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One presentation, three stories...

● Collaboration between an applied 
mathematician and a computer scientist

● Collaborative decision: an analytical model for a 
wide-ranging topic 

● An agent-based algorithm for locating local 
optima 
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Scientific work

Dialog

Context

One presentation, three layers...

Algorithm

ID4CS & MDO

Incomprehension Enrichment

Future works
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Overall context: ID4CS project (1)

● ANR Project (2010-2013)
● Integrative Design for Complex Systems

e.g. aircraft, motors

● Pluri-disciplinary consortium
 http://www.irit.fr/id4cs

http://www.irit.fr/id4cs
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Overall context: ID4CS project (2)

● Several research 
directions:
– Multi-disciplinary

– Multi-fidelity

– Multi-criteria

– Multi-*

– Uncertainties

● Integrative 
approach 
– multi-agent platform ➔ Fine-grained a priori 
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Multi-disciplinary optimizationMulti-disciplinary optimization
(centralized – preliminary design)

AerodynamicsAerodynamics

Structure/MassStructure/Mass

MotorsMotorsAcousticsAcoustics

MissionsMissions

Business decision
e.g. 200 passengers,

transatlantic

Multi-criteria optimization with 
physically coupled simulations

{min x∈S mass( x)
min x∈S consumption( x)

s.t.{range(x )>3000
passenger (x )>200
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Multi-disciplinary optimizationMulti-disciplinary optimization
(centralized – preliminary design)

AerodynamicsAerodynamics

Structure/MassStructure/Mass

MotorsMotorsAcousticsAcoustics

MissionsMissions

Optimize
Drag
Lift

Optimize
Mass

Structural strength

Optimize
Range

Landing/Take-off length

Optimize
Noise/altitude

Optimize
Power

Consumption

Business decision
e.g. 200 passengers,

transatlantic

Multi-criteria optimization with 
physically coupled simulations

{min x∈S mass( x)
min x∈S consumption( x)

s.t.{range(x )>3000
passenger (x )>200

Multi-disciplinary optimization
(distributed – consolidation)
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Multi-disciplinary optimizationMulti-disciplinary optimization
(decentralized – finer agentification)

AerodynamicsAerodynamics

Structure/MassStructure/Mass

MotorsMotorsAcousticsAcoustics

MissionsMissions Objective 1
e.g. min. the mass

Objective 2
e.g. min. consumption

mass

noise

draglift 

cons.

int.
shape

ext.
shape

Optimize
Drag
Lift

Optimize
Mass

Structural strength

Optimize
Range

Landing/Take-off length

Optimize
Noise/altitude

Optimize
Power

Consumption

Minimize 
Input-output

discrepancies

... ...

...
...

...

...
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Dialog between the Computer Scientist (CS) and 
the Applied Mathematician (AM)

● AM (skeptical about the decomposition, particularly at low 
granularity):  “What are agents ?”
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Dialog between the Computer Scientist (CS) and 
the Applied Mathematician (AM)

● AM (skeptical about the decomposition, particularly at low 
granularity):  “What are agents ?”

● CS : “They are a decomposition of a problem 
into autonomous tasks (agents) that collectively, 
through interaction mechanisms and protocols, 
solve the initial problem.”

● AM (dubious, partial interest) : “hum ...” 
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Dialog between the Computer Scientist (CS) and 
the Applied Mathematician (AM)

● CS (somewhat skeptical about the application):  “What 
is special about the optimization of such 
objects ?”
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Dialog between the Computer Scientist (CS) and 
the Applied Mathematician (AM)

● CS :  “What is special about the optimization of such objects ?

● AM : “An important issue is that realistic simulations 
are – and will always be – numerically costly. For the 
optimization, we use metamodels (statistical models of 
other numerical models)”

● CS (dubious about centralization, partial interest) : 
“hum ...” 

variables perfo

x1 f(x1)

... ...

xm f(xm)

minx∈S f (x)

f̂ (x)

O
P

T
IM

IZ
E

R

metamodel database physical simulation

Goal :



Institut Fayol Seminar (Le Riche, Picard) 13

From pluri- to inter-disciplinarity: 
will / time and pragmatism

● At this point we have 1 multi-* problem and 2 
points of view (agents vs. optimization)

● Pragmatism: A PhD is hired for the project 
(Diane Villanueva) → Need clear work 
directions

● Enabler 1: will / time. One hour meeting per 
week for a year

● Enabler 2: a joined PhD with the US and a 
student not trapped in formal disciplines (French 
CNU sections)
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Research directions: how to agentify an 
optimization problem ?

{minx∈S f (x)g (x)≤0

S

f gx

search space partition : 
synchronize n optimizers 

dividing work in S

variables and criteria 
decomposition
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Research directions: how to agentify an 
optimization problem ?

{minx∈S f (x)g (x)≤0

S

f gx

search space partition : 
synchronize n optimizers 

dividing work in S

variables and criteria 
decomposition

main direction for us secondary direction
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Agent-based dynamic partitioning 
algorithm

1 subregion
+ 1 surrogate

+ 1 local constrained optimizer
+ 1 simulator

= 1 agent

search 
space S

Agents work in parallel to collectively 
solve the optimization problem :

Agent coordination through :
● update of the partition
● agent creation
● agent deletion

min
x∈S⊂ℝn

f (x)

g (x)≤0

( let’s say 1 agent is affected 
to a set of computing nodes )
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Agent-based dynamic partitioning 
algorithm: Goals

Solve a global optimization problem AND locate local optima
A method that can be used for expensive problems (thanks to the 
surrogates)

The search space partitioning allows: 

1) to share the 
effort of finding 
local optima

2) to have 
surrogates 
defined locally 
(better for non 
stationary 
problems)
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Agent-based dynamic partitioning 
algorithm: Global flow chart

form local
surrogates
f̂ , ĝ

optimize or explore :
min
x∈P i⊂S

f̂ (x)  s.t. ĝ(x)≤0

or  max
x∈Pi

min
xi∈P i

∣∣x−xi∣∣

x i
* ,

f (xi
*) ,

g (x i
*)

update 
partitions P

i

Agents
●  deletion
●  creation

database

agent i

...

agent 1

...

parallelized processes

optimize : SQP.
surrogates : polynomial response surface (orders 1, 2 and 3), kriging (linear 
or quad. trend), chosen based on cross-validation error
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Subregion definition

Subregions P
i
 are essentially defined by the centers c

i
 of the subregions: P

i  

is the set of points closer to c
i
 than to other centers. P

i
 are Voronoi cells
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Dynamic partitioning

The partitioning is updated by moving the centers to the best point in 
their subregion:

current = current center
new = point added to P

i
 at the last iteration and not on 

boundary of P
i

if current is infeasible then
if new is less infeasible then move to new

elseif current is feasible then
if new is feasible & has better f then move to new

end
 

Property : agents will stabilize at local optima
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Agent deletion and creation

Creation
Principle 1: the existence of 2 clusters in a subregion is a sign of at least 2 
basins of attraction → split the subregion by creating a new agent
Principle 2: when an agent is stagnant for 3 iterations → split the subregion by 
creating a new agent
Implementation : K-means + check on inter vs. intra class inertia + move 
centers at data points (farthest from existing centers)

Deletion
If two agent centers are getting too close to each other, delete the worst
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Let's look at the behavior in 2D...
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Let's look at the behavior in 2D...
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Two Examples

● Examined two problems to study the success of this 
method

● Compared multiple agents with partitioning to a single 
global agent for an equal number of expensive function 
evaluations
– Single Global Agent: Single surrogate acting over the entire 

design space
● Exploration due to points being too near to each other

● Dynamics
– Minimum of 1 region

– Initially 1 region
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Modified Hartman 6:
Problem Description

● Hartman 6 is a popular benchmark test problem for surrogate-
based global optimization algorithms
– 6 dimensional multi-modal problem

● Modified Hartman 6 includes two Gaussian holes “drilled” into 
the design space to create 4 clear optima

Optimum f % of 
starts

1 -3.33 50.4

2 -3.21 21.1

3 -3.00 8.7

4 -2.90 19.8Should be the 
hardest to located

● Measured volume of basins of 
attraction by percentage of starts 
with gradient based optimizer at 
random locations in design space 
that found each optimum
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Modified Hartman 6:
Success in Locating Optima

● Measured success in locating solution 1% distance away 
from optimum for 50 repetitions (50 different initial DOEs)
– Distance is Euclidean distance normalized by largest 

possible distance in space

– Partitioned method shows a clear advantage in the success 
in locating all optima
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Modified Hartman 6:
Convergence to Each Optimum

● Median objective function with increasing function evaluations

… but this was not the case for 
optima in smaller basins

● Slow convergence to optimum 3

● Multiple agents with partitioning 
were able to find these optima

● For most optima, not a significant 
difference in convergence rates
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Modified Hartman 6:
Surrogate Error at Test Points

● Measured the error of the surrogate approximations of f at 1000 test 
points (LHS sampling) by e

rms

● Error is reduced in the case with partitioning

● Error for single global agent stays nearly constant



Institut Fayol Seminar (Le Riche, Picard) 29

Integrated Thermal Protection System: 
Problem Description

● Design of an integrated thermal protection system

– Structure on launch vehicle that provides structural support and heating 
protection

Approximate both constraints with surrogates
Errors at test points for both surrogates were small over the iterations (~10-10)

● Two failure modes: thermal and stress
● 5 design variables: x = tw, tB, dS, tT, 

θ
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Integrated Thermal Protection System: 
design trade-offs
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ITPS Example:
Success in Locating Optima

● Measured success in locating a feasible  solution 0.01 distance 
from optimum for 50 repetitions (50 different initial DOEs)

 No clear advantage between cases.

All cases show similar 
success percentages
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ITPS Example:
Convergence to Each Optimum

Optimum 1
(nearest optimum)

 Median objective function with increasing function evaluations

For some optima, we observe 
that the nearest best points are 
nearby optima until locating the 
other basin

For most optima, incredibly 
quick convergence (within 5 
function evaluations, not 
including the initial DOE)
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Problem Dependent Success

● Why is there a difference in the success and efficiency of partitioning 
between both problems?

– Behavior in the ITPS problem is easy to approximate globally
● Observed smaller error at test points with single surrogate

– Hartman 6 is more complex, requiring more accurate surrogates to 
approximate the behavior

● Partitioning may be dependent on the need for higher accuracy 
surrogates 

● Otherwise, simpler methods are sufficient
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To sum up

● Limited expensive function calls (thanks to 
metamodels)

● Local optima are found
● Partitioning may be more efficient than random 

exploration
● Potential for distribution (thanks to agents)
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Back to ID4CS

a disciplinea discipline
Optimize
perfo crit 1
perfo crit 2

...

...

● This optimization algorithm will be used in the ID4CS 
platform to solve local optimization problems

● Asset: find local optima, which might become global as 
the overall problem formulation changes (new 
constraints)
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Back to the interdisciplinary dialog

● CS plus : new knowledge useful for the future. 
Surrogate-based reasoning should be useful in 
other multi-agent applications

● CS minus : contribution somewhat unbalanced 
towards the applied math / mechanical 
engineering side (due to Diane's background)
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Back to the interdisciplinary dialog

● AM plus : towards multi-optimizers for 
distributed computing and/or collaborative 
decision. Would not have done it otherwise 
since autonomy is suboptimal in terms of 
centralized information

● AM minus : would like to see middle grain 
agents, either emerging from low grain or from a 
priori decomposition (according to the 
organization structure). Would like convergence 
analysis
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Back to decision, agents and 
optimization

● Formalized decision model based on multi-
agent and optimization

● There still exist solutions to explore, between 
fully centralized MDO and fully agentified MDO
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Multi-disciplinary optimization

AerodynamicsAerodynamics

Structure/MassStructure/Mass

MotorsMotorsAcousticsAcoustics

MissionsMissions

Optimize
Drag
Lift

Optimize
Mass

Structural strength

Optimize
Range

Landing/Take-off length

Optimize
Noise/altitude

Optimize
Power

Consumption

Agent Missions

Agent Acoustics Agent Motors

Agent Structure/Mass

Agent Aerodynamics

Multi-disciplinary optimization
(discipline-to-agent mapping)
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Decision, agents and optimization

● Some reflexions to integrate PLM in ID4CS
– To exploit the integrative properties of such 

platforms

– But additionally requires to handle multi-fidelity and 
to integrate more models (at least)

● Is such an approach applicable to human 
organizations (à la Airbus)?
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Questions ?

This work has benefi ted from support from Agence Nationale de la Recherche (French National Research 
Agency) with ANR-09-COSI-005 reference. 
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