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Globally optimal solutions and realistic models : 
squaring the engineeting optimization circle

There is a demand for optimizing increasingly complex models ...

…. and finding the globally best solution(s)

A realistic simulation takes typically 0,5h
In 10D, global optimization needs (say) 10000 evaluations → ~208 days  



  

Globally optimal solutions and realistic models : 
squaring the engineeting optimization circle

The computational cost is an endless obstacle to engineering 
optimization.

Approaches : 

● reducing the cost of the simulation : reduced models, metamodels.
● making the optimization problem easier : reducing the number of 
design variables.
● Having more efficient global optimization algorithms.
● taking advantage of parallel computing infrastructures.

  

some topics we have been looking at lately



  

Outline of the talk

1. Introduction to kriging and optimization

2. Synchronous parallel EI

3. Asynchronous parallel EI

4. Embarrassingly parallel EI algorithms

5. An agent-based dynamic partitioning algorithm 

parallelized global optimization algorithms ←

metamodel ←  kriging

 parallelized Expected 
Improvement (EI) 

algorithms, dynamic 
partitioning (agents).

centralized

decentralized
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Related work 

Many in evolutionary computing, e.g., Branke et al., Distribution of 
evolutionary algorithms in heterogeneous networks, GECCO 2004 : 
island models and migration schemes adapted to heterogenous 
computing ressources. Not adapted to expensive objective 
functions.

Local pattern search : E.g., Kolda, Revisiting asynchronous parallel 
pattern search for nonlinear optimization, SIAM J. Optimization, 
2005.

Deterministic global optimization : E.g., Regis and Shoemaker, 
Parallel radial basis function methods for the global optimization of 
expensive functions, Eur. J. of OR, 2007. ←  Closest contribution to 
the current work, yet synchronous.



  

Problem statement, notation

x : design variables 
y : numerical simulator (analytical, finite elements, coupled sub-
models …).
f and g : optimization criteria (objective function and constraints)

min
x∈S⊂ℝn

f ( y (x))

g( y (x))≤0



  

Working assumptions : kriging  (1)

Assume that f(x) can be seen as a trajectory of a stationary Gaussian  
random process, F(x). 
A fairly large class of functions can be represented in this way. They are parameterized by 
the covariance Cov(F(x),F(x')).

(O. Roustant, HDR, 2011)



  

Working assumptions : kriging  (2)

More precisely, assume that f(x) can be represented by a stationary 
conditioned Gaussian  random process (+ linear trend) : kriging,

F (x) = a0+ a1μ1(x)+ …+ aLμL(x)+ Z(x) ∣ (
F (x1)=f (x1)
…

F (xm
)=f (xm

))

mk (x
new) = μ(xnew)+cT (xnew)C−1 ( f (x)−μ(x))

C k(x
new
) = C (xnew

)−cT
(xnew

)C−1c (xnew
)

m
k
 and C

k
 are analytically known. 

⇒ [F (xnew
)∣F (x)=f (x)] ∼ N (mk (x

new
) ,Ck (x

new
))

For example if the linear trend is known (simple kriging) : 



  

Kriging example

Red bullets are calculated points, (xi , f (xi))
Paths of [F (xnew

)∣F (x)=f (x)] in colour,
μ(x)  black dotted line.



  

Kriging example

mk (x) , kriging average, black line,
±sk (x) , ±std dev. prediction interval, dotted lines.



  

(one point-) Expected improvement

x

f min

i(x)

A natural measure of progress : the improvement,

I (x) = [f min−F (x) ]
+
∣ F (x)=f (x) , where [.]+ ≡ max (0, .)

● The expected improvement is known analytically. 
● It is a parameter free measure of the exploration-intensification 
compromise. 
● Its maximization defines the EGO deterministic global optimization 
algorithm (D. Jones, 1998). 
(sequential)

EI (x)= sk (x)×(u(x)Φ(u(x ))+ϕ(u(x ))) ,  where u(x )=
f min−mk(x)

sk(x)



  

One EGO iteration

At each iteration, EGO adds to the t known points the one that 
maximizes EI,

xt1= arg max xEI x 

then, the kriging model is updated ...



  

EGO : example



  

Outline of the talk

1. Introduction to kriging and optimization

2. Synchronous parallel EI

3. Asynchronous parallel EI

4. Embarrassingly parallel EI algorithms

5. An agent-based dynamic partitioning algorithm 



  

From EGO to asynchronous parallel EI algorithm
Selected bibliography of the team

● D. Ginsbourger, R. Le Riche and L. Carraro, Kriging is well-suited to parallelize optimization, 
CIEOP, 2010.

● D. Ginsbourger, J. Janusevskis and R. Le Riche, Dealing with asynchronicity in parallel 
Gaussian Process based global optimization, Technical report hal-00507632, 2010. 

● Janusevskis, J., Le Riche, R., Ginsbourger, D. and R. Girdziusas, Expected improvements for 
the asynchronous parallel global optimization of expensive functions : potentials and challenges, 
to be published in Learning and Intelligent Optimization, selected articles from the LION 6 
Conference (Paris, Jan. 16-20, 2012), LNCS 7219, Lecture Notes in Computer Science series, 
Springer Verlag, Aug. 2012



  

Synchronous parallel EI : flow chart

A master-worker structure between computing nodes :

Optimizer
(master)

● wait for ALL λ simulations to terminate
● retrieve results, update kriging
● calculate new x1,...,xλ :

Simulator
(worker)

f (x)

Simulator
(worker)

Simulator
(worker)ⵈ

x1 x2 xλ

max
x∈ℝλ×n

EI0,λ(x)



  

Synchronous parallel EI : criterion

λ  nodes are available for new simulations at x1 ,…, xλ (≡ x)

Compare to the sequential 1 point EI, from the EGO algorithm : 

EI0,λ
(x) = E [ f min−min(F (x))]

+
∣ F (x1...m

)=f (x1...m
)

→ choose x so that they maximize the synchronous λ points EI

EI (x) ≡ EI 0,1
(x) = E [ f min−F (x)]

+
∣ F (x1...m

)=f (x1...m
)



  

Numerical estimation of EI0,λ

Expl : 1D function (black dotted), EI 0,2(x1, x2)

10000 MC simulations

EIµ,λ not known analytically  ( excepted  EI0,1 and EI0,2 , recent efficient 
estimations by C. Chevalier and D. Ginsbourger at Bern Univ.) : Monte 
Carlo estimation.



  

Test functions



  

Results with EI0,µ

( 6D Rosenbrock function )



  

Results with EI0,λ : nuclear safety test case

● Maximization of 2D criticality model to check safety.
● Plutonium powder in storage can arrays ==> neutronic 
interaction between neutronic cans.
● x

1
 : density of water between cans

● x
2
 : density of plutonium powder

● Y : neutronic reactivity of the system (>1.0 means uncontrolled 
chain reaction, to be avoided)
● « true » maximum is ~0.99 .

( from Yann Richet, IRSN )



  

Results with EI0,λ : nuclear safety test case

( from Yann Richet, IRSN )
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100 EGO runs with different 
starting LHS (9 points + 4 
corners)

End EGO when 
either max(EI(x)) <1.e-20
or > 50 iterations

generations ~ wall clock time
if little T spread

λ = 1 (EGO)

λ = 2

λ = 4

λ = 8



  

Results with EI0,λ : air duct design (1)

( from ANR / OMD2 project )

min
x1,...,x8

 pressure loss

viscous, turbulent, incompressible 
flow (Re=4000, ν=1.6 10-4 m2/s)

Complete simulation workflow : 
Catia (CAO) + StarCCM (mesh) + 
Openfoam (FE analysis), from 15 
to 40 min.
Run on PACA Grid.



  

Results with EI0,λ : air duct design (2)

bad design
(observe large 
recirculation)

optimum design
(observe smaller 
recirculation)

z-velocity maps

λ=4
320 LHS points in initial DOE

Simulation crashes : from 15 % at the 
beginning to 60 % at the end.

← multi-points EI are more robust to 
simulation crashes than single point EI.



  

Limitations of EI0,µ

The number of nodes that can be used is limited by the problem to be 
solved

max
x∈ℝλ×n

EI0,λ(x)

which is in dimension  λ × n  .

The computing nodes have different speeds and the simulations different 
durations. 

Time model :
 
λ nodes
T : time for 1 simulation, random variable , T∼U [ tmin , tmax ]
tO = time for 1 optimization
TWC : wall clock time for 1 generation

TWC = tO+max
i=1,λ

(t i) , E (TWC) = tO+
λ

λ+1
(tmax−tmin)+tmin ∼O (tO+tmax)



  

Outline of the talk

1. Introduction to kriging and optimization

2. Synchronous parallel EI

3. Asynchronous parallel EI

4. Embarassingly parallel EI algorithms

5. An agent-based dynamic partitioning algorithm 



  

Asynchronous parallel EI : flow chart

● It allows to use m=λ+µ  nodes (actually ok for any optimizer that is not 
sensitive to the order of return of the points). 

● EIµ,λ takes full account of past and on-going simulations.

Optimizer 
● wait until ANY λ nodes are done,
● retrieve simulations & update kriging,
● calculate new x1,...,xλ :

Simulation 
@ x

b
1

f (x)

ⵈ Simulation 
@ x

b
µ

Simulation 
@ x1

max
x∈ℝλ×n

EIμ ,λ (x)

node 1 node µ+λnode 2



  

Asynchronous parallel EI : criterion

λ  nodes are available for new simulations at x1 ,… , xλ ( ≡ x)

EIμ ,λ
(x)= E [min( fmin , F (xb))−min(F (x))]

+
∣ F (x1...m

)= f (x1...m
)

Property : EIμ ,λ
(x)→0+   as  x→xb

(the search is pushed away from already sampled points
which are being evaluated)

μ  nodes are busy running simulations at xb
1 ,…, xb

μ ( ≡ xb)

EI (x) ≡ EI 0,1
(x) = E [ f min−F (x)]

+
∣ F (x1...m

)=f (x1...m
)

Recall the 1 point sequential EI and the synchronous EI : 

EI0,λ(x) = E [ f min−min(F (x))]
+
∣ F (x1...m)=f (x1...m)



  

Numerical estimation of EIµ,λ 

Expl : 1D function (black dotted), EI 1,2(x1, x2) , xb=−0.34
10000 Monte Carlo simulations



  

Time model of EIµ,λ   (1)

M=λ+μ nodes
T : time for 1 simulation, random variable , T∼U [ tmin , tmax ]
tO = time for 1 optimization

TWC : wall clock time for 1 generation. Model : 
TWC = tO+tλ :M , then  tλ+1…M :M ← max [0 , t λ+1…M :M−TWC ]

If time simulations ≫time optimizer, use EIμ ,1  ,
if time simulations ≪time optimizer, use EI0, λ  ,
otherwise, use EIμ ,λ  for task allocation.

optimizer , t
O

Simulator, t
j

Simulator, t
i

Simulator, t
1ⵈⵈ

x1 xλf (x 'λ)

f (x '1
)



  

Time model of EIµ,λ (2)
M=λ+μ nodes
T : time for 1 simulation, random variable , T∼U [ tmin , tmax ] , tmin=10

tO = time for 1 optimization
TWC : wall clock time for 1 generation. Model : 
TWC= tO+t λ :M , then  t λ+1…M :M ← max [0 , tλ+1…M :M−T WC ]

t
O
 = 2

E (TWC) ≈ tO+
E (T λ :M )

M

Scaling :
E (TWC) →M→∞ tO



  

Synchronous vs. asynchronous EI’s (1)

Ex : Rank1, 9D
(idem on Michalewicz 
2D and Rosenbrock 6D)

Generation wise, asynchrony slows down the search because all demanded 
points are not evaluated.
But the wall clock time is much lower (× 0.093 and 0.13 for λ=1 and 4, M=32 ) 
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Synchronous vs. asynchronous EI’s  (2)

Ex :  Michalewicz 2D 

Generation wise, asynchrony slows down the search because all demanded 
points are not evaluated.
But the wall clock time is much lower (× 0.093 and 0.13 for λ=1 and 4, M=32 ) 
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Synchronous vs. asynchronous EI’s  (3)

Ex :  Rosenbrock 6D 
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Generation wise, asynchrony slows down the search because all demanded 
points are not evaluated.
But the wall clock time is much lower (× 0.093 and 0.13 for λ=1 and 4, M=32 ) 



  

Effect of the µ busy points in EIµ,λ 
100 runs, EI0,1 asynchronous vs. EI31,1 asynchronous, rank1 function in 9D

EI31,1  is slightly faster than EI0,1 because it avoids sending 
duplicates to the nodes for evaluation.



  

Partial conclusions

● We have presented an asynchronous parallel expected improvement 
algorithm for global optimization.

● Thanks to kriging and parallelization, it is adapted to computationally 
costly objective functions (and not adapted to high dimensions).

● It has a master-slave structure, with one optimizer only.

● Scaling : when the number of nodes increases the optimization time 
becomes the blocking factor.

● Solutions : 
● design fast mono-optimizers
● design algorithms with many optimizers. discussed 

next



  

Algorithms with multiple optimizers

Optimizer
(master)

Simulator
(worker)

Simulator
(worker)

Simulator
(worker)ⵈ

Optimizer

Simulator
(worker)

Simulator
(worker)

Simulator
(worker)ⵈ

Optimizer Optimizer

one optimizer

+ :  decision with 
all information and 
ressources
- : t

O
 does not 

scale with M

Many optimizers
with coordination

+ : both optimizer 
and simulators 
scale with M
- : decision with 
partial 
information / 
limited ressources
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1. Introduction to kriging and optimization

2. Synchronous parallel EI

3. Asynchronous parallel EI

4. Embarrassingly parallel EI algorithms

5. An agent-based dynamic partitioning algorithm 



  

Embarrassingly parallel EI algorithms

Optimizer

Simulator
(worker)

Simulator
(worker)

Simulator
(worker)ⵈ

Optimizer Optimizer

nodes 1 nodes 2 nodes M

embarrassingly 
=

no coordination

How to do it ?

● Change the initial DOE ← too costly ( size(DOE) × M simulations to start ).
● Divide the design space S into M fixed subdomains  ← M-1 optimizations 
are useless, no observed gain.
● Use M different covariance functions ← interesting research direction.

Examples follow.



  

Fixed search space partition : example

→ No gain observed after 40 iterations.

9D Rank1 
test 

function, 
100 runs.



  

Different covariance functions : example

→ Good covariance functions (e.g., m=0.83 here) yield very efficient 
optimizations. 
Simple parallel implementation is a rough way to estimate them.

9D Rosenbrock 
test function

 EI(0,1) = EGO
300 values of 

fixed 
covariance 

scale 
parameter 
(Gaussian 

kernel)

ns : random 
search for 

300*400 trials.
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Multiple optimizers with coordination : 
An agent-based dynamic partitioning algorithm

Villanueva, Le Riche, Picard and Haftka, Dynamic partitioning for 
balancing exploration and exploitation in constrained optimization, 
14th AIAA/ISSMO Multidisciplinary Analysis and Optimization 
Conference, Sept. 17-19, 2012, Indianapolis, USA.



  

Multiple optimizers with coordination : 
An agent-based dynamic partitioning algorithm

1 subregion
+ 1 surrogate

+ 1 local constrained optimizer
+ 1 simulator

= 1 agent

search 
space S

Agents work in parallel to collectively 
solve the optimization problem :

Agent coordination through :
● update of the partition
● agent creation
● agent deletion

min
x∈S⊂ℝn

f (x )

g(x)≤0

( let’s say 1 agent is affected 
to a set of computing nodes )



  

Agent-based dynamic partitioning algorithm
Goals

Solve a global optimization problem AND locate local optima
A method that can be used for expensive problems (thanks to the 
surrogates)

The search space partitioning allows : 

1) to share the 
effort of finding 
local optima

2) to have 
surrogates 
defined locally 
(better for non 
stationary 
problems).



  

Agent-based dynamic partitioning algorithm
Global flow chart

form local
surrogates
f̂ , ĝ

optimize or explore :
min

x∈P i⊂S
f̂ (x)  s.t. ĝ(x)≤0

or  max
x∈Pi

min
xi∈P i

∣∣x−xi∣∣

x i
* ,

f (xi
*
) ,

g (x i
*
)

update 
partitions P

i

Agents
● deletion
● creation

database

agent i

...

agent 1

...

parallelized processes

optimize : SQP.
surrogates : polynomial response surface (orders 1, 2 and 3), kriging (linear 
or quad. trend), chosen based on cross-validation error.



  

Subregion definition

Subregions P
i
 are essentially defined by the centers c

i
 of the subregions : P

i  

is the set of points closer to c
i
 than to other centers. P

i
 are Voronoi cells.



  

Dynamic partitioning

The partitioning is updated by moving the centers to the best 
point in their subregion :

current = current center
new = point added to P

i
 at the last iteration and not on 

boundary of P
i

if current is infeasible then
if new is less infeasible then move to new

elseif current is feasible then
if new is feasible & has better f then move 

to new
end
 

Property : agents will stabilize at local optima.



  

Agent deletion and creation

Creation

Principle : the existence of 2 clusters in a subregion is a sign of at least 2 
basins of attraction → split the subregion by creating a new agent.
Implementation : K-means + check on inter vs. intra class inertia + move 
centers at data points.

Deletion

If two agent centers are getting too close to each other, delete the worst.



  

2D example with disconnected feasible regions

from Sasena, Papalembros, Goovaerts, Global optimization of problems with disconnected 
feasible regions via surrogate modeling, 9th AIAA/ISSMO symposium on Multidisciplinary 
Analysis and Optimization, AIAA-2002-5573.

Both f and g are considered 
expensive → approximated 
with surrogates.



  

Success at finding all local optima

1 agent System of agents

Different curves (colors) = size of initial DOE.
Fair comparisons : size of initial DOE + sum

iterations
 nb. agents = 132   (constant).

Each curve is the median of 50 repetitions.

● The partitioning is more efficient at finding all optima than repeated local 
searches + exploration.

● The algorithm benefits from small initial DOEs.



  

Agent dynamics : number of agents

The median number of agents is between 3 and 5.

Note : there are 3 local optima.



  

Concluding remarks
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We have shown examples of parallelized global optimization algorithms 
that are adapted to expensive functions because they use surrogates. 
They follow the three patterns : 

master-slave 
EIµ,λ

embarrassingly //
different surrogates 

(cov. functions) for EI

// + coordination
dynamic partitioning 
of the search space

Perspective : better understand what strategy is the best considering
● a function landscape,
● a computational cost / budget,
● a computing infrastructure.



  

Additional slides



  

100 runs, EI0,4 asynchronous vs. EI28,4 asynchronous, Rosenbrock function in 6D

W.r.t. EI0,4,    EI28,4  better avoids sending duplicates to the nodes for evaluation.

Effect of the µ busy points in EIµ,λ 
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