
Applying Semantic Web Technologies to Context
Modeling in Ambient Intelligence

Alexandru Sorici1,2, Olivier Boissier1, Gauthier Picard1, and Antoine
Zimmermann1

1 Ecole Nationale Supérieure des Mines, FAYOL-EMSE, LSTI , F-42023 Saint-Etienne
{sorici,boissier,picard,antoine.zimmermann}@emse.fr

2 University Politehnica of Bucharest, Department of Computer Science, 313 Splaiul
Independentei, 060042 Bucharest, Romania

Abstract. Representation and reasoning about context information is a
main area of research in Ambient Intelligence (AmI). Given the openness
and decentralization of many AmI applications, we argue that usage of se-
mantic web technologies for context modeling brings advantages in terms
of standards, uniform representation and expressive reasoning. We present
an approach for modeling of context information which builds and improves
upon related lines of work (SOUPA, CML, annotated RDF). We provide
a formalization of the model and an innovative realization using the latest
proposals for semantic web standards like RDF and SPARQL. A commonly
encountered ambient intelligence scenario showcases the approach.

Keywords: Ambient Intelligence, Context Modeling, Ontologies, Semantic
Web

1 Introduction

Ambient Intelligence is nowadays a well recognized area of research with work done
in domains ranging from hardware (e.g. sensors, actuators) through middleware
(e.g. information management, basic services) to innovative end applications and
human computer interfaces. Ambient Intelligence applications are very often open
and decentralized, involve a large number of heterogeneous devices and have to han-
dle large amounts of information. Thus, the information management middleware
and the notions of context representation and reasoning, as introduced by Dey [1],
are very important. The past decade has seen many contributions in this particular
field of research [3, 5]. Due to the open and heterogeneous nature of ambient in-
telligence scenarios, recent works have recognized the need for interoperability and
standards in terms of languages and approaches, thereby focusing on ontology mod-
els in support of context management. Amongst the proposed ontologies ever more
[2, 4] are seeing the need to offer explicit modeling of meta-properties of context
information like accuracy or temporal validity. Few models however end up showing
concrete ways of representation and reasoning for both context information and its
meta-properties.
We therefore propose an extensive ontology model for representation of context,
which extends and combines previous work [8, 12] and handles the earlier presented
aspects. Furthermore, we argue that the decentralized systems of ambient intelli-
gence would benefit greatly from advances in semantic web technologies because
they can help with standardization and scalability. We therefore propose a new way
of storing, querying and reasoning over context information and its meta-properties
which uses the latest proposals of the semantic web community for standards like

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-EMSE

https://core.ac.uk/display/52618863?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Semantic Web Based Approach to Context Representation in AmI

RDF and SPARQL.
In Section 2 we introduce supporting concepts and review previous work that in-
spired our own approach. We continue in Section 3 with a formal specification of our
context representation and reasoning model and show how it maps to an ontology
definition and use of semantic web technologies in Section 4. We provide an example
scenario which highlights our approach in Section 5 before concluding in Section 6.

2 Background

This section reviews the research work which serves as background for our own
proposal and shows how we build and extend upon it.
The field of context modeling has received a noticeable amount of contributions in
the last decade [3, 5] ranging from simple key-value models, through markup and
graphical models [10, 11] down to different ontology models [2, 4, 8]. As mentioned
earlier, ontologies for context modeling are becoming a focus in many approaches
and the authors in [9] note that the Standard Ontology for Ubiquitous and Perva-
sive Applications (SOUPA) [8] is one of the proposals that is often reused in other
projects. Indeed, SOUPA is built in a modular way and reuses in its core many well
established ontologies for modeling entities like persons (FOAF3), places (spatial
ontologies in OpenCyc4), security or privacy policies (Rei policy ontology5) or even
an agent’s beliefs desires or intents (BDI). Though SOUPA was originally used in
applications centered on user activity modeling, it is general enough such that it
can be used as an upper-ontology for describing the entities involved in a wider
variety of context management applications. Still, SOUPA does not provide a way
to further characterize the type of properties defined between its core classes, nor
does it offer direct support for annotations of these properties.
One approach which offers some answers to the above mentioned drawbacks is the
Context Modeling Language (CML) model proposed by Henricksen [11]. CML builds
upon the Object-Role Model (ORM) conceptual language for data modeling used in
the Relational Database domain and extends it with constructs specific to the area
of context representation. An important aspect of CML is that its basic representa-
tional unit is the fact, a relationship that holds between one or more entities. The
model then provides a framework for classification of facts into categories denoting
its type (static, sensed, profiled, derived, temporal), expression of uniqueness con-
straints and fact dependencies as well as annotation of facts with quality indicators
(e.g. freshness, accuracy). CML also introduces a form of first-order predicate logic
used to derive higher-level information called situation of entities based on the cur-
rently existing facts. One drawback of the model though is that it does not provide a
base for the entities involved in the facts and its representation fails to easily capture
potential subclassing hierarchies of entities or even facts themselves. Additionally,
CML focused on custom relational database techniques for model realization and
it needed to provide its own implementation for the situation definition language.
This could lead to difficuly in standardization of representation and scaleability. In
contrast, our approach argues that semantic web technologies can mitigate these
drawbacks. We propose a combination between an adapted version of SOUPA as
the upper-ontology for modeling of application entities and an ontology model and
RDF triple based realization that incorporates the strengths of CML. We also in-
troduce an expressive derivation language that can be translated into equivalent

3 http://www.foaf-project.org
4 http://www.cyc.com/opencyc
5 http://rei.umbc.edu/

Applying Semantic Web Technologies to Context Modeling in AmI 3

SPARQL queries. We detail this proposal in Section 4.
Lastly, we noted earlier that an increasing number of works recognize the impor-
tance of modeling meta-properties like different measures of quality or provenance of
context information. Yet, few of them focus on a systematic way of representing and
reasoning about these annotations. On the other hand, work in the field of annotated
RDF statements [6, 7] provides formalization in terms of algebraic structures for the
annotation language and the corresponding deductive system. Zimmermann et al.
[6], for instance, define the semantics of a set of generic operators which are used
to combine the annotations of statements during RDFS inferencing. They provide
instantiations of these operators and the accompanying algebraic structures for the
time, fuzzyness and provenance annotation domains. These works however do not
concentrate on a concrete realization of their abstract annotation structures. As we
detail further in Sections 3.3 and 4.3 our approach to context modeling adopts the
more rigorous definition of annotation dommains proposed by work in annotated
RDF while also explaining the mean for concrete implementation of the discussed
meta-properties.
In summary, the context representation and reasoning model we detail in the fol-
lowing sections tries to combine the best of the 3 approaches presented above.

3 Context Representation

In this section we present a formalization of our context representation and reason-
ing models and then show (in section 4) their implementation using semantic web
technologies.

3.1 Context Model Concepts

Let us first introduce the key concepts participating in the definition of the con-
text model (cf. Figure 1). A ContextAssertion represents an informational fact,
a basic truth unit used to describe the context situation of entities (e.g. a “per-
son”, a “place”, an “object”) “which are considered relevant for the interaction
between a user and an application” (in the sense of Dey’s definition of context
[1]). Each assertion is therefore a relation involving one or more ContextEntities.
As a short example consider the following relation of the form: nearDevice(bob,

Fig. 1: The defining concepts of our proposed context model.

lcdScreen). The ContextAssertion “nearDevice” involves two ContextEntities: Per-
son(“bob”) and Device (“lcdScreen”).

4 Semantic Web Based Approach to Context Representation in AmI

ContextAssertion (resp. ContextEntity) may be characterized by additional meta-
properties through ContextAnnotation (resp. EntityDescription). Annotations of
assertions can be their source (author of the statement), the timestamp of their
generation, their validity (time intervals for which the assertion is considered to be
true) or their accuracy. Since our model doesn’t limit their number, other annota-
tions can be imagined such as ownership (one or more entities which “hold control”
of an assertion), access control (who is allowed to query or access the value of the
assertion) or other.
EntityDescriptions are binary relations amongst ContextEntities and/or literals
which don’t need to be further annotated (as opposed to ContextAssertions). For in-
stance, a context engineer can model hasContactProfile(bob, bob cp) as a Context-
Assertion where “bob cp” is an instance of ContactProfile (a subtype of Context-
Entity). Relations like email(bob cp, emailBob) or homepage(bob cp, homepageBob)
are then modeled as additional descriptions of a ContactProfile instance (where in
this case “emailBob” and “homepageBob” are literals).

3.2 ContextAssertion

Let us now give the formal definition of ContextAssertion. In the following, E de-
notes the set of ContextEntities, V the alphabet of variables, L the alphabet of
literals and Ad the one of a ContextAnnotation domain d (which we discuss further
in section 3.3). Further, let F be the set of all ContextAssertions and A be the set
of all ContextAnnotation domains Ad.
A ContextAssertion F is then defined as an n-ary relation of the form
F (x1, x2, . . . , xn) : {λ1, λ2, . . . , λm}, where xi ∈ E ∪ L ∪ V, i = 1..n and λj ∈
Adj , j = 1..m.

The function role : F → 2E∪L∪V returns the set of ContextEntities, literals or vari-
ables which play a role in an assertion, i.e. role(F) = {x1, . . . , xn}.
Similarly, the function ann : F → 2A∪V returns all ContextAnnotations (instances
or variables) which describe a ContextAssertion F , i.e. ann(F) = {λ1, . . . , λm}.
To each ContextAssertion we may also attach key and uniqueness constraints which
are similar to the ones defined for the Relational Database domain and serve the
same purpose of keeping the knowledge base consistent. It is important to note that
we allow these constraints to be defined over a subset K ⊆ role(F) ∪ ann(F) of
both context entities and annotations, meaning that annotations are important in
determining the consistency of ContextAssertions.

3.3 ContextAnnotations

The definition of a ContextAnnotation domain Ad is inspired from work on anno-
tated RDFS [6] and is defined to have the structure of an idempotent, commutative
semi-ring 〈Ad,⊕,⊗,⊥,>〉. Within this algebraic structure, the operators ⊕ and
⊗ can be considered similar to the meet and join operators of a bounded lattice.
Following the observation in [6], we use ⊕ to combine information about the same
statement, whereas ⊗ models the conjunction of two annotated statements. In what
follows, we shortly present the form of the annotation domains for the common set-
tings we discussed earlier in this section. We provide a more detailed working exam-
ple of both annotated ContextAssertions and reasoning with those annotations in
Section 5. The usually encountered annotation settings have the following domain
definitions (partly adopted from [6]):

– source: Asource = set of URIs ∪ {none, all}, 〈Asource,∨,∧, none, all〉

Applying Semantic Web Technologies to Context Modeling in AmI 5

– timestamp: Atimestamp = set of datetime strings down to ms precision,
〈Atimestamp,max,min,−∞,+∞〉

– time validity: Avalidity = the set of sets of pairwise disjoint time intervals,
〈Avalidity,∪,∩, {∅}, {[−∞,+∞]}〉

– accuracy: Aaccuracy = [0, 1], 〈Aaccuracy,max,min, 0, 1〉

3.4 ContextAssertion Derivation Rules

We now focus on the proposed reasoning model. It aims at combining several Entity-
Descriptions, ContextAssertions and their annotations in order to obtain higher-
level ContextAssertions. The reasoning is based on a deduction mechanism involving
Context Derivation Rules. Each rule is made up of a head (the deduced Context-
Assertion) and a body which expresses the conditions required for the rule head to
be deduced.
The head of a derivation rule ρ is a ContextAssertion Fhead(x1, . . . , xk) : {λ1, . . . , λl}
where xi ∈ E ∪ V ∪ L and λj ∈ Adj ∪ V . Notice that role(Fhead) and ann(Fhead)
can include variables which will be bound during the reasoning process.
The body consists of so called ConditionExpressions (detailed further down in this
section) and constrained forms of universal and existential quantification. The gen-
eral form of a Context Derivation Rule is thus the following:

ρ : Fhead(x1, x2, . . . , xk) : {λ1λ2, . . . , λl} ← body where body may be:

ConditionExpr

or ∃y1, . . . yr • Fc(z1, . . . , zm) : {λ1, . . . λp} • ConditionExpr (EQC)

or ∀y1, . . . yr • Fc(z1, . . . , zm) : {λ1, . . . λp} • ConditionExpr (UQC)

where yi ∈ V , Yρ = {y1, . . . yr} ⊆ role(Fc)∪ann(Fc) and role(Fhead)∩role(Fc) 6= ∅.
In the above rule, EQC (resp. UCQ) refers to existential (resp. universal) quantifi-
cation constraint, meaning that the possible values of the variables yi are those
for which the constraining ContextAssertion Fc is true. In the existential case, at
least one value assignment for each yi has to also respect the conditions set in
ConditionExpr. In the universal case, all possible value assignments have to do so.
Additionally, Yρ and all the variables that appear in the rule head (role(Fhead),
ann(Fhead)) must also appear in ConditionExpr, which we discuss next.

A ConditionExpression contains a domain expression (DomExpr) and an anno-
tation expression (AnnExpr) as follows:

ConditionExpr ::=DomExpr ∧ AnnExpr
DomExpr ::=ComExpr |DomExpr ∧ ComExpr
ComExpr ::=SimExpr |AggExpr
SimExpr ::=AssertionExpr | ¬AssertionExpr |TermExpr
AggExpr ::=aggregate(FuncExpr, F ilterExpr,ResExpr)

AssertionExpr ::=Fbody(x1, . . . , xn) : {λ1, . . . , λm}, xi ∈ E ∪ V ∪ L, λj ∈ Adj ∪ V

A DomExpr is a conjunction of positive or negated ContextAssertions, term ex-
pressions (TermExpr) and aggregations (AggExpr).
Term expressions contain terms t ∈ E ∪ L ∪ V ∪ Adi which are entities, literals,
variables or annotations. Terms can be related by boolean operators (>, <, >, 6,
=, 6=), logical connectors (∧, ∨, ¬), EntityDescription relations and system or user-
defined functions func(t1, . . . , tn). Functions in term expressions act like predicates

6 Semantic Web Based Approach to Context Representation in AmI

which return a truth value when all their arguments are bound. If the arguments
contain free variables, the function call binds them to values that make the function
true.
An AggExpr contains three subexpressions: FuncExpr, FilterExpr and ResExpr.
The FuncExpr is a list of one or more aggregation functions that take a single vari-
able as their argument [aggFunc1(z1), . . . , aggFunck(zk)]. We employ the typical
aggregation functions: aggFunc ∈ {count, sum, avg, min, max}. FilterExpr is
the expression used to condition the values of the variables zi over which we per-
form the aggregation. Its form is the same as that of the SimExpr. Therefore, all
variables zi must occur in ContextAssertions or ContextAnnotations contained in
FilterExpr. Finally, ResExpr is a list of variables [aggRes1, . . . , aggResk] which
will store the result of the k aggFunci(zi) functions.
An AnnExpr is a conjunction of functions of the form fj(λj1, . . . , λjq) where each
function fj binds a free variable λheadj ∈ ann(Fhead) (the annotations of the Context-

Assertion in the rule head). All λjk and λheadj belong to the same annotation domain
Adj and we additionally know that λjk belongs to the annotations of some Context-

Assertion in ConditionExpr. The functions fj are user-defined and can bind λheadj

either to a constant (e.g. the default value for annotation domain Adj) or to a value
computed using the ⊕ and ⊗ operators specific to each annotation domain.

4 Implementing the model with Semantic Web Technologies

The formal model introduced in the previous section has been implemented using
available semantic web technologies. In what follows we first present the ontol-
ogy used to express the ContextEntities and the ContextAssertions. We then show
how assertions and their annotations are inserted in an RDF quad store using the
SPARQL query language6 and the concept of Named Graphs. We then finish by
detailing how and the way in which uniqueness constraints and context derivation
rules are implemented using the SPARQL inferencing notation (SPIN).

4.1 Mapping ContextEntities and ContextAssertions to Ontology
Models

In section 2 we discussed about SOUPA [8] as one of the most renowned and reused
ontologies for representing context information [9]. Its modularity and reuse of ex-
isting vocabularies provides a good incentive to adopt it as the upper-ontology of
our context modeling approach. We extend the original definition of SOUPA with
a number of classes and properties which allow us to better express the particulari-
ties of our representation and reasoning models. These new concepts are part of an
ontology we call ContextAssertion.
In the ContextAssertion ontology we define the generic class ContextEntity and
use it as the new root for all classes existing in SOUPA. In section 3.1 we intro-
duced the concepts of ContextAssertion and EntityDescription which are relations
over ContextEntities and literals. In order to characterize the binary assertions
and descriptions which already exist between classes of SOUPA, in the Context-
Assertion ontology we define two OWL object properties
(entityRelationAssertion, entityRelationDescription) and two datatype properties
(entityDataAssertion, entityDataDescription) that help us “classify” SOUPA’s object

6 http://www.w3.org/TR/2013/REC-sparql11-query-20130321/

Applying Semantic Web Technologies to Context Modeling in AmI 7

and datatype properties as either ContextAssertion with arity n = 2 (subproperties
of ∗Assertion) or EntityDescription (subproperties of ∗Description).
Taking inspiration from work in [11], we further extend entityRelationAssertion and
entityDataAssertion into static, sensed, profiled or derived properties, denoting the
way in which those assertions are obtained within the system.
To express ContextAssertions with arities n = 1 or n > 3 we introduce two new
classes of the ContextAssertion ontology: UnaryContextAssertion (n = 1) and
NaryContextAssertion (n > 3).
For the unary case, a ContextAssertion like occupied(bob) entails the creation of
the Occupied subclass of UnaryContextAssertion and the assertion of the state-
ment :bob a :Occupied (in Turtle syntax). In the n > 3 case we make use of
a mechanism which is similar to reification of RDF statements7. In the Context-
Assertion ontology we define the assertionRole property relating an instance of a
NaryContextAssertion to a ContextEntity or literal which plays a role in the asser-
tion. In order to express a ContextAssertion like personInMeetingAt(bob, teamMeet-
ing, room123), we first create the PersonInMeetingAt subclass of NaryContextAsser-
tion together with subproperties of assertionRole specifying its roles (personRole,
meetingRole, locationRole). The assertion in our example is then expressed as the
following group of statements: {: a0 a :PersonInMeetingAt. : a0 :personRole
:bob. : a0 :meetingRole :teamMeeting. : a0 :locationRole :room123.},
where a0 is an RDF blank node.
For instances of UnaryContextAssertion and NaryContextAssertion we also define an
assertionType property which states if they are static, sensed, profiled or derived
(like in the n = 2 case).

4.2 Implementing ContextAssertions

Let us now discuss how we complete ContextAssertions expressed using the Context-
Assertion and adapted SOUPA ontologies with the ability to become annotated
statements. In doing so we make use of the concepts of quad stores and RDF named
graphs8,9. RDF named graphs are a key concept of the Semantic Web. They allow
a set of RDF statements (subject - predicate - object triples) called a graph to be
identified by a URI. By naming the set of statements, additional meta-properties
can then be asserted about the entire set.
We use this facility to our advantage with the purpose of expressing annotations
of a ContextAssertion. We allow each individual RDF statement (n = 1, 2) or set
of statements (n > 3) expressing a ContextAssertion to be wrapped within its own
graph. Essentially, the graph URI becomes an identifier for the ContextAssertion.
The ContextAnnotations are then expressed as RDF statements which have the
graph URI (the identifier) as the subject.
Considering now an entire context model expressed in terms of the adapted SOUPA
and ContextAssertion ontologies, our system performs the following steps for
setting up and maintaining the named graph structure of the context assertions and
their annotations. First, the RDF file containing the ContextEntity and Context-
Assertion definitions is obtained and parsed. A SPARQL CREATE GRAPH
<baseURL/#ContextEntityStore> statement is issued to create a named graph
which will store all instances of ContextEntity subclasses as well as all Entity-
Descriptions expressed with subproperties of entityRelationDescription or entityData-

7 http://www.w3.org/TR/rdf-mt/#Reif
8 http://en.wikipedia.org/wiki/Named graph
9 http://www.w3.org/TR/sparql11-query/#specifyingDataset

8 Semantic Web Based Approach to Context Representation in AmI

Description. Next, for each type of ContextAssertion we use similar SPARQL state-
ments to create a named graph with an identifier URI that follows a pattern (e.g.
for an assertion called nearDevice we build the #nearDeviceStore relative URI).
These named graphs will hold all ContextAnnotations made for instances of their re-
spective type of assertions. Lastly, after building this supporting structure of named
graphs, insertion of a new ContextAssertion requires the following actions: (i) issue
a CREATE GRAPH request with a unique URI naming the graph that will wrap the
new assertion and act as its identifier; (ii) use a SPARQL INSERT request to put the
necessary RDF triples stating the assertion in the newly created named graph. (iii)
issue SPARQL INSERT requests for ContextAnnotations in the named graph corre-
sponding to the name of our assertion as seen above. The graph URI created at
step (i) serves as the subject of the RDF triples expressing the annotations.

4.3 Implementing ContextAnnotations

We now describe our concrete representation for the annotation domains discussed
throughout this article (source, timestamp, time validity and accuracy).
As described in Section 3.3, the vocabulary for the source annotation domain con-
sists of the set of URIs identifying authors of ContextAssertions. In the Context-
Assertion ontology we define the ContextAgent class, which describes the different
type of actors (agents) that we envision within the domain of discourse of an appli-
cation (e.g. ContextSensingAgent, ContextUserAgent, etc). Thus, Asource is equal to
the URIs identifying instances of the ContextAgent class.
For the timestamp annotation domain, the vocabulary Atimestamp consists of the
set of datetime strings. The RDF schema specification defines a rdfs:Datatype of
xsd:datetime which suits our needs accordingly.
In the case of the time validity annotation domain, an element of the vocabulary
Avalidity is a set of pairwise disjoint time intervals. We employ the “entry” sub-
ontology of time in OWL10 [13] to express a time interval using the ProperInterval
class. In order to express a set of intervals we make use of the Ordered List Ontol-
ogy11 which describes a list in terms of Slot classes and next and previous properties.
A time validity annotation is then an instance of the OrderedList class where each
validity interval fills a slot.
Lastly, for the accuracy annotation domain the vocabulary consists of float values in
the continuous interval [0, 1]. We can express them using the xsd:float datatype.
A named graph URI identifying a ContextAssertion is related to a particular Con-
textAnnotation instance by the assertedBy, hasTimestamp, validDuring and hasAccu-
racy properties defined in the ContextAssertion ontology for the source, times-
tamp, time validity and accuracy annotation domains respectively.
For each annotation domain, the respective ⊕ and ⊗ operators either already exist
in the operational semantics of SPARQL (∨, ∧, max, min) or they are implemented
as user-defined functions (∪ and ∩ for the time validity domain).

4.4 Implementing ContextAssertion Uniqueness Constraints

Uniqueness constraints imposed on a ContextAssertion are enforced using SPIN
constraints12. To explain, consider the example of a personRoomLocation Context-
Assertion. A SPARQL ASK query saying that a person cannot be in two places of
a room at the same time looks like the following:

10 http://www.isi.edu/ hobbs/damltime/time-entry.owl
11 http://smiy.sourceforge.net/olo/spec/orderedlistontology.html#
12 http://spinrdf.org/spin.html#spin-constraints

Applying Semantic Web Technologies to Context Modeling in AmI 9

ASK WHERE {
GRAPH ?g1 {?P :personRoomLocation ?RoomLoc1} .
GRAPH <:personRoomLocationStore> { ?g1 :validity ?v1 }.
FILTER (

EXISTS {
GRAPH ?g2 {?P :personRoomLocation ?RoomLoc2}.
GRAPH <:personRoomLocationStore> { ?g2 :validity ?v2 }.
FILTER (?RoomLoc1 != ?RoomLoc2 && fn:overlaps(?v1, ?v2)).

}
)

}

The above query will return true when there is an overlap between the stated time
validities of personRoomLocation assertions relating the same person ?P to different
locations inside the room (?RoomLoc1, ?RoomLoc2). The SPIN specification allows
such queries to be attached to an OWL class definition using the spin:constraint
property. In our system, for a given ContextAssertion (e.g. personRoomLocation)
we attach such a constraint to all ContextEntity classes which play a role in the
assertion and are involved in the uniqueness constraint (e.g. the Person class in our
example).

4.5 Implementing ContextAssertion Derivation Rules

To map the derivation rules which drive the reasoning process we again use SPIN
which allows attaching different types of SPARQL queries to a subclass of rdfs:Class.
Recall from Section 3.4 that the head of a derivation rule ρ is a ContextAssertion
Fhead(x1, . . . , xk) : {λ1, . . . , λl}. We use the spin:rule13 property to attach the cor-
responding body of ρ, expressed in SPARQL syntax, to a ContextEntity instance
xi ∈ role(Fhead). At runtime, a SPIN compliant inference engine first searches all
ContextEntities for attached Derivation Rules. It then inspects the rules to build
a dictionary mapping all ContextAssertions to rule bodies where they appear. The
engine can then execute those rule bodies every time the value of a mapped Context-
Assertion changes. We now show how the ConditionExpr is expressed in terms of
SPARQL requests:

– AssertionExpr: a ContextAssertion is expressed using RDF statements wrapped
in named graphs as explained in Sections 4.1 and 4.2

– AggExpr: are expressed using SPARQL aggregates14

– TermExpr: EntityDescriptions are expressed as RDF statements encoding the
binary description relations. Boolean operations, logical connectives and func-
tions on terms are implemented using the equivalent SPARQL syntax and con-
tained within SPARQL FILTER expressions.

– AnnExpr: the annotation assignment functions are user-defined. The value they
compute is bound to the corresponding λj variable in the rule head (ann(Fhead))
using a SPARQL BIND statement.

Finally, let us consider the existentially and universally constrained quantifications.
For the existential case support is already provided in SPARQL by the EXISTS filter
expression (see Fig. 2). For the universal case the intuition behind the SPARQL
query shown in Fig. 2 is the following: consider a substitution σ = {y1/t1, . . . , yr/tr}
which binds each variable yi ∈ Yρ to a ContextEntity or literal. Let us then denote
by ΣFc↓Yρ and ΣDerivExpr↓Yρ the sets of all substitutions σ binding variables in Yρ
for which the constraining assertion Fc and the assertions in ConditionExpr are true

13 http://spinrdf.org/spin.html#spin-rules
14 http://www.w3.org/TR/sparql11- query/#aggregates

10 Semantic Web Based Approach to Context Representation in AmI

respectively. The interpretation of the universal constrained quantification rule then
implies that ΣFc↓Yρ ⊆ ΣDerivExpr↓Yρ ⇔ ΣFc↓YρrΣDerivExpr↓Yρ = ∅. The SPARQL

MINUS15 filter expression used in Fig. 2 provides this exact semantics.

CREATE GRAPH <gURI>;
INSERT{

GRAPH <gURI> {new assertion}
GRAPH <newAssertionStore> {annotations}
}
WHERE {
{ constraining assertion } .
FILTER (
EXISTS { ConditionExpr }

)
}

CREATE GRAPH <gURI>;
INSERT{ assertion and its annotations }
WHERE {
{ SELECT (COUNT(*) AS ?count)

WHERE {
{constraining assertion}
MINUS
{ConditionExpr}
}

} . FILTER (?count = 0)
}

Fig. 2: SPARQL expressions for existentially (left) and universally (right) constrained
quantifications

5 A sample Use Case

To exemplify both our formal context model and its presented implementation with
semantic web technologies we employ a fairly known ambient intelligence scenario:
the ad-hoc meeting in a smart office. Alice, Bob and Charlie enter the smart office

ContextEntity :{camera, microphone,
roomLocation}

Literal :{noise level (in dB),
skeleton position}

ContextAssertion : {
deviceRoomLoc(D, RL),
sensesSkelInPos(Cam, S, P):{λvalid, λacc},
hasNoiseLevel(RL, NL):{λvalid, λacc},
hostsAdhocMeeting(RL):{λvalid, λacc}
}

:Device rdfs:subClassOf :ContextEntity
:RoomLoc rdfs:subClassOf :ContextEntity
:Kinect rdfs:subClassOf :Device
:Mic rdfs:subClassOf :Device
:deviceRoomLoc rdfs:subPropertyOf :entityRelationAssertion
:SensesSkelInPos rdfs:subClassOf :NaryContextAssertion
:hasNoiseLevel rdfs:subPropertyOf :entityDataAssertion
:HostsAdhocMeeting rdfs:subClassOf :UnaryContextAssertion

Fig. 3: Formalization of the ad-hoc meeting scenario

in room 123 to have a meeting and discuss an important issue. The office walls are
lined with Microsoft Kinect cameras and microphones near every desk. Sensed data
from these devices is continuously processed by a computing agent which monitores
the situations in the room. As the 3 friends sit down and start discussing, the Kinect
camera near their desk observes 3 skeletons in the sitting position and the micro-
phones in the vicinity inform of a signal level which is constantly over 60dB. Since
this is going on for more than 5 minutes, the computing agent of room 123 recog-
nizes it to be an ad-hoc meeting situation and relays this information to the user
agents running on the smartphones of Alice, Bob and Charlie. Using customized
rules these agents can decide to silence the ringtone or divert all calls to voice-mail
as long as the meeting is in progression.
We focus on the ContextAssertions required to model this scenario and on the rea-
soning required to make the assertion that a desk in the smart office is host to an ad-
hoc meeting. Figure 3 shows the formalization and representation within the SOUPA
and ContextAssertion ontologies. In order to capture the described target situ-
ation we need to model the ContextEntities (Camera, Microphone, RoomLocation)

15 http://www.w3.org/TR/sparql11-query/#neg-minus

Applying Semantic Web Technologies to Context Modeling in AmI 11

hostsAdhocMeeting(RL):{λsrc, λt, λvalid, λacc}:

∃K• deviceRoomLoc(K, RL) •
isA(K, camera) ∧
makeInterval(now()-5,now(),λinterv) ∧
aggregate([count(S),avg(λaccS)],

sensesSkelInPos(K,S,sit):{λvalidS , λaccS}
∧includes(λvalidS , λinterv),[Ct,avgAccS]

) ∧ Ct>3 ∧ λavgAccS >0.75 ∧
...

...
aggregate([avg(NL),avg(λaccN)],

hasNoiseLevel(RL, NL):{λtime, λaccN} ∧
λtime > now()-5 ∧ λtime < now(),
[AvgLevel,λAvgAccN]

) ∧ AvgLevel>60 ∧ λAvgAccN > 0.75 ∧
assignAcc(λacc, λAvgAccS ⊗ λAvgAccN) ∧
assignSrc(λsrc, currentAgent) ∧
assignTimestamp(λt, now()) ∧
assignValid(λvalid, {[now()-5, now()]})

Fig. 4: Ad-hoc Meeting Context Derivation Rule

and the ContextAssertions that relate them (deviceRoomLocation, hasNoiseLevel,
sensesSkelInPosition). Notice that all 3 types of assertions (n = 1, 2 and n > 3)
are present. Figures 4 and 5 present the Context Derivation Rule used to detect
the ad-hoc meeting situation. We can observe again that all elements described
throughout Sections 3 and 4 are present: assertion expressions, aggregation expres-
sions, term expressions including predefined system functions (e.g. fn : now() or
fn : includes() which determines interval inclusion), as well as examples of func-
tions in AnnExpr like fn : multiply() (implementing the semantics of assignAcc in
Figure 4) which sets the value λacc for the assertion in the rule head. At the begin-
ning of the SPARQL query we can also see the sequence of named graph creation
and statement insertions discussed about in Section 4.2.

create graph <UUID>;
insert {

graph <UUID> {?RL a :HostAdhocMeeting}
graph <HostAdHocMeetingStore> {
<UUID> :assertionType :Derived;

:assertedBy ?src;
:hasTimestamp ?t;
:validDuring ?valid;
:hasAccuracy ?acc. }

} where {
?K :deviceRoomLoc ?RL .
bind (fn:makeInterval(fn:now()-5,
fn:now())) as ?interv.

FILTER (
EXISTS { ?K a ctx:KinectCamera .
{select (count(?S) as ?Ct)

(avg(?accS) as ?AvgAccS)
where {

graph ?gCamera {
_n a :SensesSkelInPos;

:cameraRole ?K;
:skelRole ?S;
:posRole "sit"

}.
.......

graph <SensesSkelInPosStore> {
?gCamera :validDuring ?validS;

:hasAccuracy ?accS
}.
filter(fn:includes(?validS, ?interv))
}.
}.
filter(?Ct>=3 && ?AvgAccS>=0.75).
{select (avg(?lvl) as ?AvgLvl)

(avg(?accN) as ?AvgAccN)
where {

graph ?gNoise {?RL :hasNoiseLevel ?lvl}.
graph <hasNoiseLevelStore> {

?gNoise :hasTimestamp ?time;
:hasAccuracy ?accN

}.
filter (?time>=fn:now()-5 && ?time<fn:now()).
}
}. filter(?AvgLvl>=60 && ?AvgAccN>=0.75).
}

). bind (fn:multiply(?AvgAccS, ?AvgAccN) as ?acc).
bind (fn:currentAgent() as ?src).
bind (fn:now() as ?t).
bind (?interv as ?valid)

}

Fig. 5: SPARQL query mapping of Ad-hoc Meeting Context Derivation Rule

6 Conclusions and Future Work

In this article we presented a model for representation and reasoning over context
information in ambient intelligence scenarios. We provided a formalization of the
concepts involved in the model and have shown how they can be concretely im-
plemented using an extended ontology (SOUPA + ContextAssertion) and the
newest in semantic web technologies (usage of RDF Named Graphs and SPIN). Our
proposed rule based reasoning model features a rich assertion derivation language

12 Semantic Web Based Approach to Context Representation in AmI

capable of handling constrained quantification, aggregation and manipulation of
context information annotations. It can therefore handle reasoning over complex
situations involving things like averages over sequences of events and decisions over
uncertain information. Additionally, the usage of ontologies and technologies of the
semantic web offers our model advantages like interoperability, incremental knowl-
edge build-up and decentralized control of information.
In future work we will test our model over different RDF quad stores and bench-
mark its performance in terms of resource consumption, reasoning throughput and
delay. We plan to extend ContextAnnotations with domains we hinted towards (e.g.
ownership, access control) and we will develop a query and subscription language
which takes different policies (e.g. source of information, update frequency, access
control) into account.

References

1. Dey, Anind K.: Understanding and using context. Personal and ubiquitous computing
5.1, pp. 4–7 (2001).

2. Strang, T., Linnhoff-Popien, C., Frank, K.: CoOL: A context ontology language to
enable contextual interoperability. Distributed applications and interoperable systems.
236–247 (2003).

3. Strang, T., Linnhoff-Popien, C.: A context modeling survey. In: Workshop on Advanced
Context Modelling, Reasoning and Management, UbiComp 2004-The Sixth Interna-
tional Conference on Ubiquitous Computing, Nottingham/England. (2004).

4. Gu, T., Wang, X., Pung, H.: An ontology-based context model in intelligent environ-
ments. In: Proceedings of Communication Networks and Distributed Systems Modeling
and Simulation Conference (2004).

5. Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ranganathan, A.,
Riboni, D.: A survey of context modelling and reasoning techniques. Pervasive and
Mobile Computing. 6, 161–180 (2010).

6. Zimmermann, A., Lopes, N., Polleres, A., Straccia, U.: A general framework for rep-
resenting, reasoning and querying with annotated semantic web data. Web Semantics:
Science, Services and Agents on the World Wide Web, 11, 72–95 (2012)

7. Geerts, F., Karvounarakis, G., Christophides, V., Fundulaki, I.: Algebraic structures for
capturing the provenance of SPARQL queries. In: Proceedings of the 16th International
Conference on Database Theory. pp. 153–164 (2013).

8. Chen, H., Perich, F., Finin, T.: SOUPA: Standard ontology for ubiquitous and pervasive
applications. In: Mobile and Ubiquitous Systems: Networking and Services. (2004).

9. Krummenacher, R., Strang, T.: Ontology-based context modeling. In: Proceedings of
Third Workshop on Context-Aware Proactive Systems (CAPS). (2007).

10. Indulska, J., Robinson, R., Rakotonirainy, A., Henricksen, K.: Experiences in using
cc/pp in context-aware systems. In: Mobile Data Management. pp. 247–261 (2003).

11. Henricksen, K.: A Framework for Context-Aware Pervasive Computing Applications.
PhD Thesis, School of Information Technology and Electrical Engineering, University
of Queensland. (2003).

12. Henricksen, K., Livingstone, S., Indulska, J.: Towards a hybrid approach to context
modelling, reasoning and interoperation. In: Proceedings of the First International
Workshop on Advanced Context Modelling, Reasoning And Management, in conjunc-
tion with UbiComp (2004).

13. Pan, F., Hobbs, J. R.: Time in OWL-S. In: Proceedings of AAAI-04 Spring Symposium
on Semantic Web Services. (2004).

