Squaring the engineering optimization circle: distributed global optimization algorithms for computationally expensive problems

Rodolphe Le Riche^{1,2}, Ramunas Girdziusas², Diane Villanueva², Gauthier Picard² and David Ginsbourger³

```
<sup>1</sup>CNRS; <sup>2</sup>Ecole des Mines de Saint-Etienne; 

<sup>3</sup>Univ. of Bern;
```

RIO 2012, Univ. de Valenciennes

Globally optimal solutions and realistic models : squaring the engineeting optimization circle

There is a demand for optimizing increasingly complex models ...

A realistic simulation takes typically 0,5h In 10D, global optimization needs (say) 10000 evaluations \rightarrow ~208 days

Globally optimal solutions and realistic models : squaring the engineeting optimization circle

The computational cost is an endless obstacle to engineering optimization.

Approaches:

- reducing the cost of the simulation : reduced models, metamodels.
- making the optimization problem easier: reducing the number of design variables.
- Having more efficient global optimization algorithms.
- taking advantage of parallel computing infrastructures.

some topics we have been looking at lately

Outline of the talk

metamodel

kriging

parallelized global optimization algorithms -

parallelized Expected Improvement (EI) algorithms, dynamic partitioning (agents).

- 1. Introduction to kriging and optimization
- 2. Synchronous parallel El
- 3. Asynchronous parallel El
- 4. Embarrassingly parallel EI algorithms
- 5. An agent-based dynamic partitioning algorithm

centralized

decentralized

Related work

Many in evolutionary computing, e.g., Branke et al., *Distribution of evolutionary algorithms in heterogeneous networks, GECCO 2004*: island models and migration schemes adapted to heterogenous computing ressources. Not adapted to expensive objective functions.

Local pattern search: E.g., Kolda, *Revisiting asynchronous parallel pattern search for nonlinear optimization*, SIAM J. Optimization, 2005.

Deterministic global optimization : E.g., Regis and Shoemaker, Parallel radial basis function methods for the global optimization of expensive functions, Eur. J. of OR, 2007. ← Closest contribution to the current work, yet synchronous.

Problem statement, notation

$$\min_{x \in S \subset \mathbb{R}^n} f(y(x))$$
$$g(y(x)) \leq 0$$

x : design variables

y: numerical simulator (analytical, finite elements, coupled submodels ...).

f and g: optimization criteria (objective function and constraints)

Working assumptions: kriging (1)

Assume that f(x) can be seen as a trajectory of a stationary Gaussian random process, F(x).

A fairly large class of functions can be represented in this way. They are parameterized by the covariance Cov(F(x),F(x')).

Working assumptions: kriging (2)

More precisely, assume that f(x) can be represented by a stationary **conditioned** Gaussian random process (+ linear trend) : kriging,

$$F(x) = a_0 + a_1 \mu_1(x) + \dots + a_L \mu_L(x) + Z(x) \mid \begin{pmatrix} F(x^1) = f(x^1) \\ \dots \\ F(x^m) = f(x^m) \end{pmatrix}$$

$$\Rightarrow \left[F(\mathbf{x}^{\mathsf{new}}) \mid F(\mathbf{x}) = f(\mathbf{x}) \right] \sim \mathsf{N}(m_k(\mathbf{x}^{\mathsf{new}}), C_k(\mathbf{x}^{\mathsf{new}}))$$

 m_k and C_k are analytically known.

For example if the linear trend is known (simple kriging):

$$\begin{split} m_{k}(\boldsymbol{x}^{\text{new}}) &= \mu(\boldsymbol{x}^{\text{new}}) + c^{T}(\boldsymbol{x}^{\text{new}})C^{-1}(f(\boldsymbol{x}) - \mu(\boldsymbol{x})) \\ C_{k}(\boldsymbol{x}^{\text{new}}) &= C(\boldsymbol{x}^{\text{new}}) - c^{T}(\boldsymbol{x}^{\text{new}})C^{-1}c(\boldsymbol{x}^{\text{new}}) \end{split}$$

Kriging example

Red bullets are calculated points, $(x_i, f(x_i))$ Paths of $[F(\mathbf{x}^{\text{new}}) | F(\mathbf{x}) = f(\mathbf{x})]$ in colour, $\mu(x)$ black dotted line.

Kriging example

 $m_k(x)$, kriging average, black line, $\pm s_k(x)$, \pm std dev. prediction interval, dotted lines.

(one point-) Expected improvement

A natural measure of progress: the improvement,

$$I(x) = [f_{\min} - F(x)]^{\dagger} | F(x) = f(x)$$
, where $[.]^{\dagger} \equiv max(0,.)$

- The expected improvement is known analytically.
- It is a parameter free measure of the exploration-intensification compromise.

• Its maximization defines the EGO deterministic global optimization

algorithm (D. Jones, 1998).

(sequential)

$$f_{\min}$$
 $i(x)$

$$EI(x) = s_k(x) \times \left(u(x)\Phi(u(x)) + \varphi(u(x))\right) \text{ , where } u(x) = \frac{f_{\min} - m_k(x)}{s_k(x)}$$

One EGO iteration

At each iteration, EGO adds to the t known points the one that maximizes EI, t+1

 $x^{t+1} = arg \, max_x EI(x)$

then, the kriging model is updated ...

EGO: example

Outline of the talk

- 1. Introduction to kriging and optimization
- 2. Synchronous parallel El
- 3. Asynchronous parallel El
- 4. Embarrassingly parallel El algorithms
- 5. An agent-based dynamic partitioning algorithm

From EGO to asynchronous parallel EI algorithm Selected bibliography of the team

- D. Ginsbourger, R. Le Riche and L. Carraro, Kriging is well-suited to parallelize optimization, CIEOP, 2010.
- D. Ginsbourger, J. Janusevskis and R. Le Riche, Dealing with asynchronicity in parallel Gaussian Process based global optimization, Technical report hal-00507632, 2010.
- Janusevskis, J., Le Riche, R., Ginsbourger, D. and R. Girdziusas, Expected improvements for the asynchronous parallel global optimization of expensive functions: potentials and challenges, to be published in Learning and Intelligent Optimization, selected articles from the LION 6 Conference (Paris, Jan. 16-20, 2012), LNCS 7219, Lecture Notes in Computer Science series, Springer Verlag, Aug. 2012

Synchronous parallel EI: flow chart

A master-worker structure between computing nodes :

Synchronous parallel EI: criterion

- λ nodes are available for new simulations at $x^1, \dots, x^{\lambda} \ (\equiv x)$
- \rightarrow choose x so that they maximize the synchronous λ points EI

$$EI^{0,\lambda}(x) = E[f_{\min} - min(F(x))]^{+} | F(x^{1...m}) = f(x^{1...m})$$

Compare to the sequential 1 point EI, from the EGO algorithm:

$$EI(x) \equiv EI^{0,1}(x) = E[f_{\min} - F(x)]^{+} | F(x^{1...m}) = f(x^{1...m})$$

Numerical estimation of $EI^{0,\lambda}$

 $EI^{\mu,\lambda}$ not known analytically (excepted $EI^{0,1}$ and $EI^{0,2}$, recent efficient estimations by C. Chevalier and D. Ginsbourger at Bern Univ.): Monte Carlo estimation.

Expl : 1D function (black dotted), $EI^{0,2}(x_{1,}x_{2})$ 10000 MC simulations

Test functions

Label	Cost function	Domain	Minimal value	Modality
"michalewicz2d" "rosenbrock6d" "rank1approx9d"	$\sum_{i=1}^{2} \sin(x_i) \sin^2(ix_i^2/\pi)$ $\sum_{i=1}^{5} 100(x_{i+1} - x_i^2)^2 + (1 - x_i)^2$ $\ \mathbf{A}_{4\times 5} - \mathbf{x}_{14}\mathbf{x}_{59}^T\ _2, a_{ij} \sim U(0, 1)^1$	$[0,5]^2$ $[0,5]^6$ $[-1,1]^9$	-1.841 0 0.712	multimodal unimodal bimodal

Results with EI^{0,µ}

(6D Rosenbrock function)

Results with $EI^{0,\lambda}$: nuclear safety test case

(from Yann Richet, IRSN)

- Maximization of 2D criticality model to check safety.
- Plutonium powder in storage can arrays ==> neutronic interaction between neutronic cans.
- x_1 : density of water between cans
- x_2 : density of plutonium powder
- *Y* : neutronic reactivity of the system (>1.0 means uncontrolled chain reaction, to be avoided)
- « true » maximum is ~0.99.

Results with $EI^{0,\lambda}$: nuclear safety test case

(from Yann Richet, IRSN)

100 EGO runs with different starting LHS (9 points + 4 corners)

End EGO when either max(EI(x)) <1.e-20 or > 50 iterations

Results with $EI^{0,\lambda}$: air duct design (1)

Results with $EI^{0,\lambda}$: air duct design (2)

 λ =4 320 LHS points in initial DOE

Simulation crashes: from 15 % at the beginning to 60 % at the end.

 multi-points EI are more robust to simulation crashes than single point EI.

Limitations of EI^{0,µ}

The number of nodes that can be used is limited by the problem to be solved

$$\max_{\boldsymbol{x}\in\mathbb{R}^{\lambda\times n}}EI^{0,\lambda}(\boldsymbol{x})$$

which is in dimension $\lambda \times n$.

The computing nodes have different speeds and the simulations different durations.

Time model:

λ nodes

T: time for 1 simulation, random variable, $T \sim U[t_{min}, t_{max}]$

 $t_O = \text{time for 1 optimization}$

 T_{WC} : wall clock time for 1 generation

$$T_{\mathit{WC}} = t_{o} + \max_{i=1,\lambda} (t^{i}) \text{ , } E(T_{\mathit{WC}}) = t_{o} + \frac{\lambda}{\lambda + 1} (t_{\mathit{max}} - t_{\mathit{min}}) + t_{\mathit{min}} \sim O(t_{o} + t_{\mathit{max}})$$

Outline of the talk

- 1. Introduction to kriging and optimization
- 2. Synchronous parallel El
- 3. Asynchronous parallel El
- 4. Embarassingly parallel El algorithms
- 5. An agent-based dynamic partitioning algorithm

Asynchronous parallel EI: flow chart

- It allows to use $m=\lambda+\mu$ nodes (actually ok for any optimizer that is not sensitive to the order of return of the points).
- $EI^{\mu,\lambda}$ takes full account of past and on-going simulations.

Asynchronous parallel EI: criterion

 λ nodes are available for new simulations at $x^1, ..., x^{\lambda} \ (\equiv x)$ μ nodes are busy running simulations at $x^1_b, ..., x^{\mu}_b \ (\equiv x_b)$

$$EI^{\mu,\lambda}(\mathbf{x}) = E\big[\min(f_{\min}, F(\mathbf{x_b})) - \min(F(\mathbf{x}))\big]^{+} \mid F(\mathbf{x}^{1\dots m}) = f(\mathbf{x}^{1\dots m})$$

Recall the 1 point sequential EI and the synchronous EI:

$$EI(x) \equiv EI^{0,1}(x) = E[f_{\min} - F(x)]^{+} | F(x^{1...m}) = f(x^{1...m})$$

$$EI^{0,\lambda}(x) = E[f_{\min} - \min(F(x))]^{+} | F(x^{1...m}) = f(x^{1...m})$$

Property: $EI^{\mu,\lambda}(x) \rightarrow 0^+$ as $x \rightarrow x_b$ (the search is pushed away from already sampled points which are being evaluated)

Numerical estimation of $EI^{\mu,\lambda}$

Expl : 1D function (black dotted), $EI^{1,2}(x_1, x_2)$, $x_b = -0.34$ 10000 Monte Carlo simulations

Time model of $EI^{\mu,\lambda}$ (1)

If time simulations \gg time optimizer, use $EI^{\mu,1}$, if time simulations \ll time optimizer, use $EI^{0,\lambda}$, otherwise, use $EI^{\mu,\lambda}$ for task allocation.

 $M = \lambda + \mu$ nodes

T: time for 1 simulation, random variable, $T \sim U\left[t_{min}, t_{max}\right]$ $t_O =$ time for 1 optimization

 $T_{\it WC}$: wall clock time for 1 generation. Model:

$$T_{\mathit{WC}} = t_O + t_{\lambda:\mathit{M}} \quad \text{, then} \quad t_{\lambda+1...\mathit{M}:\mathit{M}} \leftarrow \mathit{max} \big[0 \ , \ t_{\lambda+1...\mathit{M}:\mathit{M}} - T_{\mathit{WC}} \big]$$

Time model of $EI^{\mu,\lambda}$ (2)

 $M = \lambda + \mu$ nodes

T: time for 1 simulation, random variable, $T \sim U[t_{min}, t_{max}]$, $t_{min} = 10$

 $t_O = \text{time for 1 optimization}$

 $T_{\it WC}$: wall clock time for 1 generation. Model:

$$T_{\mathit{WC}} = t_O + t_{\lambda:\mathit{M}} \ \, \text{, then} \ \, t_{\lambda+1...\mathit{M}:\mathit{M}} \leftarrow \mathit{max} \big[0 \, \, \text{,} \, \, t_{\lambda+1...\mathit{M}:\mathit{M}} - T_{\mathit{WC}} \big]$$

Synchronous vs. asynchronous El's (1)

Ex : Rank1, 9D (idem on Michalewicz 2D and Rosenbrock 6D)

Generation wise, asynchrony slows down the search because all demanded points are not evaluated.

But the wall clock time is much lower (× 0.093 and 0.13 for λ =1 and 4, M=32)

Synchronous vs. asynchronous El's (2)

Generation wise, asynchrony slows down the search because all demanded points are not evaluated.

But the wall clock time is much lower (× 0.093 and 0.13 for λ =1 and 4, M=32)

Synchronous vs. asynchronous El's (3)

Ex: Rosenbrock 6D

Generation wise, asynchrony slows down the search because all demanded points are not evaluated.

But the wall clock time is much lower (× 0.093 and 0.13 for λ =1 and 4, M=32)

Effect of the μ busy points in $EI^{\mu,\lambda}$

100 runs, $EI^{0,1}$ asynchronous vs. $EI^{31,1}$ asynchronous, rank1 function in 9D

 $El^{31,1}$ is slightly faster than $El^{0,1}$ because it avoids sending duplicates to the nodes for evaluation.

Partial conclusions

- We have presented an asynchronous parallel expected improvement algorithm for global optimization.
- Thanks to kriging and parallelization, it is adapted to computationally costly objective functions (and not adapted to high dimensions).
- It has a master-slave structure, with one optimizer only.
- Scaling: when the number of nodes increases the optimization time becomes the blocking factor.
- Solutions :
 - design fast mono-optimizers
 - design algorithms with many optimizers.

discussed next

Algorithms with multiple optimizers

one optimizer

- +: decision with all information and ressources-: t does not
- scale with M

Many optimizers with coordination

- +: both optimizer and simulators scale with M
- -: decision with partial information / limited ressources

Outline of the talk

- 1. Introduction to kriging and optimization
- 2. Synchronous parallel El
- 3. Asynchronous parallel El
- 4. Embarrassingly parallel El algorithms
- 5. An agent-based dynamic partitioning algorithm

Embarrassingly parallel EI algorithms

embarrassingly = no coordination Simulator (worker) Simulator (worker) Simulator (worker) Market Simulator (worker)

How to do it?

- Change the initial DOE \leftarrow too costly ($size(DOE) \times M$ simulations to start).
- Divide the design space S into M fixed subdomains \leftarrow M-1 optimizations are useless, no observed gain.
- Use M different covariance functions ← interesting research direction.

Examples follow.

Fixed search space partition: example

→ No gain observed after 40 iterations.

Different covariance functions : example

→ Good covariance functions (e.g., m=0.83 here) yield very efficient optimizations.

Simple parallel implementation is a rough way to estimate them.

Outline of the talk

- 1. Introduction to kriging and optimization
- 2. Synchronous parallel El
- 3. Asynchronous parallel El
- 4. Embarrassingly parallel EI algorithms
- 5. An agent-based dynamic partitioning algorithm

Multiple optimizers with coordination : An agent-based dynamic partitioning algorithm

Villanueva, Le Riche, Picard and Haftka, *Dynamic partitioning for balancing exploration and exploitation in constrained optimization*, 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Sept. 17-19, 2012, Indianapolis, USA.

Multiple optimizers with coordination : An agent-based dynamic partitioning algorithm

1 subregion + 1 surrogate + 1 local constrained optimizer + 1 simulator

Agents work in parallel to collectively solve the optimization problem :

$$\min_{x \in S \subset \mathbb{R}^n} f(x)$$
$$g(x) \le 0$$

Agent coordination through:

- update of the partition
- agent creation
- agent deletion

(let's say 1 agent is affected to a set of computing nodes)

Agent-based dynamic partitioning algorithm Goals

Solve a global optimization problem AND locate local optima A method that can be used for expensive problems (thanks to the surrogates)

The search space partitioning allows:

- 1) to share the effort of finding local optima
- 2) to have surrogates defined locally (better for non stationary problems).

Agent-based dynamic partitioning algorithm Global flow chart

optimize: SQP.

surrogates: polynomial response surface (orders 1, 2 and 3), kriging (linear or quad. trend), chosen based on cross-validation error.

Subregion definition

Subregions P_i are essentially defined by the centers c_i of the subregions : P_i is the set of points closer to c_i than to other centers. P_i are Voronoi cells.

Dynamic partitioning

The partitioning is updated by moving the centers to the best point in their subregion :

Property: agents will stabilize at local optima.

Agent deletion and creation

Deletion

If two agent centers are getting too close to each other, delete the worst.

Creation

Principle: the existence of 2 clusters in a subregion is a sign of at least 2 basins of attraction \rightarrow split the subregion by creating a new agent. *Implementation*: K-means + check on inter vs. intra class inertia + move centers at data points.

2D example with disconnected feasible regions

minimize
$$f(x) = -(x_1 - 10)^2 - (x_2 - 15)^2$$

subject to $g(x) = \left(x_2 - \frac{5 \cdot 1}{4\pi^2}x_1^2 + \frac{5}{\pi}x_1 - 6\right) + \cdots$
 $10\left(1 - \frac{1}{8\pi}\right)\cos(x_1) + 10 - 2 \le 0$
 $-5 \le x_1 \le 10$
 $0 \le x_2 \le 15$

Both f and g are considered expensive \rightarrow approximated with surrogates.

from Sasena, Papalembros, Goovaerts, Global optimization of problems with disconnected feasible regions via surrogate modeling, 9th AIAA/ISSMO symposium on Multidisciplinary Analysis and Optimization, AIAA-2002-5573.

Success at finding all local optima

Different curves (colors) = size of initial DOE. Fair comparisons : size of initial DOE + $sum_{iterations}$ nb. agents = 132 (constant). Each curve is the median of 50 repetitions.

- The partitioning is more efficient at finding all optima than repeated local searches + exploration.
- The algorithm benefits from small initial DOEs.

Agent dynamics : number of agents

The median number of agents is between 3 and 5.

Note: there are 3 local optima.

Concluding remarks

We have shown examples of parallelized global optimization algorithms that are adapted to expensive functions because they use surrogates. They follow the three patterns:

 $FI^{\mu,\lambda}$

embarrassingly //
different surrogates
(cov. functions) for EI

// + coordination
dynamic partitioning
of the search space

Perspective: better understand what strategy is the best considering

- a function landscape,
- a computational cost / budget,
- a computing infrastructure.

Additional slides

Effect of the μ busy points in $EI^{\mu,\lambda}$

100 runs, $El^{0,4}$ asynchronous vs. $El^{28,4}$ asynchronous, Rosenbrock function in 6D

W.r.t. $El^{0,4}$, $El^{28,4}$ better avoids sending duplicates to the nodes for evaluation.