
Reengineering the Core Grid Ontology?

Pawe l Szmeja2 and Antoine Zimmermann1

1 École Nationale Supérieure des Mines, FAYOL-ENSMSE, LSTI, F-42023
Saint-Étienne, France

2 Systems Research Institute Polish Academy of Sciences, Warsaw, Poland
antoine.zimmermann@emse.fr, pawel.szmeja@gmail.com

1 Introduction

Ontology engineering is a relatively new and immature science. With new pos-
sible applications and often non-normative standard proposals emerging rapidly
it is hard to find one universal formalization of ontology engineering rules. This
causes many authors to fall into a trap of focusing on the application of an
ontology and not giving enough attention to the ontology itself. Such approach
results in ontologies that are hardly reusable, overcomplicated and difficult to
understand which is the exact opposite of what a good ontology should be. While
many problems are very specific we attempt to bring the attention to a set of
common ones with the intention of instructing how to fix or avoid them. Here,
we explain how we improved an existing ontology, Core Grid Ontology (CGO),
that we use as an example. It is not our intention to focus on the quality of this
ontology, which otherwise fits our needs well. Indeed, CGO was reused in the
project Agents in Grid (AiG), where it was slightly modified then extended [1].
We build on that experience, starting with the reengineering of CGO that we
will later extend with the improvements of the AiG ontology.

2 Problems and Solutions

First, as an ontology is meant to be shared, it should be easily available. We
updated the ontology IRI to http://purl/NET/cgo/, a persistent URL that
can be used to get to the ontology file.

Second, in order to be reusable, an ontology should contain documentation.
A proper documentation being absent, we relied on the associated publication [2]
that describes the CGO. We noticed that there are discrepancies between the
content of this document and the ontology itself. Some classes present in the
ontology are not described in [2]. The properties of some classes outlined in the
document do not correspond to the content of the ontology. The Web ontology
language OWL allows one to document ontologies with OWL annotations in
the ontology itself, which ensures that documentation is in line with content. In
particular, the property rdfs:comment is used to explain the intended use of an
ontology term and to keep track of any changes in the file, while rdfs:label

? AT2012, 15-16 October 2012, Dubrovnik, Croatia. Copyright held by the author(s).
This work has been supported by COST Action IC0801 Agreement Technologies.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-EMSE

https://core.ac.uk/display/52620105?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


is essential for interfaces to present a human-readable. All natural language
metadata should have a language tag, as Web ontologies can be internationalized.
For instance, in CGO, the class VO has a very convenient short identifier, but a
label expanding this abbreviation to “virtual organization” eases working with
the ontology. Adding a description to the properties that do not have any usage,
range, domain or annotations defined prevents a user from having to guess the
meaning of the entity based only on its name.

Third, an ontology should be modular. In [2], the ontology is described as
having 3 levels with very general terms in the first level, more specific ones in
the second, and application specific ones in the third. However, the ontology file
did not reflect this modularization. We simply divided the ontology in two parts.
We separated classes and individuals that are application specific. All remaining
axioms that can be reused across application are in the “base” ontology that is
imported by the other one. This again simplified reuse. Modularity eases main-
tenance and evolution and can usually be achieved by reflecting the hierarchy of
the domain that the ontology describes.

Fourth, sometimes providing concrete usage examples is worth a thousand
words. The CGO had examples that were very helpful, but we also reverse-
engineered a few terms by working out an example, and found missing properties
by doing so. For instance, the class StorageSpace is lacking a property that gives
the storage size. The domain and range of properties could also be defined from
the example. Some of these observations were already mentioned in [1].

3 Conclusion

In this paper, using the CGO as an example we presented common problems
that plague ontologies and proposed simple solutions. By applying presented
ideas and approaching ontology engineering more formally we can speed up the
uptake of ontologies, lower the learning curve and increase the overall quality
of ontologies. Quality ontologies are more likely to be reused across various
scenarios, facilitating interoperability, which is key in Grid systems in particular,
but also in agreement technologies in general.

References

1. M. Paprzycki, M. Drozdowicz, M. Ganzha, K. Wasielewska, I. Lirkov, R. Olejnik,
and N. Attaoui. Utilization of Modified CoreGRID Ontology in an Agent-based
Grid Resource Management System. In Proc. of CATA 2010, pages 240–245, 2010.

2. W. Xing, M. Dikaiakos, and R. Sakellariou. A Core Grid Ontology for the Semantic
Grid. In Proc. of CCGrid 2006, pages 178–184, 2006.


