do
m

in
at

in
g Cut 56 0 1 18 54 40 0 1 40 40

HyBB 17 73 4 30 71 25 65 4 65 65
MIP 20 6 75 33 73 26 4 65 65 65

AGRV09 5 0 1 43 41 0 0 0 0 0
Heur 0 0 0 0 2 0 0 0 0 0

(a) “feasible” instances (b) “unfeasible” instances

Table 5 Comparison of the number of instances solved by each method

category success
HyBB MIP

time(S) gap(F) time(S) gap(F)
ejs6×4×25 25/25 1s - 2s -
ejs6×6×25 19/25 19s 2% 12s 2%
ejs8×8×40 15/25 39s 10% 89s 4%
ejs8×8×50 6/25 22s 6% 92s 3%

ejs10×10×40 4/25 195s 9% 478s 51%
ejs10×10×50 0/25 - 6% - 92%

Total 69/150 27s 6% 47s 43%
(a) “feasible” instances

category success
HyBB MIP

time(S) gap(F) time(S) gap(F)
ejs6×4×25 25/25 3s - 4s -
ejs6×6×25 17/25 40s 7% 52s 4%
ejs8×8×40 9/25 143s 6% 95s 1%
ejs8×8×50 7/25 61s 12% 111s 25%

ejs10×10×40 3/25 36s 2% 127s 64%
ejs10×10×50 0/25 - 2% - 96%

Total 61/150 42s 5% 49s 48%
(b) “unfeasible” instances

Table 6 Comparison ofHyBB andMIP in case of success or failure (average values)

From all those experiments, the first general conclusion is thatHyBB is the best perform-
ing methods on any kind of instances. Then comeMIP andCut, thenAGRV09 and the poorest
method isHeur. Typically,HyBB solves to optimality more instances than the other methods
(but MIP on small instances) and besides it solves them faster when itsucceeds or provides
tighter bounds when it fails.

From Table 4, it is clear thatHyBB achieves better success and gap thanHeur, and this
is statistically significant (p-values< 10−7). HyBB is also better thanAGRV09 (all p-values
< 10−3). Compared toCut, HyBB is more successful and provides tigher gap (p-values<
0.05 for success, and< 10−7 for gap); it also seems to be faster, but this is not statistically
significant (p-value> 0.6 on feasible instances). Furthermore, none ofCut, AGRV09 or Heur
solves to optimality an instance thatHyBB does not (see Table 5).

As a consequence,HyBB is only challenged byMIP for the title of best method. From
Table 4, it is not clear whetherHyBB has better success thanMIP; indeed, the two methods
cannot be distinguished on this criteria (p-value> 0.8), nor on the computation time. The
dominance ofHyBB is however quite clear for the gap (p-values< 0.05). Table 6 allows for a
more detailed analysis. In case of success,HyBB is quicker (however, the statistical relevance
is not so good). In case of failure,HyBB provides a significant better gap (p-values< 0.003).
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All in all, HyBB performs generaly better thanMIP, with exceptions. It is not dominated
for the success, nor for the computation times, and achievesbetter gaps. In particular, on
hard instances that none of the methods solve,HyBB is clearly better: the gap is significantly
lower, and does not explode when the size of the problem increases; moreover it must be
noted thatHyBB provides feasible solutions for all 300 instances, whileMIP failed for 74 of
them. Nevertheless, on some instances,MIP may outperformHyBB (e.g., for small instances).

Similar detailed analysis confirm 1) thatHyBB also outperformsCut, AGRV09 andHeur
(all results are statistically significant); 2) thatMIP outperformsCut (except for big in-
stances),AGRV09 andHeur; 3) thatCut outperformsAGRV09 andHeur.

Note thatHeur, which is never very good, is very consistent in providing very quickly
feasible solutions with a gap of about 30%. Such solutions arenot good for small instances,
but become competitive for the big ones. Actually,Heur outperforms every method butHyBB
on the most challenging instances. This is essentially due to the fact that, within the given
time, methodsCut, MIP andAGRV09 may fail to find a feasible solution for such instances.

One should notice here that the comparison with [AGRV09] is not totally fair. Indeed,
[AGRV09] solves more general problems than the methods described in this article. We
remind the reader that [AGRV09] tackles a problem where eachjob can require more than
one employee to be processed. It also addresses a problem with two hierarchical objectives:
1) minimizing the makespan and 2) minimizing the employee cost. Furthermore,AGRV09
is not competitive at all on unfeasible instances because ofthe very high costs of theextra
employees. The method (dichotomy) has not been fitted for such test problems.

To conclude with these experiments, we point out that reallylarge instances of the prob-
lem tackled in this paper are intractable with the current methods. Indeed one can observe
that none of the methods experimented here can solve instances with more than 10 jobs and
10 machines; starting from 8 jobs and 8 machines, all methodshave serious difficulties. This
is not a surprise since the job-shop sub-problem itself is awfully difficult to solve, even with
only 10 jobs and 10 machines.

6 Conclusion

In this paper we have proposed two different procedures to solve an integrated employee-
timetable and job-shob-scheduling problem, and we have evaluated them through compu-
tational experiments. In the process, we have outlined initial cuts that significantly help the
finding of a solution for our own methods, but also for a standard MIP approach.

Our first method, the decomposition and cut generation procedure (Cut), is rather dis-
appointing. However, its mixed results can easily be explained: the generated cuts do not
contain enough global information and tend to eliminate only the current solution. Stronger
cuts would be necessary; however the design of such cuts appears to be quite difficult and
unpredictable perspectives (a tighter collaboration withthe job-shop solver) would probably
be the key. This phenomenon illustrates the fact that integrated problems require ad-hoc,
well-tuned procedures that are capable of using the very particularities of the problem.

The second method, the hybridization of a cut generation process with a branch and
bound strategy (HyBB) provides very good results and greatly improves over the perfor-
mances of the best methods of the literature.
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As for future research directions, the relevance of the hybridization of a cut generation
process with a branch and bound strategy should be proved on other integrated problems,
e.g., that incorporate different scheduling and/or timetabling constraints. Furthermore, vari-
ants of this hybridization should be tried out to provide a fast initial convergence that would
allow to quickly get good feasible solutions.
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A Computing environment

All experiments have been carried out on a standard PC (Intel(R) Core(TM) i3 CPU M 370 @ 2.40GHz, 2.39
GHz, 3.42 Go RAM) running MS Windows XP. Our own procedures are implemented in Java. The software
of [AGRV09] is the original one, kindly provided by the authors, and is written in C++. Mixed integer and/or
continuous linear programs have been solved with Ilog Cplex 12.2; for constraint based scheduling, we used
Ilog Solver 6.7 and Scheduler 6.7.
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