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Abstract—Engineering optimization often involves one or
many computationally intensive softwares that must be called
to calculate the performance of candidate solutions. Despite the
calculation cost, it is useful to characterize the global and the
local optima. A new algorithm is described here that searches
for all the local optima in a reduced number of calls to the true
performance function. The algorithm is based on repeated local
searches on a metamodel of the true performance function and
is called LOOM for LOcal Optima through Metamodels. The
local optima are identified as an output of the search. The search
distributes computational resources equally among the basins of
attraction. Priority is put on local search (intensification) and
exploration occurs within a limited budget of calls to the objective
function. This article presents the algorithm and describes a first
series of tests in two dimensions where a kriging metamodel is
used.

I. INTRODUCTION

Numerical optimization is a part of the engineering practice
that either aims at designing systems by maximizing perfor-
mance or at identifying models by minimizing the distance
between the model prediction and target data. In both cases,
finding local optima is important. In design optimization, as
the project advances, new constraints are added which discard
some of the possible design options among which the previous
global optimum may stand. Some local optima may then
become the new global solutions. In model identification,
when the model is richly parameterized in comparison to the
amount of available data, there is a large, often infinite, number
of optima. Describing the local optima improves a lot the
understanding of the model.

Many previous works have proposed stochastic heuristics
to locate local optima of functions. Some of these works are
based on niching strategies in evolutionary algorithms [1],
[5], [18]. Others have modified particle swarm optimization
algorithms to increase sampling near the local optima [2], [7],
[11], [10], [17].

The current algorithm, called LOOM for LOcal Optima
through Metamodels, differs from past related work in two
ways : firstly, LOOM can be applied to numerically costly
optimization problems. Indeed, the most common difficulty in
engineering optimization is the numerical cost of evaluating the
performance of a candidate solution relatively to the size of
the search space. LOOM is sparse in terms of number of calls
to the performance functions thanks to the use of a metamodel.
Secondly, LOOM provides as an output a list of possible local
optima based on the function metamodel. In the literature,
either the local optima are not explicitly identified, or they
are isolated a posteriori using clustering techniques.

LOOM originates in the work presented in [15], [14], [16].
While basins of attraction were then described by Voronoi
cells, LOOM uses the more flexible metamodel to identify
and describe them.

Before providing more details, let us introduce some nota-
tions. We consider an unconstrained optimization problem,

minimize
x∈S⊂Rn

f(x) (1)

where f is the objective function that quantifies the perfor-
mance of candidate solutions x in a search space S (a compact
and bounded subset of Rn). In metamodel (or surrogate)
based optimization [4], the objective function f is iteratively
approximated by a function f̂ (t) at time (or iteration) t. The
metamodel f̂ (t) is built from a set of t optimization variables
X ∈ Rn×t and the associated objective function values
F ∈ Rt. We will refer to {X,F} as either the Design Of
Experiments (DOE) or the database. At time t, the initial
problem of Eq.(1) can be approximated by

minimize
x∈S⊂Rn

f̂ (t)(x) (2)

It should be noted that solving the approximated problem Eq. 2
involves no call to the true objective function f . In the context
of expensive optimization, it is considered that solving Eq. 2
has a negligible computational cost.

II. DESCRIPTION OF THE LOOM ALGORITHM

The LOOM algorithm aims to build a metamodel of the
objective function, identify basins of attraction of local optima
and share computational resources for search between the
basins of attraction. We will call a unit of computational
spending for search an agent. Each agent will take search
actions that are located with respect to a point in the space S,
the position of the agent. The agents move across the search
space either by local optimization of the metamodel or by
stochastic sampling. After each move, an agent calls the true
objective function and the metamodel refined. Through local
optimizations, agents locate local optima of the metamodel.
LOOM keeps only one agent per basin of attraction. If the
metamodel is close enough to the true objective function,
each agent location is also a function local optimum. This
section describes the initialization phase, the agent’s behavior,
the method to find a new basin and the algorithm’s parameters.

A. Initialization and agent’s behavior

The first step of the LOOM algorithm consists in creating
the Design Of Experiment (DOE): a set of points {X} is
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uniformly picked in the search space S, and their objective
function values {F} are computed. An initial metamodel
f̂ (0)(x) is built from these points. In our implementation,
we use a kriging metamodel [3]. The number of points of
the DOE linearly depends on the number of variables (or
dimension, n). In algorithmic notation, this first step is:

Uniformly sample N=5× n points within xmin and xmax

{X} =

x11 ... x1n
. . .
xN1 ... xNn

;

For each xi ∈ X, compute its f value

{F} =

f(x1)). . .
f(xN )

;

Build the first metamodel
f̂ (0)(x) = buildMetamodel(X,F);

A first agent is created at the point which has the minimum
f value. When created, the agents follow the same cycle at all
iterations t:

• make a local optimization at the agent position on the
metamodel f̂ (t). In our implementation, we use the
Nelder-Mead algorithm [9] with a small initial simplex
size;

• if the result of the local optimization is close to the
agent’s position, reduce the close parameter and look
for a new basin of attraction on the metamodel;
◦ if a new basin is found and it is unoccupied,

then compute this new point’s f value, update
the metamodel and create a new agent in this
basin;

◦ if no new basin is found, or if a basin is found
occupied by another agent, then explore, i.e.
find the point which is the farthest from its
neighbours, compute this point’s f value and
refine the metamodel (stochastic sampling).

• if the result of the local optimization is not close to
the agent’s position, then
◦ if another agent is almost at the position of the

result of the local optimization, then remove
the worst of the current and the other agents

◦ else, calculate the true f at the result of the
local optimization, if it is less than the value
of the current position, move the agent to this
new position. Update the metamodel.

In algorithmic notation, the behavior of agent ag at
position c is:

Local optimization at c at iteration t
x̂∗ = localOptim(f̂ (t)(x), c);
if x̂∗ is Close to c then

Reduce the parameter Close
Close = Close− φ;
Look for a new basin within the space bounds xmin and
xmax

xb = seekBasin(f̂ t(x), c, xmin, xmax);
if xb 6= ∅∧xb is not Almost included in the set of agents
A then

Create a new agent a at xb, add this agent to the set of
agents A, compute its f value and update the number
of calls
{X} = {X} ∪ xb;
{F} = {F} ∪ f(xb);
A = A ∪ a;
Numberofcall = numberofcall + 1;
Update the metamodel f̂(x)
f̂ (t)(x) = updateMetamodel(X,F);

else
Explore (stochastic sampling)
xe = explore(f̂ (t)(x),X);
xe is the farthest point from its neighbours: compute
its value with f and update the number of calls
{X} = {X} ∪ xe;
{F} = {F} ∪ f(xe);
Numberofcall = numberofcall + 1;
Update the metamodel f̂ (t)(x)
f̂ (t)(x) = updateMetamodel(X,F);

end if
else

Reset the Close parameter
if x̂∗ is Almost included in the set of agents A then

Remove the current agent ag
A = A \ ag;

else
Compute the value of x̂∗ with f and update the number
of calls
{X} = {X} ∪ x̂∗;
{F} = {F} ∪ f(x̂∗);
Numberofcall = numberofcall + 1;
Update the metamodel f̂ (t)(x)
f̂ (t)(x) = updateMetamodel(X,F);
if f(x̂∗) < f(c) then

Move the agent to this new position
c← x̂∗;

end if
end if

end if

As the LOOM algorithm is sequential, each agent acts in
turn. The stopping condition is a maximum number of calls to
the true objective function, f . We set it proportionally to the
number of variables.

B. Looking for a new basin

In order to find a new basin, an agent travels across
the search space S following an infinite half straight line
originating from its current position. Along this line and
according to the parameters speed and acceleration, the agent
picks new points and makes local optimizations (always on
the metamodel). A local optimization resulting in a different
point than the agent’s position means that a new basin of the
metamodel has been found.

Create the direction d according to the dimension n
d = randn(n);
d normalization
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d = d√
dT d

;
while The agent is still in bounds do

Follow direction d from the point c, according to the speed
parameter
xstart = c+ speed ∗ d;
Local optimization at xstart
x̂∗ = localOptim(f̂ (t)(x), xstart);
if x̂∗ is not Close to xstart then

A new basin has been found
return x̂∗;

else
Increase the speed according to the acceleration pa-
rameter
speed = speed ∗ acc;

end if
end while
No new basin found
return ∅;

C. Parameters

The eight parameters introduced in the LOOM algorithm
are defined according to the number of variables n and to the
bounds of the search space (cf. table I).

TABLE I. LOOM ALGORITHM PARAMETERS VALUES

Parameter Value

Number of points 5× n
of the DOE (DOE)

Maximum number of call 150× n
of f (callMax)

Proximity parameters
Between agents (Close) 0.02× ||xmin− xmax||

Agents - optima (Almost) 0.01× ||xmin− xmax||
Close reduction factor (φ) 1

20 (0.02× ||xmin− xmax||)
Ray launching parameters

Speed (speed) 0.02× ||xmin− xmax||
Acceleration (acc) 1.2

III. EXPERIMENTATION AND RESULTS

A. Test functions

The LOOM algorithm has been tested with a set of standard
benchmark optimization problems in two dimensions. Antici-
pating further tests, we chose functions that can be generalized
to any number of dimensions n (excepted Branin).

branin(x) = x2 −
5.1

4 ∗ π2
∗ x21 + (

5 ∗ x1
π
− 6)2

+ 10 ∗ (1− 1

8 ∗ π
) ∗ cos(x1) + 10.

(3)

michalewicz(x) =

n∑
i=1

sin(xj) ∗ (sin(
j ∗ x2j
π

))2m

with m = 2.

(4)

rastrigin(x) = 10n+

n∑
i=1

x2i − 10 ∗ cos(2π ∗ xi) (5)

In the functions above, Branin has three global optima.
Michalewicz has one global optimum and n!− 1 local optima.
Rastrigin has one global optimum and 3n − 1 local optima.
These functions are plotted in two dimensions in the figure 1.
The table II provides the domain of definition of each function
and the positions of the global and local optima.

Fig. 1. The first three functions of the benchmark in two dimensions: Branin,
Michalewicz and Rastrigin.

We add one function to this benchmark, called the Udder
function. Noticing that the functions found in classical test
cases for global optimization either were defined for specific
dimension numbers or had a rapidly (geometrically) growing
number of local optima (e.g., Michalewicz and Rastrigin),
we have created the Udder function in an attempt to have a
function defined in any number of dimensions but with a given
number of local optima. This function is built by ”digging
holes” (i.e. parabola defined by gi(x)) in a larger parabola
defined by 1

2x
Tx. The Udder function is thus defined as:

udder(x) =
1

2
xTx −

L∑
i=1

Igi(x)<0 g
2
i (x)

where Igi(x)<0 = 1 if gi(x) < 0 , = 0 otherwise

(6)

L is the number of local optima and gi(x) = g0i + 1
2 (x −

xgi)
THi(x − xgi), where xgi and g0i are the center and the

depth of the parabola, respectively.

For the purpose of the experiment, we chose one global
optimum at xg1 = [ 1

2
√
2
, 1
2
√
2
], and three local optima defined

by xg2 = [− 1
2 , 0], xg3 = βxg1

1 and the optimum of 1
2x

Tx at
[0, 0]. The figure 2 shows the Udder function.

B. Experimental setup

A kriging metamodel [13] was chosen to approximate
the objective function and the Nelder-Mead algorithm [9]
performed the local optimizations. Indeed, the kriging and
the Nelder-Mead methods are robust and commonly used in
optimization and simulation works [6], [8], [12]. These choices
brought us to define the following additional parameters:

1The parameter β allows this local optimum to be close to the optimum of
g1(x) without interfering with the g1(x) parabola.
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Fig. 2. The Udder function in two dimensions.

TABLE II. DOMAIN DEFINITION AND OPTIMA POSITIONS FOR EACH
FUNCTION IN TWO DIMENSIONS.

Function Domain definition Optima

Branin x1 ∈ [−5; 10], - global: x∗
1 = [−π, 12.275]

x2 ∈ [0; 15] x∗
2 = [π, 2.275]

x∗
3 = [9.42478, 2.475].

- local: none.

Michalewicz xi ∈ [0;π] - global: x∗ = [2.13755, π2 ].
∀i = 1, 2 - local: x∗ = [2.13755, 2.67830].

Rastrigin xi ∈ [−1; 1] - global: x∗ = [0, 0].
∀i = 1, 2 - local: x∗

1 = [−1,−1]
x∗
2 = [−1, 0]
x∗
3 = [−1, 1]
x∗
4 = [0,−1]
x∗
5 = [0, 1]

x∗
6 = [1,−1]
x∗
7 = [1, 0]

x∗
8 = [1, 1].

Udder xi ∈ [−1; 1] - global: x∗ = [0.34357, 0.34849].
∀i = 1, 2 - local: x∗

1 = [−0.48198, 0]
x∗
2 = [0.62478, 0.66218]

x∗
3 = [0, 0].

• kriging parameters
◦ Regression function: second order polynomial

regression function;
◦ Correlation function: Gaussian function.

• Nelder-Mead parameters
◦ Maximum number of metamodel calls:

50×dimension;
◦ Simplex size: 0.001× ||xmin− xmax||.

For each function, the LOOM algorithm is run 50 times,
starting from different DOEs. The other parameters of the
LOOM algorithm are those defined in Section II-C when
n = 2: in particular, the number of points of the DOE is 10
and the maximum number of call to the true objective function
is 300.

C. Results

Our first results are the evolution of the agents number
from 10 (the size of the DOE) to 300 calls to the expensive
function. The figures 3 and 4 show the evolution of the number
of agents with the Branin, Michalewicz, Rastrigin and Udder
functions, averaged over the 50 trials.

Fig. 3. Average number of agents with the Branin (above) and Michalewicz
(below) functions over 50 trials versus number of calls to the true objective
function.

Fig. 4. Average number of agents with the Rastrigin (above) and Udder
(below) functions over 50 trials versus number of calls to the true objective
function.

These results confirm that the number of agents converges
to the number of optima, but the shape of the convergence
curve depends on the function. For example, in the case of the
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Branin function, the agents number increases fast to 5.5 after
55 calls, then decreases to converge to 3 (the right number of
optima) after about 200 calls. Indeed, the metamodel needs a
certain number of calls to be close enough to the objective
function: during this process, new basins of attraction are
discovered but these basins can be temporary artifacts of
the metamodel and not exist in the objective function. As
the metamodel is refined, some agents previously created are
removed when they no longer are at local optima. In the
case of the Rastrigin function, the number of agents gradually
increases to 9 (the right number of optima) around 150 calls.
For this function, the metamodel fits the true function more
rapidly, which leads to discovering fewer false basins. The
contour plot in figure 5 shows the positions of all the final
agents over the 50 trials with the Rastrigin function.

Fig. 5. Positions of all the final agents of the 50 trials with the Rastrigin
function.

While the Michalewicz function has 2 local optima in 2D,
the average number of agents seems to tend to 9. The specific
shape of the Michalewicz function can explain this difference:
the Michalewicz function exhibits very flat parts (cf. figure 1)
which cannot be accuratly learned by the metamodel in our
low number of calls to f . These flat areas will be represented
by flat but bumpy surfaces by the kriging model, therefore
creating false local optima. The contour plot in figure 6 shows
the positions of all the final agents of the 50 trials on the
Michalewicz function. We can see that the local optima are
correctly occupied by agents (approximately at x2 = 2.67,
x2 = 1.7 and x1 = 2.13), but the flat parts of the function are
also populated.

To assess the accuracy with which LOOM finds the local
and global optima, we have monitored the Euclidean distances
between the final positions of the agents and the global and
local optima of each function. The figures 7 and 8 show the
evolution between 10 and 300 calls of the average accuracy
over 50 trials with all our test functions.

These results show that the agents find all the optima and
refine their positions as the number of calls increases (and
as the metamodel improves). All the curves have the same
behaviour: they first decrease rapidly as agents are created and
new basins are found, then they decrease slowly to converge
to 0. The table III shows, for each function, the percentage
of the 50 trials which are successful, i.e. accurate according
to a distance threshold. This threshold is set to the proximity
parameter Almost, 0.01× ||xmin− xmax||, equivalent to 1%

Fig. 6. Positions of the final agents of the 50 trials with the Michalewicz
function.

Fig. 7. Average distance between the agents positions and the optima of the
Branin (above) and Michalewicz (below) functions, over 50 trials.

of the function’s largest diagonal (0.02 for the Rastrigin and
Udder functions, 0.15 for the Branin function and 0.0314 for
the Michalewicz function).

For all of the functions, 100% of the trials find all the
optima with an accuracy better than 0.01× ||xmin− xmax||.
The success percentages stay above 75% at higher accuracies
for all functions but Rastrigin. To explain this result, we can
compare the Rastrigin and the Udder functions, as they have
the same bounds. The main difference is that the Rastrigin
function has 9 optima, while the Udder function has 4. Having
more basins to find divides the number of calls between agents
and thus increases the difficulty to improve the accuracy at
each optimum.
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Fig. 8. Average distance between the agents positions and the optima of the
Rastrigin (above) and Udder (below) functions, over 50 trials.

TABLE III. FOR EACH FUNCTION, SUCCESS PERCENTAGE OVER 50
TRIALS FOR VARIOUS ACCURACIES.

Function distance between agents positions and all optima
≤ threshold ≤ threshold

10 ≤ threshold
20

Branin 100% 100% 76%
(≤ 0 .15 ) (≤ 0 .015 ) (≤ 0 .0075 )

Michalewicz 100% 94% 84%
( ≤ 0 .0314 ) (≤ 0 .00314 ) (≤ 0 .00157 )

Rastrigin 100% 12% 0%
( ≤ 0 .02 ) (≤ 0 .002 ) (≤ 0 .001 )

Udder 100% 100% 78%
( ≤ 0 .02 ) (≤ 0 .002 ) (≤ 0 .001 )

IV. CONCLUSIONS

In this paper, we have presented the LOOM algorithm
which aims to find the local and global optima of expensive
to evaluate functions. This algorithm builds a metamodel
of the objective function in order to reduce the number of
calls to it, and shares computational resources for search
between the basins of attraction (through so-called agents). The
agents search firstly by local optimization of the metamodel
and secondly by stochastic sampling, each search step being
concluded by a refinement of the metamodel. The order in
which local search and stochastic sampling are performed
emphasizes exploitation of past evaluations (or intensification
of the search around existing agents) over exploration of the
design space.

A first series of experiments was presented with 4 two-
dimensional multimodal test functions. The tests show that all
local optima are located within an accuracy of 1% of the largest
diagonal in the domain for a budget of 150× n = 300 calls
to the objective function.

We now intend to test this algorithm in larger number
of dimensions and compare it to alternative algorithms for
locating local optima.
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