
A Lagrangian heuristic for a real-life integrated planning

problem of railway transportation resources
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Abstract
Train path (infrastructure), rolling stock and crew scheduling are three critical planning
decisions in railway transportation. These resources are usually planned separately in a se-
quential process that typically starts from planning (1) train paths and goes further on to (2)
rolling stock and (3) train drivers. Such a sequential approach helps to handle the complex-
ity of the planning process and simplify the underlying mathematical models. However,
it generates solutions with higher cost because the decisions taken at one step can drasti-
cally reduce the set of feasible solutions in the following steps. In this paper, we propose a
Lagrangian heuristic to solve an integrated problem which globally and simultaneously con-
siders the planning of two railway resources: Rolling stock units and train drivers. Based on
a mixed integer linear programming formulation, this approach has two important charac-
teristics in an industrial context: i) It can tackle real-life integrated planning problems, and
ii) The Lagrangian dual is solved by calling two proprietary software modules available at
the SNCF. First numerical experiments on real-life instances are promising. Compared to
a sequential approach, the Lagrangian heuristic leads to cost reductions and generates good
solutions in a reasonable CPU time.

Keywords
Railway transportation, integrated planning, mixed integer programming, Lagrangian heu-
ristic

1 Introduction and industrial context

Train path (defined as the part of infrastructure required to operate a train between two
points of the railway network during a given time period), rolling stock and crew scheduling
are three critical planning decisions in railway transportation. These resources are usually
planned separately in a sequential process that typically starts from train paths and goes
further on to rolling stock and train drivers:

1. Optimized Planning of Railway Timetables. The commercial offer is considered by
elaborating a space-time graph where each train corresponds to a path. This graph
supports the booking of train paths in the railway infrastructure. Constructing an
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optimal railway timetabling requires to consider the major constraints of the railway
system, but often not the detailed constraints on rolling stock units and train drivers.

2. Optimized Planning of Rolling Stock. This stage consists in planning the rolling stock
to cover the train paths defined in Step 1. This is done based on the available number
of rolling stock units of each type, and aims at satisfying all technical and functional
constraints.

3. Optimized Planning of Train Drivers. The first step of this stage consists in defining a
set of working days (shifts) for the train drivers to cover the requirements of the plan
for the rolling stock, while respecting all legal constraints. The second step aims at
combining these working days in a consistent roster for each driver.

Optimization tools are sometimes used at some point in each of these steps. In partic-
ular, SNCF has already developed optimization tools for Steps 2 and 3. Such a sequential
approach helps to handle the complexity of the planning process and simplify the under-
lying mathematical models. However, it generates solutions with higher cost because the
decisions taken at one step can drastically reduce the set of feasible solutions in the follow-
ing steps.

In this context, studying an integrated planning approach is relevant to increase the
quality of the production process of railway transportation plans. Several decision-making
problems can be identified when considering integrated planning of railway transportation
resources (see for example [1]). In this paper, we focus on the case of fixed timetables where
only rolling stock units and train drivers are planned in an integrated way.

Furthermore, and as mentioned in [1], integrated planning approaches were already
studied in the airline industry [5], [4], [6], and in public transportation [3]; where cost
reductions ranging from 5 to 10% are reported. Although a lot of attention has been devoted
to rolling stock and train driver scheduling in the railway literature, only few papers deal
with the integration of rolling stock and train drivers when optimizing the transportation
plan.

In this paper, we propose a mixed integer linear programming model to globally and
simultaneously consider the planning of two railway resources: Heterogeneous rolling stock
units and heterogeneous train drivers. We introduce a Lagrangian heuristic to solve the
resulting problem. This approach has two important characteristics in an industrial context:
i) It can tackle real-life integrated planning problems, and ii) The Lagrangian dual is solved
by calling two proprietary software modules available at the SNCF.

In the remainder of this paper, we present in Section 2 a mixed integer linear program-
ming model for our integrated planning problem of railway resources. The Lagrangian
relaxation heuristic approach is sketched in Section 3 while Section 4 provides some in-
dustrial implementation details. We then discuss, in Section 5, preliminary computational
experiments on a real-life instance extracted from the transportation plan of a French region
(Bretagne). Some conclusions are finally drawn in Section 6.

2 Mathematical Formulation

Our modeling approach basically consists in formalizing separately the rolling stock and
train driver planning problems with mixed integer linear programming (MIP) models. Cou-
pling constraints are further introduced in order to:
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• Model the fact that each train path requires one driver and one (or more) rolling stock
unit(s) to be covered,

• And control the technical consistency of the rolling stock unit(s) and the driver as-
signed to each train path.

2.1 Basic notations

Throughout this paper, we use the following notations:

• S is the set of train paths that need to be covered with rolling stock and drivers,

• ∀s ∈ S, PAFs is the rolling stock capacity (in terms of powers, seats or units) re-
quired to cover train path s,

• ∀s ∈ S, ECs is the set of driver duties necessary to cover train path s,

• EC = ∪s∈SECs is the set of all driver duties that must be covered,

• K is the set of rolling stock types,

• ∀k ∈ K, CAPk is the capacity (in terms of powers, seats or units) of a type k rolling
stock,

• D is the set of driver depots,

• ∀d ∈ D, Hd is the number of train drivers available at depot d,

• ∀s ∈ S,∀k ∈ K,∀d ∈ D, COMPs,k,d ∈ {0, 1} is equal to 1 if type k rolling stock
can be driven by drivers of depot d to cover train path s, and 0 otherwise,

• ∀k ∈ K, CAk is the cost of assigning a type k rolling stock unit to a train path,

• ∀k ∈ K, CEk is the cost of using a type k rolling stock unit,

• ∀s ∈ S, PENRSs is the penalty incurred if train path s is not covered with a rolling
stock unit(s),

• ∀s ∈ S, PENDRs is the penalty incurred if train path s is not covered with a driver,

• ∀s ∈ S, PENs is the penalty incurred if train path s is not covered with a rolling
stock unit(s) and a driver.

Figure 1 illustrates the decomposition of one train path into two drivers duties. To be
completely covered, a rolling stock unit(s) must be assigned to train path si and both eca
and ecb must be covered by one train driver each.
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Figure 1: Decomposition of one train path into two driver duties

2.2 Rolling stock planning subproblem

Let (MIP1) denote the rolling stock mixed integer programming model. (MIP1) is a
multi-commodity network flow problem derived from a space-time graph that models the
data and parameters of the planning problem. (MIP1) captures constrained flows (denoted
by F below) that express the circulation of rolling stock units over each arc of the graph.
Let us introduce the following basic decision variables:

• ∀s ∈ S,∀k ∈ K, Ys,k ∈ {0, 1} is equal to 1 if a type k rolling stock unit is assigned
to train path s, and 0 otherwise,

• ∀k ∈ K, Nk is the integer number of type k rolling stock units used in the transporta-
tion plan,

• ∀s ∈ S,∀k ∈ K, Fs,k is the integer number of type k units used in the transportation
plan to cover train path s,

• ∀s ∈ S, ees ∈ {0, 1} is equal to 1 if train path s is not covered with rolling stock, and
0 otherwise.
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(MIP1) can be expressed as follows:

min Z(MIP1) =
∑
s∈S

∑
k∈K

CAk · Fs,k +
∑
k∈K

CEk ·Nk +
∑
s∈S

PENRSs · ees (1)

∀s ∈ S
∑
k∈K

Ys,k + ees = 1 (2)

∀s ∈ S
∑
k∈K

Fs,k · CAPk ≥ PAFs · (1− ees) (3)

A1 · F +A2 · Y +A3 ·N ≤ b1 (4)

Constraints (2) link the fact that no rolling stock unit is assigned to a train path to the
variable specifying that the train path is not covered by rolling stock. In practice, these
constraints must be rewritten to allow heterogeneous flows (i.e. different types of rolling
stock units assigned to a same train path) but this is not detailed in this paper. Constraints
(3) ensure that, if a train path is covered by rolling stock, than there are enough units of this
rolling stock type assigned to the train path. Constraints (4), not detailed in this paper, are
the usual constraints for defining consistent flows over the space-time graph that underlies
this MIP model. The objective function aggregates production costs (first two terms) and
penalties when a train path is not covered with a rolling stock unit.

2.3 Train driver planning subproblem

The train driver planning problem is complex and therefore classically divided into a crew
pairing problem and a crew rostering problem, while respecting all working constraints. In
this paper, we restrict our attention to the crew pairing problem which consists in finding
an optimized set of legal shifts. For each depot, we assume that the number of shifts is
constrained by the number of available drivers. Let (MIP2) denote this crew-pairing MIP
model. (MIP2) is a set covering problem derived from legal labor constraints and the
driver workload that needs to be covered.

Let us introduce the following basic decision variables:

• ∀d ∈ D,∀j ∈ {1, . . . ,Hd},∀ec ∈ EC, Xj,ec,p ∈ {0, 1} is equal to 1 if driver duty
ec is assigned to shift j (of depot d) in the pth position of this shift, and 0 otherwise;
here, P is assumed to be the maximal length of a legal shift,

• ∀ec ∈ EC, eaec ∈ {0, 1} is equal to 1 if driver duty ec is not covered with a driver,
and 0 otherwise.

(MIP2) can be expressed as follows:

min Z(MIP2) =
∑
d∈D

Hd∑
j=1

∑
ec∈EC

P∑
p=1

j ·Xj,ec,p +
∑

ec∈EC
PENDRec · eaec (5)

∀ec ∈ EC
∑
d∈D

Hd∑
j=1

P∑
p=1

Xj,ec,p + eaec = 1 (6)

A4 ·X ≤ b4 (7)

Constraints (6) are the driver duty covering constraints. Constraints (7) are legal labor
constraints that are not detailed in this paper. Such constraints typically refer to:
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• The maximal duration of a shift; this duration is different if the shift comprises a night
period work (typically between 11:00 PM and 4:00 AM),

• The sequence of duties within a shift; this sequence must obviously be feasible in
time and space (including driver deadheadings),

• The depots where a train driver starts or ends its duty; when these depots are different,
this means that the shift is associated with an over-night rest for the driver.

The objective function (5) aggregates production costs (see the first term which captures the
number of driver shifts and the densities of these shifts, i.e. the number of duties within a
shift) and penalties when a driver duty is not covered.

2.4 Coupling constraints

Coupling constraints are required to capture the complete covering of train paths and to
ensure the consistency of the rolling stock unit(s) and driver assigned to each train path. In
other words, when a driver and a rolling stock unit(s) are assigned to a train path, we must
ensure that the driver is qualified to drive the unit on the train path.
∀s ∈ S, let us denote ess the binary variable which is equal to 1 if train path s is not

completely covered with a rolling stock unit(s) and a driver, and 0 otherwise. The three
types of coupling constraints are formalized below.

• The train path covering constraints related to rolling stock:

∀s ∈ S, ees ≤ ess (8)

• The train path covering constraints related to drivers, i.e. any driver duty ec ∈ EC
which is not covered implies that the related train path is not covered:

∀s ∈ S,∀ec ∈ ECs, eaec ≤ ess (9)

• The consistency constraints between the rolling stock unit(s) and the driver assigned
to each train path:

∀k ∈ K,∀d ∈ D,∀s ∈ S,∀ec ∈ ECs,
Hd∑
j=1

P∑
p=1

Xj,ec,p + Ys,k ≤ 1 + COMPs,k,d (10)

2.5 MIP model for the integrated planning problem

The global MIP model for our integrated planning problem, denoted by (MIPGlob), mer-
ges the variables and constraints of (MIP1) and (MIP2) with the coupling Constraints
(8), (9) and (10). Note that variables ess only appear in Constraints (8) and (9) and in the
global objective function. The latter consists in minimizing the sum of rolling stock costs,
train driver costs and penalties when a train path is not covered with both a rolling stock
unit(s) and a driver, and is written below:

min Z(MIPGlob) = Z(MIP1) + Z(MIP2) +
∑
s∈S

PENs · ess (11)
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3 A Lagrangian relaxation heuristic

Given its complexity, (MIPGlob) cannot be directly solved with a standard MIP solver
for real-life instances. We therefore proposed a Lagrangian relaxation approach in [1].
Lagrangian relaxation can be used to obtain very good lower bounds for integer linear pro-
grams and to design effective heuristics [7]. The idea is to relax some of the constraints
that “make the problem difficult”, and roll them in the objective function with positive
Lagrangian multipliers. To relax Constraints (8), (9) and (10), the following Lagrangian
multipliers are introduced to penalize the non-satisfaction of the relaxed constraints in the
objective function: us for Constraints (8), vs,ec for Constraints (9) and wk,d,s,ec for Con-
straints (10).

The Lagrangian function can then be written:

Lag(MIPGlob) = Z(MIP1) + Z(MIP2) +
∑
s∈S

PENs · ess

+
∑
s∈S

us · (ees − ess) +
∑
s∈S

∑
ec∈ECs

vs,ec · (eaec − ess)

+
∑
k∈K

∑
d∈D

∑
s∈S

∑
ec∈ECs

wk,d,s,ec · (
Hd∑
j=1

P∑
p=1

Xj,ec,p + Ys,k − 1− COMPs,k,d) (12)

Lag(MIPGlob) can be rewritten as follows:

Lag(MIPGlob) =
∑
s∈S

∑
k∈K

CAk · Fs,k +
∑
k∈K

CEk ·Nk

+
∑
s∈S

(PENRSs + us) · ees +
∑
d∈D

Hd∑
j=1

∑
s∈S

∑
ec∈ECs

P∑
p=1

(j +
∑
k∈K

wk,d,s,ec) ·Xj,ec,p

+
∑
s∈S

∑
ec∈ECs

(PENDRec + vs,ec) · eaec +
∑
s∈S

(PENs − us −
∑

ec∈ECs

vs,ec) · ess

+
∑
k∈K

∑
s∈S

(
∑
d∈D

∑
ec∈ECs

wk,d,s,ec) · Ys,k

−
∑
k∈K

∑
d∈D

∑
s∈S

∑
ec∈ECs

(1 + COMPs,k,d) · wk,d,s,ec (13)

The resulting problem can be solved separately by solving three subproblems. The first
subproblem is very close to the rolling stock planning subproblem modeled as (MIP1),
except that there is now a cost associated to each variable Ys,k. The second subproblem is
very close to the train driver planning subproblem modeled as (MIP2), except that there is
now a more complex cost associated to each variable Xj,ec,p. The third and last subproblem
on variables ess can be solved trivially.

Numerical experiments performed using a simplified model were promising, but showed
that the model had to be improved for implementing a Lagrangian relaxation framework to
solve real-life integrated planning problems arising at SNCF [1]. Since two independent
optimization modules already existed at SNCF for planning rolling stock and train drivers,
we wanted to re-use these modules in our Lagrangian heuristic. Challenges related to in-
dustrially implementing the heuristic are discussed in Section 4.
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The remaining of this section provides details on the Lagrangian relaxation heuristic
developed for our integrated planning model of rolling stock and train drivers. The selected
relaxation scheme is described in Section 3.1 and the construction of feasible solutions is
discussed in Section 3.2.

3.1 The relaxation scheme

The first challenge was to select the right relaxation scheme. Four possible relaxation
schemes were investigated depending whether the coupling Constraints (8) and (9) are re-
laxed or not (Constraints (10) are always relaxed): (1) Both Constraints (8) and (9) are
relaxed (leading to the expression of Lag(MIPGlob) in 13), (2) Only Constraints (8) are
relaxed, (3) Only Constraints (9) are relaxed, and (4) Both Constraints (8) and (9) are not
relaxed (Lagrangian decomposition). The relaxation schemes were compared using a sim-
plified MIP model and small instances created from real-life data. The numerical results,
not detailed in this paper, showed that not relaxing the train path covering Constraints (8) for
rolling stock or not relaxing the train path covering Constraints (9) for drivers provide better
lower bounds and thus better guides the Lagrangian heuristic than when both constraints are
relaxed. Lagrangian decomposition, where both Constraints (8) and (9) are not relaxed, is
not really dominating.

The train path covering Constraints (8) for rolling stock, together with the cost
∑

s∈S
PENs · ess in the objective function, could rather easily be incorporated in subproblem
(MIP1) solved by the optimization engine of the rolling stock planning tool available at
SNCF. This is why we decided to use the corresponding scheme in the industrial implemen-
tation. Subproblem (MIP2) is also solved with a driver planning tool available at SNCF.

3.2 Constructing feasible solutions

Two feasible solutions can be constructed from the solutions of the relaxed subproblems.
The first feasible solution is determined by fixing the rolling stock plan and, using the con-
sistency Constraints (10), constraining the set of drivers that can be assigned to each train
path before solving the train driver planning subproblem. The second feasible solution is
determined by performing the opposite, i.e. fixing the train driver plan and, using the con-
sistency Constraints (10), constraining the rolling stock types that can be assigned to each
train path before solving the rolling stock planning subproblem.

In our industrial implementation, only the first feasible solution is actually determined.
This is very natural from a practical standpoint, since rolling stock units are more expensive
than drivers, and are thus naturally prioritized.

4 Industrial implementation

The industrial implementation of the Lagrangian relaxation scheme previously described
relies on an iterative process where a master module pilots the two proprietary software
modules available at SNCF. The Lagrangian dual is solved by calling these two modules
with cost parameters that are updated at each iteration according to the Lagrangian multipli-
ers. Relaxed solutions are then periodically made feasible and upper bounds are computed.
As already mentioned, in our industrial context, only one feasible solution is determined by
computing a feasible train driver schedule when the decision variables of the rolling stock
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subproblem are fixed to their values in the relaxed solution (i.e., obtained when computing
the Lagrangian lower bound). Since our model allows for a partial covering of the train
paths (however with a high penalty), the convergence of this heuristic towards a feasible
solution is therefore guaranteed.

Note that the implementation of our Lagrangian heuristic inherits the following proper-
ties:

• The feasible solution determined in iteration 1 corresponds to a sequential use of the
existing rolling stock and train driver software modules,

• By construction, the best feasible solution found in the course of the iterations neces-
sarily improves the feasible solution found at iteration 1.

When implementing our approach, several quality/cost trade-offs were studied with re-
gard to the theoretical solving process. Indeed, the two existing proprietary software mod-
ules had not been designed for a coordinated use, as suggested by the theoretical process.
When theory and implementation diverged, we had to choose if it was worth investing in
modifying the mathematical models exploited by the two existing modules; for example,
adding complementary terms in the objective functions, or modifying existing constraints.
This analysis was supported by an identification of the theoretical features that were not
natively supported in the modules; for example, the consistency of the dual multipliers with
the objective functions in the modules. In practice, the return on investment (when compar-
ing the development costs to the benefits for the quality of solutions) of all modifications
was significant and we implemented all the necessary adjustements. The remaining of this
section presents some modifications that were undertaken.

4.1 Modifications of the industrial rolling stock planning module

A simplified version of the objective function of the industrial rolling stock planning module
can be formulated as follows:

minZ(MIP1Indus) =
∑
s∈S

∑
k∈K

CAk · Fs,k +
∑
k∈K

CEk ·Nk + CRS(F
′)

+
∑
s∈S

PENRSs · ees (14)

where

• F ′ is an extension of F that included rolling stock deadheading flows;

• CRS(F
′) is an additional cost that captures deadheading costs; in particular, when

train paths corresponding to deadheadings are chosen in order to optimize the com-
puted rolling stock circulations.

In order to implement our Lagrangian heuristic, it was therefore necessary to modify
the existing rolling stock planning module. In particular, the element

∑
k∈K

∑
s∈S (

∑
d∈D∑

ec∈ECs
wk,d,s,ec) ·Ys,k in the Lagrangian function (13) had to be taken into account when

solving the rolling stock planning subproblem. From an implementation point of view, this
consisted in:
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• Adding
∑

s∈S
∑

k∈K CA′
s,k · Ys,k to the existing objective function (14), where

CA′
s,k denotes an additional cost computed from the values of the dual multipliers

wk,d,s,ec at each iteration. This cost is related to the attractiveness of type k rolling
stock for covering train path s.

• Adding cost coefficients CA′
s,k in the data model of the existing planning module.

Moreover, because the coupling Constraints (8) are not relaxed in the selected relaxation
scheme (see Section 3.1), it was also necessary to consider these coupling constraints and
the Lagrangian cost (PENs −

∑
ec∈ECs

vs,ec) for each variable ess (see Lagrangian func-
tion (13) without Lagrangian multipliers us since Constraints (8) are not relaxed).

4.2 Modifications of the industrial train driver planning module

The objective function of the industrial train driver planning module is slightly different
from the expression shown in (5). Indeed, the associated mathematical model is a column-
based formulation where decision variables are directly associated to the choices of com-
plete train driver shifts that are built (enumerated) beforehand (see also [2]). Moreover, on
top of (i) classical production costs and (ii) penalties when driver duties are not covered, it
also comprises penalties related to the production level of each depot. These penalties aim
at smoothing the workload across the depots. A simplified version of the objective function
of the industrial train driver planning module can be formulated as follows:

minZ(MIP2Indus) =
∑
d∈D

Hd∑
j=1

CostShiftj ·XShiftj + CTD(X)

+PENDR ·
∑

ec∈EC
eaec (15)

where

• The decision variable XShiftj ∈ {0, 1} is equal to 1 if a shift j, j ∈ {1, . . . ,Hd},
is chosen (with cost CostShiftj) in depot d ∈ D, and 0 otherwise,

• CTD(X) is an additional cost that captures the smoothing of workload among the
driver depots,

• PENDR is a fixed penalty applied when a train path is not covered by a driver.

As mentionned previously, the term
∑

d∈D
∑Hd

j=1

∑
ec∈EC

∑P
p=1 j ·Xj,ec,p in (5) evaluates

the number of shifts and the densities of these shifts in the train driver plan (this can be read-
ily seen since this term can be rewritten as

∑
d∈D

∑Hd

j=1 j · (
∑

ec∈EC
∑P

p=1 Xj,ec,p)). It can

therefore be identified to the term
∑

d∈D
∑Hd

j=1 CostShiftj ·XShiftj in (15). However,
CostShiftj allows more general shift costs to be modeled, for example by considering
deadheadings and night working periods.

In order to implement our Lagrangian heuristic, it was therefore necessary to proceed
with the following modifications in the industrial train driver planning module:

• Enrich the data model so that:
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– The cost of a duty j also depends on the depot d where the duty j is assigned
and is written as CostShiftd,j ,

– The penalty for not covering a train duty ec by a driver depends on ec and is
written as PENDRec,

• Modify consequently the existing objective function (15) so that:

– The modified cost coefficient CostShiftd,j replaces CostShiftj . As indicated
in Section 3, the cost coefficient CostShiftd,j is updated from the Lagrangian
multipliers wk,d,s,ec at each iteration,

– The element PENDR ·
∑

ec∈EC eaec becomes
∑

ec∈EC PENDRec · eaec. As
indicated in Section 3, the cost coefficient PENDRec is updated from the La-
grangian multipliers vs,ec at each iteration.

5 Preliminary computational experiments

5.1 A real-life instance

We tested our approach on several real-life instances extracted from the transportation plan
of a French region (Bretagne). This paper focuses on one of these instances; Table 1 sum-
marizes its main characteristics.

Table 1: Characteristics of the industrial instance

Characteristics Instance
Time horizon 1 week
Number of train paths (|S|) 416
Number of rolling stock types (|K|) 7
Number of rolling stock units (

∑
k∈K CAPk) 73

Number of driver depots (|D|) 7
Number of drivers (

∑
d∈D Hd) 81

Computational experiments were performed on a regular PC, with 3.42GB of RAM and
using IBM ILOG CPLEX 12.2 for solving the MIP models. Runs were arbitrarily limited
to 50 iterations. We observed that the average CPU time per iteration was 2 minutes.

5.2 Numerical results

As indicated earlier, note that the first iteration corresponds to a sequential use of our two
software planning modules. The automated connection of these modules within our proto-
type is therefore a first added value of this work. Moreover, the feasible solution can only
be improved as more iterations are performed, which is the main contribution of this work.

Figure 2 shows the evolution over the iterations of the Lagrangian lower bound and
upper bound. The upper bound corresponds to the cost of the feasible solution of the La-
grangian heuristic. According to this figure, the Lagrangian process converges as expected
because i) both the Lagrangian lower bound and upper bound decrease over the iterations,
and ii) the upper bound is always larger than the lower bound at any given iteration. Fur-
thermore, we can see that there is no strict monotony in the evolution of the upper bound
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and lower bound in the course of the iterations. Indeed, this property cannot be satisfied
since the MIP sub-models are often not solved to optimality when computing the lower and
upper bounds at each iteration in our industrial context.

Figure 2: Results of the Lagrangian heuristic

Table 2 provides complementary insights on the objective function and on the improve-
ments that are achieved in the course of the iterations. Four representative criteria of the
objective function are listed and sorted by order of importance. The first one is the number
of uncovered train paths (because no rolling stock or driver could be allocated); it cannot
be compensated by any other criterion. The next two criteria are rolling stock costs and
are in practice much larger than driver costs. Only the fourth criterion corresponds to train
driver costs. The optimization of the objective function therefore leads to cover the max-
imum number of train paths while minimizing (then) i) the rolling stock costs and ii) the
train driver costs. Compared to the first iteration, the solution of the best iteration covers 3
additional train paths (main non-compensatory objective) with the same number of rolling
stock units and 79 fewer deadhead kilometers, but requires 3 more driver shifts.

Table 2: Numerical results for the industrial instance

Criteria to minimize (in order of importance) Iteration 1 Best iteration (40/50)
Number of uncovered train paths 25/416 22/416
Number of rolling stock units 22 22
Rolling stock deadhead kilometers 1482 1403
Number of shifts of train driver plan 200 203

6 Conclusions

Based on a mixed integer linear programming formulation for the integrated planning prob-
lem of railway production resources, a Lagrangian heuristic was proposed. Characteristics
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of this heuristic were discussed, in particular related to its industrial implementation. The
first numerical experiments on real-life instances are promising. Our current research in-
cludes the integration of additional levels of integration, such as the possibility of slightly
changing the times of train paths.
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