
1

Squaring the engineering optimization
circle : distributed global optimization

algorithms for computationally expensive
problems

Rodolphe Le Riche1,2 , Ramunas Girdziusas2, Diane
Villanueva2, Gauthier Picard2 and David Ginsbourger3

1 CNRS ; 2 Ecole des Mines de Saint-Etienne ;
3 Univ. of Bern ;

RIO 2012, Univ. de Valenciennes

Globally optimal solutions and realistic models :
squaring the engineeting optimization circle

There is a demand for optimizing increasingly complex models ...

…. and finding the globally best solution(s)

A realistic simulation takes typically 0,5h
In 10D, global optimization needs (say) 10000 evaluations → ~208 days

Globally optimal solutions and realistic models :
squaring the engineeting optimization circle

The computational cost is an endless obstacle to engineering
optimization.

Approaches :

● reducing the cost of the simulation : reduced models, metamodels.
● making the optimization problem easier : reducing the number of
design variables.
● Having more efficient global optimization algorithms.
● taking advantage of parallel computing infrastructures.

some topics we have been looking at lately

Outline of the talk

1. Introduction to kriging and optimization

2. Synchronous parallel EI

3. Asynchronous parallel EI

4. Embarrassingly parallel EI algorithms

5. An agent-based dynamic partitioning algorithm

parallelized global optimization algorithms ←

metamodel ← kriging

 parallelized Expected
Improvement (EI)

algorithms, dynamic
partitioning (agents).

centralized

decentralized

d
e

ci
s

io
n

Related work

Many in evolutionary computing, e.g., Branke et al., Distribution of
evolutionary algorithms in heterogeneous networks, GECCO 2004 :
island models and migration schemes adapted to heterogenous
computing ressources. Not adapted to expensive objective
functions.

Local pattern search : E.g., Kolda, Revisiting asynchronous parallel
pattern search for nonlinear optimization, SIAM J. Optimization,
2005.

Deterministic global optimization : E.g., Regis and Shoemaker,
Parallel radial basis function methods for the global optimization of
expensive functions, Eur. J. of OR, 2007. ← Closest contribution to
the current work, yet synchronous.

Problem statement, notation

x : design variables
y : numerical simulator (analytical, finite elements, coupled sub-
models …).
f and g : optimization criteria (objective function and constraints)

min
x∈S⊂ℝn

f (y (x))

g(y (x))≤0

Working assumptions : kriging (1)

Assume that f(x) can be seen as a trajectory of a stationary Gaussian
random process, F(x).
A fairly large class of functions can be represented in this way. They are parameterized by
the covariance Cov(F(x),F(x')).

(O. Roustant, HDR, 2011)

Working assumptions : kriging (2)

More precisely, assume that f(x) can be represented by a stationary
conditioned Gaussian random process (+ linear trend) : kriging,

F (x) = a0+ a1μ1(x)+ …+ aLμL(x)+ Z(x) ∣ (
F (x1)=f (x1)
…

F (xm
)=f (xm

))

mk (x
new) = μ(xnew)+cT (xnew)C−1 (f (x)−μ(x))

C k(x
new
) = C (xnew

)−cT
(xnew

)C−1c (xnew
)

m
k
 and C

k
 are analytically known.

⇒ [F (xnew
)∣F (x)=f (x)] ∼ N (mk (x

new
) ,Ck (x

new
))

For example if the linear trend is known (simple kriging) :

Kriging example

Red bullets are calculated points, (xi , f (xi))
Paths of [F (xnew

)∣F (x)=f (x)] in colour,
μ(x) black dotted line.

Kriging example

mk (x) , kriging average, black line,
±sk (x) , ±std dev. prediction interval, dotted lines.

(one point-) Expected improvement

x

f min

i(x)

A natural measure of progress : the improvement,

I (x) = [f min−F (x)]
+
∣ F (x)=f (x) , where [.]+ ≡ max (0, .)

● The expected improvement is known analytically.
● It is a parameter free measure of the exploration-intensification
compromise.
● Its maximization defines the EGO deterministic global optimization
algorithm (D. Jones, 1998).
(sequential)

EI (x)= sk (x)×(u(x)Φ(u(x))+ϕ(u(x))) , where u(x)=
f min−mk(x)

sk(x)

One EGO iteration

At each iteration, EGO adds to the t known points the one that
maximizes EI,

xt1= arg max xEI x 

then, the kriging model is updated ...

EGO : example

Outline of the talk

1. Introduction to kriging and optimization

2. Synchronous parallel EI

3. Asynchronous parallel EI

4. Embarrassingly parallel EI algorithms

5. An agent-based dynamic partitioning algorithm

From EGO to asynchronous parallel EI algorithm
Selected bibliography of the team

● D. Ginsbourger, R. Le Riche and L. Carraro, Kriging is well-suited to parallelize optimization,
CIEOP, 2010.

● D. Ginsbourger, J. Janusevskis and R. Le Riche, Dealing with asynchronicity in parallel
Gaussian Process based global optimization, Technical report hal-00507632, 2010.

● Janusevskis, J., Le Riche, R., Ginsbourger, D. and R. Girdziusas, Expected improvements for
the asynchronous parallel global optimization of expensive functions : potentials and challenges,
to be published in Learning and Intelligent Optimization, selected articles from the LION 6
Conference (Paris, Jan. 16-20, 2012), LNCS 7219, Lecture Notes in Computer Science series,
Springer Verlag, Aug. 2012

Synchronous parallel EI : flow chart

A master-worker structure between computing nodes :

Optimizer
(master)

● wait for ALL λ simulations to terminate
● retrieve results, update kriging
● calculate new x1,...,xλ :

Simulator
(worker)

f (x)

Simulator
(worker)

Simulator
(worker)ⵈ

x1 x2 xλ

max
x∈ℝλ×n

EI0,λ(x)

Synchronous parallel EI : criterion

λ nodes are available for new simulations at x1 ,…, xλ (≡ x)

Compare to the sequential 1 point EI, from the EGO algorithm :

EI0,λ
(x) = E [f min−min(F (x))]

+
∣ F (x1...m

)=f (x1...m
)

→ choose x so that they maximize the synchronous λ points EI

EI (x) ≡ EI 0,1
(x) = E [f min−F (x)]

+
∣ F (x1...m

)=f (x1...m
)

Numerical estimation of EI0,λ

Expl : 1D function (black dotted), EI 0,2(x1, x2)

10000 MC simulations

EIµ,λ not known analytically (excepted EI0,1 and EI0,2 , recent efficient
estimations by C. Chevalier and D. Ginsbourger at Bern Univ.) : Monte
Carlo estimation.

Test functions

Results with EI0,µ

(6D Rosenbrock function)

Results with EI0,λ : nuclear safety test case

● Maximization of 2D criticality model to check safety.
● Plutonium powder in storage can arrays ==> neutronic
interaction between neutronic cans.
● x

1
 : density of water between cans

● x
2
 : density of plutonium powder

● Y : neutronic reactivity of the system (>1.0 means uncontrolled
chain reaction, to be avoided)
● « true » maximum is ~0.99 .

(from Yann Richet, IRSN)

Results with EI0,λ : nuclear safety test case

(from Yann Richet, IRSN)

50
 C

P
U

 t
im

e

50
 C

P
U

 t
im

e

50
 C

P
U

 t
im

e

50
 C

P
U

 t
im

e

100 EGO runs with different
starting LHS (9 points + 4
corners)

End EGO when
either max(EI(x)) <1.e-20
or > 50 iterations

generations ~ wall clock time
if little T spread

λ = 1 (EGO)

λ = 2

λ = 4

λ = 8

Results with EI0,λ : air duct design (1)

(from ANR / OMD2 project)

min
x1,...,x8

 pressure loss

viscous, turbulent, incompressible
flow (Re=4000, ν=1.6 10-4 m2/s)

Complete simulation workflow :
Catia (CAO) + StarCCM (mesh) +
Openfoam (FE analysis), from 15
to 40 min.
Run on PACA Grid.

Results with EI0,λ : air duct design (2)

bad design
(observe large
recirculation)

optimum design
(observe smaller
recirculation)

z-velocity maps

λ=4
320 LHS points in initial DOE

Simulation crashes : from 15 % at the
beginning to 60 % at the end.

← multi-points EI are more robust to
simulation crashes than single point EI.

Limitations of EI0,µ

The number of nodes that can be used is limited by the problem to be
solved

max
x∈ℝλ×n

EI0,λ(x)

which is in dimension λ × n .

The computing nodes have different speeds and the simulations different
durations.

Time model :

λ nodes
T : time for 1 simulation, random variable , T∼U [tmin , tmax]
tO = time for 1 optimization
TWC : wall clock time for 1 generation

TWC = tO+max
i=1,λ

(t i) , E (TWC) = tO+
λ

λ+1
(tmax−tmin)+tmin ∼O (tO+tmax)

Outline of the talk

1. Introduction to kriging and optimization

2. Synchronous parallel EI

3. Asynchronous parallel EI

4. Embarassingly parallel EI algorithms

5. An agent-based dynamic partitioning algorithm

Asynchronous parallel EI : flow chart

● It allows to use m=λ+µ nodes (actually ok for any optimizer that is not
sensitive to the order of return of the points).

● EIµ,λ takes full account of past and on-going simulations.

Optimizer
● wait until ANY λ nodes are done,
● retrieve simulations & update kriging,
● calculate new x1,...,xλ :

Simulation
@ x

b
1

f (x)

ⵈ Simulation
@ x

b
µ

Simulation
@ x1

max
x∈ℝλ×n

EIμ ,λ (x)

node 1 node µ+λnode 2

Asynchronous parallel EI : criterion

λ nodes are available for new simulations at x1 ,… , xλ (≡ x)

EIμ ,λ
(x)= E [min(fmin , F (xb))−min(F (x))]

+
∣ F (x1...m

)= f (x1...m
)

Property : EIμ ,λ
(x)→0+ as x→xb

(the search is pushed away from already sampled points
which are being evaluated)

μ nodes are busy running simulations at xb
1 ,…, xb

μ (≡ xb)

EI (x) ≡ EI 0,1
(x) = E [f min−F (x)]

+
∣ F (x1...m

)=f (x1...m
)

Recall the 1 point sequential EI and the synchronous EI :

EI0,λ(x) = E [f min−min(F (x))]
+
∣ F (x1...m)=f (x1...m)

Numerical estimation of EIµ,λ

Expl : 1D function (black dotted), EI 1,2(x1, x2) , xb=−0.34
10000 Monte Carlo simulations

Time model of EIµ,λ (1)

M=λ+μ nodes
T : time for 1 simulation, random variable , T∼U [tmin , tmax]
tO = time for 1 optimization

TWC : wall clock time for 1 generation. Model :
TWC = tO+tλ :M , then tλ+1…M :M ← max [0 , t λ+1…M :M−TWC]

If time simulations ≫time optimizer, use EIμ ,1 ,
if time simulations ≪time optimizer, use EI0, λ ,
otherwise, use EIμ ,λ for task allocation.

optimizer , t
O

Simulator, t
j

Simulator, t
i

Simulator, t
1ⵈⵈ

x1 xλf (x 'λ)

f (x '1
)

Time model of EIµ,λ (2)
M=λ+μ nodes
T : time for 1 simulation, random variable , T∼U [tmin , tmax] , tmin=10

tO = time for 1 optimization
TWC : wall clock time for 1 generation. Model :
TWC= tO+t λ :M , then t λ+1…M :M ← max [0 , tλ+1…M :M−T WC]

t
O
 = 2

E (TWC) ≈ tO+
E (T λ :M)

M

Scaling :
E (TWC) →M→∞ tO

Synchronous vs. asynchronous EI’s (1)

Ex : Rank1, 9D
(idem on Michalewicz
2D and Rosenbrock 6D)

Generation wise, asynchrony slows down the search because all demanded
points are not evaluated.
But the wall clock time is much lower (× 0.093 and 0.13 for λ=1 and 4, M=32)

no
rm

al
iz

ed
 im

pr
ov

em
en

t

generation

Synchronous vs. asynchronous EI’s (2)

Ex : Michalewicz 2D

Generation wise, asynchrony slows down the search because all demanded
points are not evaluated.
But the wall clock time is much lower (× 0.093 and 0.13 for λ=1 and 4, M=32)

no
rm

al
iz

ed
 im

pr
ov

em
en

t

generation

Synchronous vs. asynchronous EI’s (3)

Ex : Rosenbrock 6D
no

rm
al

iz
ed

 im
pr

ov
em

en
t

generation

Generation wise, asynchrony slows down the search because all demanded
points are not evaluated.
But the wall clock time is much lower (× 0.093 and 0.13 for λ=1 and 4, M=32)

Effect of the µ busy points in EIµ,λ
100 runs, EI0,1 asynchronous vs. EI31,1 asynchronous, rank1 function in 9D

EI31,1 is slightly faster than EI0,1 because it avoids sending
duplicates to the nodes for evaluation.

Partial conclusions

● We have presented an asynchronous parallel expected improvement
algorithm for global optimization.

● Thanks to kriging and parallelization, it is adapted to computationally
costly objective functions (and not adapted to high dimensions).

● It has a master-slave structure, with one optimizer only.

● Scaling : when the number of nodes increases the optimization time
becomes the blocking factor.

● Solutions :
● design fast mono-optimizers
● design algorithms with many optimizers. discussed

next

Algorithms with multiple optimizers

Optimizer
(master)

Simulator
(worker)

Simulator
(worker)

Simulator
(worker)ⵈ

Optimizer

Simulator
(worker)

Simulator
(worker)

Simulator
(worker)ⵈ

Optimizer Optimizer

one optimizer

+ : decision with
all information and
ressources
- : t

O
 does not

scale with M

Many optimizers
with coordination

+ : both optimizer
and simulators
scale with M
- : decision with
partial
information /
limited ressources

Outline of the talk

1. Introduction to kriging and optimization

2. Synchronous parallel EI

3. Asynchronous parallel EI

4. Embarrassingly parallel EI algorithms

5. An agent-based dynamic partitioning algorithm

Embarrassingly parallel EI algorithms

Optimizer

Simulator
(worker)

Simulator
(worker)

Simulator
(worker)ⵈ

Optimizer Optimizer

nodes 1 nodes 2 nodes M

embarrassingly
=

no coordination

How to do it ?

● Change the initial DOE ← too costly (size(DOE) × M simulations to start).
● Divide the design space S into M fixed subdomains ← M-1 optimizations
are useless, no observed gain.
● Use M different covariance functions ← interesting research direction.

Examples follow.

Fixed search space partition : example

→ No gain observed after 40 iterations.

9D Rank1
test

function,
100 runs.

Different covariance functions : example

→ Good covariance functions (e.g., m=0.83 here) yield very efficient
optimizations.
Simple parallel implementation is a rough way to estimate them.

9D Rosenbrock
test function

 EI(0,1) = EGO
300 values of

fixed
covariance

scale
parameter
(Gaussian

kernel)

ns : random
search for

300*400 trials.

Outline of the talk

1. Introduction to kriging and optimization

2. Synchronous parallel EI

3. Asynchronous parallel EI

4. Embarrassingly parallel EI algorithms

5. An agent-based dynamic partitioning algorithm

Multiple optimizers with coordination :
An agent-based dynamic partitioning algorithm

Villanueva, Le Riche, Picard and Haftka, Dynamic partitioning for
balancing exploration and exploitation in constrained optimization,
14th AIAA/ISSMO Multidisciplinary Analysis and Optimization
Conference, Sept. 17-19, 2012, Indianapolis, USA.

Multiple optimizers with coordination :
An agent-based dynamic partitioning algorithm

1 subregion
+ 1 surrogate

+ 1 local constrained optimizer
+ 1 simulator

= 1 agent

search
space S

Agents work in parallel to collectively
solve the optimization problem :

Agent coordination through :
● update of the partition
● agent creation
● agent deletion

min
x∈S⊂ℝn

f (x)

g(x)≤0

(let’s say 1 agent is affected
to a set of computing nodes)

Agent-based dynamic partitioning algorithm
Goals

Solve a global optimization problem AND locate local optima
A method that can be used for expensive problems (thanks to the
surrogates)

The search space partitioning allows :

1) to share the
effort of finding
local optima

2) to have
surrogates
defined locally
(better for non
stationary
problems).

Agent-based dynamic partitioning algorithm
Global flow chart

form local
surrogates
f̂ , ĝ

optimize or explore :
min

x∈P i⊂S
f̂ (x) s.t. ĝ(x)≤0

or max
x∈Pi

min
xi∈P i

∣∣x−xi∣∣

x i
* ,

f (xi
*
) ,

g (x i
*
)

update
partitions P

i

Agents
● deletion
● creation

database

agent i

...

agent 1

...

parallelized processes

optimize : SQP.
surrogates : polynomial response surface (orders 1, 2 and 3), kriging (linear
or quad. trend), chosen based on cross-validation error.

Subregion definition

Subregions P
i
 are essentially defined by the centers c

i
 of the subregions : P

i

is the set of points closer to c
i
 than to other centers. P

i
 are Voronoi cells.

Dynamic partitioning

The partitioning is updated by moving the centers to the best
point in their subregion :

current = current center
new = point added to P

i
 at the last iteration and not on

boundary of P
i

if current is infeasible then
if new is less infeasible then move to new

elseif current is feasible then
if new is feasible & has better f then move

to new
end

Property : agents will stabilize at local optima.

Agent deletion and creation

Creation

Principle : the existence of 2 clusters in a subregion is a sign of at least 2
basins of attraction → split the subregion by creating a new agent.
Implementation : K-means + check on inter vs. intra class inertia + move
centers at data points.

Deletion

If two agent centers are getting too close to each other, delete the worst.

2D example with disconnected feasible regions

from Sasena, Papalembros, Goovaerts, Global optimization of problems with disconnected
feasible regions via surrogate modeling, 9th AIAA/ISSMO symposium on Multidisciplinary
Analysis and Optimization, AIAA-2002-5573.

Both f and g are considered
expensive → approximated
with surrogates.

Success at finding all local optima

1 agent System of agents

Different curves (colors) = size of initial DOE.
Fair comparisons : size of initial DOE + sum

iterations
 nb. agents = 132 (constant).

Each curve is the median of 50 repetitions.

● The partitioning is more efficient at finding all optima than repeated local
searches + exploration.

● The algorithm benefits from small initial DOEs.

Agent dynamics : number of agents

The median number of agents is between 3 and 5.

Note : there are 3 local optima.

Concluding remarks

O

S ⵈS S

O

ⵈS

O

S

O

S

O

ⵈS

O

S

O

S

We have shown examples of parallelized global optimization algorithms
that are adapted to expensive functions because they use surrogates.
They follow the three patterns :

master-slave
EIµ,λ

embarrassingly //
different surrogates

(cov. functions) for EI

// + coordination
dynamic partitioning
of the search space

Perspective : better understand what strategy is the best considering
● a function landscape,
● a computational cost / budget,
● a computing infrastructure.

Additional slides

100 runs, EI0,4 asynchronous vs. EI28,4 asynchronous, Rosenbrock function in 6D

W.r.t. EI0,4, EI28,4 better avoids sending duplicates to the nodes for evaluation.

Effect of the µ busy points in EIµ,λ

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55

