
Product family optimization: a multiplatform algorithm

based on iterative increase of the commonality

Derrick Fongang Fongang, Rodolphe Le Riche, Xavier Bay

To cite this version:

Derrick Fongang Fongang, Rodolphe Le Riche, Xavier Bay. Product family optimization: a
multiplatform algorithm based on iterative increase of the commonality. Quatorzième congrès
annuel de la Société Française de recherche Opérationnelle et d’Aide à la Décision (ROADEF
2013), Feb 2013, Troyes, France. pp.Session 36 : Programmation Mathématique MultiObjectifs
(PM2O), 2013. <emse-00796767>

HAL Id: emse-00796767

https://hal-emse.ccsd.cnrs.fr/emse-00796767

Submitted on 5 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-EMSE

https://core.ac.uk/display/52619584?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal-emse.ccsd.cnrs.fr/emse-00796767


Product family optimization: a multiplatform algorithm based

on iterative increase of the commonality

Derrick Fongang Fongang1,2, Rodolphe Le Riche1,2, Xavier Bay1,2

1 Inst. H. Fayol , Ecole des Mines de Saint-Etienne

158, Cours Fauriel, 42 023 Saint-Etienne cedex, France

{fongang, leriche, bay}@emse.fr
2 CNRS UMR 6158 LIMOS

Keywords : product family, product platform, multicrieria optimization, mixed-integer non

linear programming.

1 Context

This work addresses the problem of optimizing the design of a family of products and simul-
taneously maximizing the commonality between these products. By commonality, we mean
the proportion of components that are shared between the products. The set of all compo-
nents common to all products is called platform [2, 3]. We consider here the multiplatform
problem that allows the commonality to start as soon as one component is common to two
products. The multiplatform formulation encompasses every possible case of commonality and
leads to a highly complex optimization problem: for NP products, of each N design vari-
ables, there are (BNP

)N multiplatform configurations (BNP
is the N th

P number of Bell). In
this paper, we propose an algorithm to tackle this multiplatform product family optimization.
Similarly to [1, 3] , we will estimate the Pareto front between an aggregation of the prod-
ucts engineering performance and the family commonality. The proposed method is based
on a quadratic approximation of the product performance functions and has a complexity of
O(N × N2

P × log(NP )), which is much better than the complexity of any enumeration strategy
((BNP

)N ).

2 Mathematical formulation

Considering a family of NP products, we call xi ∈ R
N and f i, i = 1, . . . , NP , the design

attribute values and the performance functions of the products P i respectively. Let V be a list
of N matrices vj = (vi1,i2

j ), (1 ≤ j ≤ N and 1 ≤ i1, i2 ≤ NP ), that described the commonality
within the products family.

v
i1,i2

j =

{

1, if xi1

j = xi2

j

0, otherwise
with 1 ≤ i1, i2 ≤ NP (1)

For example, in the automotive industry, P i could be a manufacturer’s car range, xi the
car body parameters of P i, and f i its crash-worthiness. Maximizing the family commonality
is equivalent to minimize the number of degrees of freedom D, that is equal to the number
of independant variables. The Equation 2 hereafter gives a mathematical formulation of this
problem.

























































min
X,V

D(V )

and min
X,V

NP
∑

i=1

f i(xi)

where X = (x1, x2, . . . , xNP )

and V = (v1, v2, . . . , vN )

s.t. v
i1,i2

j .(xi1

j − xi2

j ) = 0

(2)

A two-stage enumeration algorithm consists in first sampling all the possible partitions (all the
possible V values), second solving for each V the continous optimization problem in X and
keeping the optimal solutions as points of the Pareto front. In Figure (1), each point represents
one value of (V, X), with its corresponding number of degrees of freedom D on the x-axis, and
its aggregated performance function on the y-axis.

3 One step ReDuction Algorithm (ORDA) in one dimension

To reduce the number of degrees of freedom by one, we should first choose one design variable,
xj , and then select two products P i1 and P i2 that will share the same value for that design

variable, which means v
i1,i2

j = 1 and xi1

j − xi2

j = 0. In this section, we suppose the parameter
xj already chosen (so that we temporarily drop the subscript). The idea behind the ORDA
algorithm is to order all the possible pairs of products, and to pick the pair (k, l) that increases
the least the aggregated engineering performance function when merged. Let qi be a quadratic
approximation of the function f i around its non-platform optima. The implementation of

Algorithm 1 : ORDA algorithm

Require: Q, the list of all the functions qi, 1 ≤ i ≤ NP

PQ, the list of #Q(#Q−1)
2 pairs of functions ordered by increasing ∆k•l(cf. Equations 6 & 3)

Begin
pick the first pair (qk, ql) from PQ

create the function qk•l(x) = qk(x) + ql(x) by merging the hyper-variables xk, xl

delete qk and ql from Q

Update PQ:
delete from PQ all the pairs that contain qk or ql

insert in the ordered PQ all new pairs obtained with qk•l and other functions from Q

Update Q:
add the function qk•l to Q.

return Q,PQ

End

ORDA is based on the quadratic nature of the functions qi’s:

qi(xi) =
1

2
hi(x

i)2 + aix
i + bi (3)

where hi > 0, ai and bi are scalars. When xk and xl are common, the new function qk•l is :

qk•l(xk•l) =
1

2
(hk + hl)(x

k•l)2 + (ak + al)x
k•l + (bk + bl) (4)

Thus, in the ORDA algorithm, to find the pair of variables to set equal, we should solve:

min
1≤k<l≤Np

min
X



qk•l +
∑

1≤i6=k,l≤Np

qi



 (5)



where X accounts for the merged k and l variables. Using the Equation 3 and 4, Equation 5
is equivalent to minimizing on k and l, ∆k•l. We denote:

∆∗ = min
1≤k<l≤Np

(

∆k•l = −
(ak + al)

2

(hk + hl)
+ (

a2
k

hk

+
a2

l

hl

)

)

(6)

4 The general ORDA algorithm

Repeated applications of the one dimensional ORDA reduction algorithm can serve as a build-
ing block to approximate the commonality-engineering performance Pareto front in the general
case. The algorithm starts from the extremity where all the design attributes are different (no
platform) and moves step by step by either creating a new two elements platform or by adding
one element to an existing platform. These steps can be suboptimal as it is possible that the
optimal reduction of one degree of freedom involves a complete reorganization of the platforms.

Generalization of the ORDA algorithm to many dimensions is also straightforwardï¿1
2 : again,

the idea is to make a quadratic approximation qi of the performance function for each product
P i around its no platform optima. We denote by qi

j the restriction of qi to its variable xi
j . The

coefficients of the quadratic functions qi
j which depend on the xi

k, k 6= j, need to be updated.
The algorithm 2 summarizes the procedure to follow.

Algorithm 2 : Multi-dimensional repeated ORDA algorithm (rORDA)

Require: Q, the list of all the functions qi
j , 1 ≤ i ≤ NP , 1 ≤ j ≤ N

PQ, an ordered list of all the pairs of qi
j functions 1 ≤ i ≤ NP , 1 ≤ j ≤ N

while the targeted commonality is not reached (D(V ) > Dtarget) do
for all dimensions t = 1, . . . , N do

apply ORDA to the tth dimension, get the performance degradation ∆∗
t

end for
choose the dimension j that optimizes the most, when reducing by one the number of
degrees of freedom (j = arg mint=1,...,N ∆∗

t ) (cf. Equation 6)
Record optimized variables (V ∗, X∗)
update Q and PQ

end while
return the (sum of qi performance, D) Pareto front approximation from the list of recorded
(V ∗, X∗) variables

Multiplatform products family optimization is a complex problem: with NP products of
N design variables each, there are (BNP

)N possible multiplatform configurations for which a
continuous optimization needs to be done. BNP

, the Bell number, is the number of partitions of
a set of size NP and it has a complexity of order O

(

(NP log(NP ))NP
)

. With NP = 11 and N =
1, there are B11 = 678570 possible partitions (V values). It can be seen that the complexity
of the ORDA algorithm is induced by sorting the pairs of merged performances (∆k,l) and
is O(N2

P log(NP )). The overall algorithm complexity is O(N × N2
P log(NP )). The Figure (1)

shows an example of Pareto front and its approximation built with NP = 11 products. The
Table 1 describes the associated 11 quadratic functions. The dashed line represents the true
Pareto front as obtained by enumerating all possible partitions (i.e., multiplatforms) while the
solid line represents the ORDA approximation of the Pareto front. The three first variables
that are merged by the ORDA algorithm are optimal, in the sense that the algorithm remains
on the true Pareto front. The fourth merged variable, when going from D = 8 to 7 degrees of
freedom, is suboptimal, yet the approximation errors to the true Pareto front seems bounded
as a near optimal solution is found at D = 5.



FIG. 1: Example of commonality / performance compromise with 11 quadratic functions. Dashed

lineï¿ 1

2
: the true Pareto front. Solid lineï¿1

2
: approximation of the Pareto front obtained by successive

ORDA calls. The functions are described in Table 1.

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11

h 55 45 75 25 15 85 5 65 12 33 70
a 4.1 8.3 -2.4 9.8 -3.5 -7.2 3.0 1.2 -25.1 15.6 27
b -3.0 2.0 4.0 3.0 15.0 24.0 -19.0 -15.0 0.15 26.0 -14.0

TAB. 1: Coefficients of the eleven quadratic functions test case.

5 Conclusion and perspectives

We have presented an algorithm named rORDA for optimizing product families in a multi-
platform context. The platform benefit was measured in terms of the number of independent
variables and needs to be balanced against performance loss due to the platforms. The re-
sulting formulation is a multicriteria mixed-integer nonlinear programming problem. rORDA
is a heuristic strategy that approximates the Pareto front of this complex problem by se-
quentially merging variables on the basis of a local quadratic approximation of the product
performances. The numerical complexity is much lower than any enumeration of all platforms
and our first tests show good approximations of the Pareto front. The solutions provided by
rORDA could typically serve as starting points for other optimization algorithms that do not
rely on a quadratic approximation.

References

[1] Souma Chowdhury, Achille Messac, and Ritesh A Khire. Comprehensive product platform
planning (CP3) framework. Journal of Mechanical Design, 133(10):101004, 2011.

[2] Marc H. Meyer and Alvin P. Lehnerd. The Power of Product Platforms. Free Press,
November 2011.

[3] T.W. Simpson, Z. Siddique, and J. Jiao. Product platform and product family design:

methods and applications. Springer Verlag, 2006.

[4] M. Tawarmalani and Nikolaos V. Sahinidis. Convexification and Global Optimization in

Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and

Applications. Springer, October 2002.


