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Chapter 1

General introduction

“Containerization - the stowage of regularly or even irregularly shaped freight in sealed,
reusable boxes with standardized dimensions - is one of the most important cargo-moving
techniques developed in the 20th century. Being highly efficient, it has influenced and revo-
lutionized not only the shipping industry and ports, it has also fundamentally changed the
whole international trade as well as concept, design, functions and activities of transport
systems in the world.” (Stahlbock and Voß; 2008b)

This chapter provides general information about maritime containerized transportation
and an overview of the work presented in this thesis. Section 1.1 introduces the concept of
containerization, its development over the last few decades and its main players. Section
1.2 describes the structure of container terminals and their handling equipment. Section 1.3
presents optimization problems arising at container terminals. Section 1.4 illustrates the use
of new technologies to improve the efficiency of container terminals. Section 1.5 states the
problems dealt with in this thesis and details the structure of the thesis.

1.1 Containerized transportation

A container is a “box to carry freight, strong enough for repeated use, usually stackable
and fitted with devices for transfer between [transport] modes” (Economic Commission for
Europe; 2001). Standardized containers are 20 or 40 feet long and play a major role in
intermodal transport where goods are moved “in one and the same loading unit [...], which
uses successive two or more modes of transport [(road, rail, water)] without handling the
goods themselves in changing modes” (Economic Commission for Europe; 2001). A container
may for example be transported to the harbor by truck, from one harbor to another by
vessel and from the harbor to its destination by train. Besides efficient discharging and
loading processes, containers also improve and simplify scheduling and controlling and serve
as protection against weather and pilferage (Steenken et al.; 2004).

Over the last thirty years, container shipping has grown fifteenfold from 102 millions
of tons loaded in 1980 to 1 498 millions of tons loaded in 2012. In 1980, it accounted for
2.7% of total seaborne trade (measured in tons loaded) and in 2012 for 16.1% (UNCTAD
Secretariat; 2012). Figure 1.1 - taken from UNCTAD Secretariat (2012) - shows the global
container trade from 1996 to 2013 measured in TEUs (twenty foot equivalent) and the
annual percentage change. Container shipping has grown with an impressive average annual
rate of 5% to 15% over the last fifteen years. Only during the crisis in 2009 containerized
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Figure 1.1: Global container trade from 1996 to 2013

transportation dropped by 10%, but recovered in 2010 to 2012. To keep pace with the
tremendous increase in containerized cargo, the number and size of container ships grew
continuously. The total TEU capacity of container ships has increased from 1.2 million TEU
in 1987 to 12.8 million TEU in 2010. The average capacity per vessel has increased from
1 155 TEU in 1987 to 2 742 TEU in 2010 (UNCTAD Secretariat; 2010). The largest container
ships in service in early 2013 have a nominal capacity of 16 000 TEU (CMA-CGM).

Containerized transport is dominated by few big shipping lines. The top 20 liner shipping
companies operate 69.6% of the world total TEU capacity and the top 10 companies 51.6%
(UNCTAD Secretariat; 2012). Due to the high market concentration and high vessel oper-
ating costs, the competitiveness of a container terminal depends on fast vessel turnaround
times and low rates for loading and discharging containers. Other performance parameters
such as gate utilization, container dwell time and the idle rate of equipment are secondary.

Recently, the connection of a container terminal to its hinterland gained in significance.
Since geographical close ports may serve similar inland areas, terminals offering short and
reliable delivery times have an advantage over their competitors. Figure 1.2 - taken from
Notteboom (2008) - shows European container terminals and their overlapping hinterlands.
According to Notteboom and Winkelmans (2004), potential cost savings in the shipping
industry are getting smaller and the pressure to find cost savings elsewhere is growing.
Inland transport accounts for 40% to 80% of total costs of intermodal container shipping
and offers thus huge possibilities to reduce overall transportation costs.

1.2 Container terminals and their handling equipment

Container terminals transfer containers between sea vessels and inland transport modes
(trucks, trains and barges). Three types of container flows are distinguished: import con-
tainers that arrive on vessels and leave on inland transport modes, export containers that
arrive on inland transport modes and leave on vessels and transshipment containers that

Page 2 EMSE-CMP Elisabeth Zehendner



1.2. CONTAINER TERMINALS AND THEIR HANDLING EQUIPMENT

Figure 1.2: European container terminals and logistics core regions in the hinterland

Figure 1.3: Schematic side view of a container terminal

arrive and leave on vessels. Container terminals also handle specific container types like
hazardous, reefer and empty containers.

The terminal can roughly be divided into three areas: the seaside, the landside and the
yard. The seaside is the terminal’s interface with the maritime transportation system; the
landside the interface with the inland transportation system; the yard serves as a temporary
storage location for full and empty containers. It decouples (un)loading operations at the
seaside and the landside.

Figure 1.3 - taken from Steenken et al. (2004) - depicts a terminal with its three areas and
the handling equipment that may be used for each area. At the seaside, quay cranes load and
unload vessels (see Figure 1.4). For internal transportation, different transport vehicles can
be used: straddle carriers, trucks with trailers and automated guided vehicles (AGVs) are
the most common ones. Straddle carriers (see Figure 1.5) are man-driven vehicles that are
able to pick up a container at its origin, transport it and put it down at its destination. Since

10/2013 EMSE-CMP Page 3
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Figure 1.4: Quay cranes loading a vessel

Figure 1.5: Straddle carrier Figure 1.6: Seaside transportation via AGVs

Figure 1.7: Yard run with straddle car-
rier

Figure 1.8: Yard run with rail mounted
gantry cranes

Page 4 EMSE-CMP Elisabeth Zehendner



1.3. OPTIMIZATION PROBLEMS AT CONTAINER TERMINALS

recently, few terminals use automatic straddle carriers (ASC) instead of manned straddle
carriers. Trucks with trailers and automated guided vehicles (see Figure 1.6 - taken from
Steenken et al. (2004)) transport containers from their origins to their destinations. But,
they cannot lift containers on their own and have to be (un)loaded by cranes. Until now,
AGVs are only used for seaside transportation.

Most terminals stack containers on the ground due to space restrictions1. Straddle carri-
ers or yard cranes are used to execute storage and retrieval tasks. Straddle carriers can stack
containers up to 4 tiers high. In this case, straddle carriers also execute transportation tasks.
The two most common yard cranes are rail mounted gantry cranes (RMG) and rubber tired
gantry cranes (RTG). They span 8 to 12 rows of containers and stack containers 4 to 10
tiers high. In this case, transportation tasks are executed by trucks with trailers, AGVs or
manned straddle carriers. This requires a strong coordination between cranes and transport
vehicles to fully use the available capacity. Figure 1.7 shows a yard run with straddle carri-
ers; Figure 1.8 - taken from Koppe and Brinkmann (2008) - a yard run with rail mounted
gantry cranes.

Different equipment is used to (un)load landside transport modes. Trucks may be
(un)loaded directly in the yard by the yard crane or at a specific exchange area via straddle
carriers; trains by dedicated cranes, fork lifts or reach stackers; and barges by dedicated
cranes or by the same cranes than vessels. Empty containers are usually handled by reach
stackers. Reefer and hazardous containers are handled with the same equipment as other
containers, but might be assigned to specific areas within the yard.

The chosen terminal layout and equipment highly influence the way terminals work.
This choice depends on the characteristics of the terminal. Yard cranes use the available
land more efficiently since containers are stacked higher. Straddle carriers provide more
flexibility. Automated terminals using yard cranes and AGVs reduce manned labor but
require high initial investments. Several studies present different handling equipment and
terminal layouts and evaluate the impact on the terminal performance (e.g., Ioannou et al.;
2000; Vis; 2006; Ioannou and Jula; 2008; Brinkmann; 2011; Wiese et al.; 2011; Kemme;
2013).

1.3 Optimization problems at container terminals

Increasing volumes and vessel sizes, space restrictions and severe competition put pressure
on container terminals to manage their resources efficiently. In addition, terminals have to
comply with environmental, congestion and labor force restrictions. This need for efficiency
promulgated the use of information technologies and optimization methods. It also boosted
academic research on container terminal operations since the mid-nineties (Woo et al.; 2011).
Several papers classify optimization problems at container terminals and summarize related
literature (e.g., Vis and de Koster; 2003; Steenken et al.; 2004; Stahlbock and Voß; 2008a;
Kim; 2008). We report their classification and point out review articles for further informa-
tion on the different problems.

To plan the service of vessels, several topics have to be addressed: stowage planning,
berth allocation and crane split. Stowage planning consists in assigning containers to slots

1Alternatively, containers are parked on chassis that are moved with trucks.

10/2013 EMSE-CMP Page 5



CHAPTER 1. GENERAL INTRODUCTION

in the ship based on container attributes (like container type, destination and weight) and
to ensure the stability of the vessel. Berth allocation (BAP) allocates arriving vessels to the
berth based on vessel specific data (like length, draft, expected arrival and service times). It
provides an allocation in time and space. Crane split assigns quay cranes to vessels (QCAP)
based on the volume to be (un)loaded and schedules single tasks on the assigned cranes
(QCSP) respecting precedence constraints imposed by the stowage plan. These problems
may be solved separately or in an integrated way. More information on seaside operation
planning and related literature is given by Meisel (2009) and Bierwirth and Meisel (2010).

Incoming containers are not immediately loaded on an outgoing vehicle, but stored in the
yard for up to several days. Terminals stack containers to use their scarce land efficiently.
Consequently, they can access only the topmost container of each stack directly. If another
container has to be retrieved, containers above have to be relocated. These unproductive
moves cannot be avoided completely as little information about future retrievals is known
when a container has to be stored. Yard optimization aims to minimize storage and retrieval
times of containers to improve the overall performance of the terminal. It encompasses two
main problems: where to store an incoming container (storage space allocation problem) and
how to relocate containers to avoid further relocations (remarshalling, premarshalling and
container relocation problem). Caserta, Schwarze and Voß (2011) provide more information
on yard optimization and related literature.

Transport optimization deals with the transport of containers between the yard and the
seaside or landside. The terminal has to decide how to allocate the transport equipment to
the different tasks and how to schedule containers on the allocated equipment. The objective
is to minimize waiting times of quay cranes and external transport vehicles and to reduce
travel times of internal transport vehicles. Stahlbock and Voß (2008b) present a literature
review on seaside and landside transport.

All these problems are highly interrelated. The quay crane throughput, for example,
is related to the arrival rate of containers during the loading process and departure rates
during unloading. These rates depend themselves on transport operations, but also on
storage position. In addition, external and internal vehicles cause uncertainty via delays or
break downs. To accurately represent the dynamic and interrelated character of container
terminals simulation is used. At a strategic level, simulation compares different terminal
layouts and types of handling equipment. At an operational and tactical level, it evaluates
optimization methods. Angeloudis and Bell (2011) review simulation models designed for
container terminals.

1.4 Application of intelligent freight technologies

Intelligent freight technologies are technologies that monitor and manage physical assets and
information flows. Container terminals use intelligent freight technologies to exchange data
with shipping lines, trucking companies and customs, to locate containers and equipment
within the terminal and to automate identification tasks (Wolfe and Troup; 2005; Morais
and Lord; 2006; Tsilingris et al.; 2007). The main benefits are an optimized decision making
and enhanced security.

The obtained data provides information on the expected arrival of vessels, on containers
to be (un)loaded, on empty positions in the yard and on current positions of containers and
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of internal handling equipment. Optimization methods and the terminal operating system
(TOS) provide instructions (e.g., where to store a container, which container to transport
next) based on this data. Without a detailed knowledge about the current situation at the
terminal, optimization methods cannot provide good solutions. Reliable data and optimiza-
tion methods are essential for automated container terminals where AGVs and automated
stacking cranes are managed by the system. Intelligent freight technologies are also used to
automate container and truck identification at the gate and within the terminal. This makes
it possible to automate the gate process, to avoid mix up of containers in the yard and to
complicate fraud.

Optical character recognition (OCR), differential global positioning system (DGPS) and
radio frequency identification (RFID) are used to identify trucks and containers at the ter-
minal gate and/or to track vehicles and movements of containers within the yard. OCR
converts scanned images of text into machine-encoded text. It does not need sophisticated
hardware but its applicability depends on the quality of the text to be recognized. It is used
to read the container ID or truck plate at the terminal gate to automate the gate process. It
is also installed on container handling equipment in the yard to automatically check if the
right container is handled.

DGPS is an enhanced GPS that provides greater location accuracy than GPS. Container
terminals use DGPS to register yard positions of containers. DGPS receivers are not placed
on containers, but on transport and stacking equipment. Every time a container is stored or
retrieved, the position is measured and transmitted. This enables the software to keep track
of container positions. DGPS has low infrastructure costs, but quay cranes and container
stacks interfere with the signals which may lead to inaccuracy.

RFID systems consist of tags and readers. Tags are electronic chips encoded with data,
readers access the data encoded on the tag. RFID provides identification without requiring
line of sight, can read at short and long distance and can transmit significant amounts of
data. At the terminal gate, RFID tags are used to identify trucks and the software then
determines the associated container. To determine the location of containers or equipment
within the terminal, RFID is embedded in a real time location system (RTLS). The position
of tagged equipment is determined with the help of several RFID readers and software
computing the position. Like for DGPS, container positions are transmitted every time a
container is handled.

Up to now containers are not commonly tagged with RFID tags. This is due to the huge
number of containers in use and to the fact that different parties (shipping lines, trucking
companies, terminal operators) have to find a consensus as individual solutions applied at
only one terminal are not feasible. Only recently, some containers are tagged with RFID
seals to alert of tampering. The ISO 18000 standard related to RFID for item management
was published some years ago which may help to develop a network for tracking containers.
RFID tags could also be equipped with sensors and GPS to constantly report the location
of the container and the conditions within it. Current trends on RFID for containerized
transportation are reported in Dempsey (2011) and dedicated journals (RFID Journal2,
Port Technology International3).

2www.rfidjournal.com
3www.porttechnology.org
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1.5 Structure of the thesis

Part I: Straddle carrier allocation problem

The first part of the thesis uses information on announced volumes to allocate internal
handling equipment. It applies to container terminals serving different transport modes and
using manned straddle carriers. Our objective is to provide the terminal operator with a
tool to 1) estimate the number of straddle carriers needed for the next day to handle the
announced workload and 2) to propose a possible allocation of these straddle carriers to
trucks, trains, barges and vessels to minimize overall delays at the terminal.

Parts of this work (Chapter 4) have been done during my master thesis in cooperation
with Nabil Absi, Stéphane Dauzère-Pérès and Gloria Rodriguez Verjan from Ecole des Mines
de Saint-Etienne. Parts of this work have been published in Zehendner et al. (2011), Ze-
hendner and Feillet (2013) and Zehendner et al. (2013) and presented at different conferences
(ICCL 2011, LOGMS 2012, ROADEF 2011, ROADEF 2012).

Chapter 2: Straddle carrier allocation problem (SCAP)

This chapter introduces the straddle carrier allocation problem which has not been addressed
in scientific literature yet. We discuss different strategies that may be applied to serve
different transport modes and introduce a notation to describe them. We also summarize
literature on resource allocation and task-scheduling problems at container terminals.

Chapter 3: Mixed integer program for SCAP

This chapter represents the straddle carrier allocation problem as a network flow problem:
containers to be moved are modeled as flows and allocated straddle carriers as arc capacities.
We implement the flow problem as a linear mixed integer program: we formulate a generic
core model and extend it to the service strategies described in the previous chapter. We also
formulate an aggregated model that reduces the number of variables, but may be used only
for few service strategies. We discuss the complexity of the extended models and carry out
a sensitivity analysis to determine the impact of different input parameters.

Chapter 4: Case study: Grand Port Maritime de Marseille

This chapter presents a case study carried out for a container terminal at the Grand Port
Maritime de Marseille. We formulate the model for the different service strategies applied
at this terminal and conduct experiments on real-world instances. We show via simulation
that results obtained by the deterministic optimization problem remain valid in an uncer-
tain environment. We do not investigate advanced solution methods, since these real-world
instances can be solved by a commercial solver very quickly.

Chapter 5: SCAP and truck appointment systems

This chapter combines the straddle carrier allocation problem with the dimensioning of a
truck appointment system. The objective is to use the truck appointment system to deviate
truck arrivals to less busy periods to reduce overall delays at the terminal. We adapt the
model from Chapter 3 to simultaneously determine the number of truck appointments to offer
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and the straddle carrier allocation. Experiments evaluate the impacts of the appointment
system via optimization and simulation.

Part II: Container relocation problem

The second part of the thesis uses information on announced container retrievals and con-
tainer positions to improve retrieval operations. The problem we deal with is known as the
container relocation problem. The objective is to retrieve containers in a given sequence
with a minimum number of parasite relocations. Like most other studies, we consider the
case where only containers above the target container may be relocated.

Parts of this work (Chapter 10) have been done in cooperation with Patrick Jaillet,
Cynthia Barnhart, Vahideh Manshadi and Setareh Borjian from Massachusetts Institute of
Technology. Intermediate results have been presented at different conferences (IMHRC 2012,
OR 2012, ROADEF 2013).

Chapter 6: Container relocation problem (CRP)

This chapter introduces the container relocation problem and summarizes related literature.
It also presents existing bounds on the number of relocations and commonly used instances.
We also introduce a new upper bound on the number of relocations.

Chapter 7: Binary integer program for CRP

This chapter presents an existing binary integer programming model. We then improve
the model formulation by correcting two errors and by omitting superfluous variables. We
also present a preprocessing mechanism to fix variables and introduce cuts. Computational
results evaluate the impact of the preprocessing mechanism and of cuts.

Chapter 8: Branch and price approach for CRP

The binary model from the previous chapter is impractical for bigger instances. This chapter
presents a branch and price approach to solve bigger instances. We present the decomposition
of the binary formulation into a master problem and a subproblem as well as a branching
strategy. We introduce a new bound on the number of relocations based on values of dual
variables. We also present two alternative subproblems based on enumeration together with
two mechanisms to reduce the number of relocations. Computational experiments evaluate
the performance of the different approaches.

Chapter 9: Heuristic branch and price approach for CRP

Due to the huge number of feasible columns, the enumerative subproblem does not generate
columns quickly. This chapter presents a heuristic subproblem to quickly generate new
columns by solving a network flow problem. The heuristic column generation is embedded
in a branching procedure. The objective is to determine a good integer solution rather than
an optimal fractional solution. New integer solutions are obtained by running a heuristic
based on columns determined by the subproblem. Experiments evaluate different parameter
settings and compare the heuristic branch and price to existing approaches.
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Chapter 10: Dynamic container relocation problem

Until now, we assumed that the entire retrieval sequence is known in advance. This is not
realistic for truck arrivals. This chapter deals with a dynamic and more realistic version
of the container relocation problem, where information about container retrievals becomes
revealed over time. We summarize related literature and introduce a criterion to evaluate
the quality of a given layout. We present different relocation strategies for limited knowledge
on the retrieval sequence. Experiments compare the performance of the different relocation
strategies.

Page 10 EMSE-CMP Elisabeth Zehendner







PART I

Straddle carrier allocation problem





Vessel and truck turnaround times determine the competitiveness of a container terminal.
The time needed for transport and storage operations within the terminal highly influences
turnaround times. Our objective is to use announced arrival times and announced volumes
to optimize the allocation of internal handling equipment.

This study focuses on multimodal container terminals using only manned straddle carriers
for internal transport and storage operations. In this case, straddle carriers are shared among
different transport modes and the capacity of the terminal can be adapted via the number
of drivers. We deal with the straddle carrier allocation problem at a tactical level. We
present a model that allocates available straddle carriers to different transport modes with
the objective to minimize overall delays at the terminal. We show how results can be used to
determine the number of straddle carriers (drivers) needed for the next day. We also extend
the study to evaluate the impact of a truck appointment system on overall delays at the
terminal.

Chapter 2 introduces the straddle carrier allocation problem (SCAP) and different service
strategies that may be applied for different transport modes. It summarizes literature on
related problems. Chapter 3 represents SCAP as a network flow problem and presents a
linear mixed integer program to solve it. First, a core model is implemented. This model
is then extended to represent different service strategies. We discuss the complexity of
the resulting models. Chapter 4 reports the results of a case study for the Grand Port
Maritime de Marseille. It also evaluates the allocation proposed by the optimization model
in a stochastic environment. Chapter 5 extends the model to a terminal using a truck
appointment system and evaluates the impact of the truck appointment system on overall
delays at the terminal.

10/2013 EMSE-CMP Page 15





Chapter 2

Straddle carrier allocation problem
(SCAP)

This chapter introduces the straddle carrier allocation problem. It discusses different service
strategies that may be applied for different transport nodes and introduces a notation to
describe them. It also summarizes literature on resource allocation and task-scheduling
problems at container terminals.

2.1 Problem description

The straddle carrier allocation problem (SCAP) occurs at container terminals serving several
transport modes - like trucks, trains, barges and vessels - and using manned straddle carriers
for all storage and transport operations. Terminals using manned straddle carriers can adapt
their capacity from day to day via the number of hired dockers. We focus on container
terminals where straddle carriers are allocated to one transport mode or one vehicle for a
specified duration. This simplifies the work for drivers and allows reallocation of straddle
carriers only at discrete points in time. The decision horizon of the straddle carrier allocation
problem is one working day and includes two decisions at a tactical level: 1) How many
straddle carriers are needed for the next day? 2) How to allocate these straddle carriers to
the different transport modes and vehicles. The objective is to reduce delays at the terminal
to reduce turnaround times and to increase the competitiveness of the terminal.

The straddle carrier allocation problem occurs when planning for the next day. New
technologies make it possible to obtain reliable information on arrivals and volumes of vessels,
trains and barges. But, the terminal has no or little direct information on future truck
arrivals. However, we were able to obtain rather accurate forecasts on the number of arriving
trucks and their distribution over the working day (Dauzère-Pérès et al.; 2012). Determining
exact arrival times was out of scope of this problem. The forecast mechanism was developped
within the ESPRIT project in cooperation with the system provider MGI1 and the container
terminal Seayard2. The work carried out in the context of the ESPRIT project is not
detailed further in this document, since we did not implement a model combining the forecast
mechanism with the straddle carrier allocation model. Instead, we assume that accurate
forecasts on the arrival rate of trucks are available.

1http://www.gyptis.fr/
2http://www.seayard.com



CHAPTER 2. STRADDLE CARRIER ALLOCATION PROBLEM (SCAP)

t = 1 t = 2 t = 3 t = 4 t = T - 2 t = T - 1 t = T...

Figure 2.1: Straddle carrier allocation problem

We thus assume that arrivals and volumes of trains, barges and vessels are known and
that the number of trucks arriving over the working day can be estimated. But, exact times
when containers have to be picked up and exact travel times within the yard cannot be
known. Detailed scheduling and routing decisions are not part of the problem. They are
performed in real time by the Terminal Operating System (TOS) with the set of allocated
straddle carriers. Major disruptions (e.g., the delayed arrival of a vessel) can be handled by
solving the allocation problem with updated information.

The optimal allocation depends on the expected workload. We divide the working day
into T time periods, as straddle carriers can only be reallocated at discrete points in time.
The duration of each time period is defined by the terminal operator. We do not distin-
guish import and export containers as both require transport and storage operations by one
straddle carrier. We use the term task to refer to all operations to be executed for a single
container. The terminal has reliable information on the number of arriving vehicles I, on the
arrival period ri and on the number of tasks pi per vehicle i. All tasks have to be executed at
the end of the working day. The capacity of the terminal depends on the number of available
straddle carriers s and on the average number of tasks a straddle carrier can execute per
period h. Figure 2.1 illustrates the straddle carrier allocation problem for a terminal serving
trucks, trains, barges and vessels.

Trucks, trains, barges and vessels are served with different service strategies. The chosen
strategy depends on cargo volume, operating costs, knowledge and reliability of arrival and
due dates and the used handling equipment. In the sequel, we use the term vehicle to refer
to a single vehicle and the term transport mode to refer to all vehicles of the same transport
mode. We introduce the α|β|γ notation, similar to the notation introduced by Graham
et al. (1979) for scheduling problems, to describe the service strategy for a transport mode3.
α specifies if straddle carriers are allocated to exactly one vehicle or to all vehicles of the
same transport mode within one period. β specifies characteristics of the service strategy
like vehicle arrival and due dates or limits on the maximum throughput per period due to
the interaction with other equipment or space restrictions. γ represents different ways to
measure delays. This may be the time a vehicle spends at the terminal, the number of

3We assume that all vehicles of the same transport mode are served with the same strategy. If this is not
the case, the notation can also be used to describe the service strategy for a single vehicle.
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Table 2.1: α|β|γ notation to describe the service strategy of one transport mode at a con-
tainer terminal

1. Staddle carrier allocation (α)
ded Straddle carriers are allocated to exactly one vehicle per period
shar Straddle carriers may be shared among several vehicles of the same

transport mode per period
shar+ Straddle carriers may be shared among vehicles of different trans-

port modes per period

2. Service constraints (β)
rv Service starts after the arrival of the vehicle
dv Service has to be finished prior to the departure of the vehicle
d̃v Service should be finished prior to the preferred departure of the

vehicle, but finishing later is possible at a cost
pv = 1 Every vehicle requires exactly one container movement
non-incr Once the service of a vehicle has started, the number of allocated

straddle carriers may not increase
maxv Maximal throughput per vehicle per period is limited
maxm Maximal throughput per transport mode per period is limited

3. Penalty of delays (γ)
∑

Cv Vehicles should be served as fast as possible - each period at the
terminal is penalized

∑

wvCv Like
∑

Cv but with different delay costs for vehicles
∑

Tv Vehicles should be served prior to their due dates - each period at
the terminal after its due date is penalized

∑

wvTv Like
∑

Tv but with different delay costs for vehicles
∑

Uc Container movement requests may remain unexecuted at a cost
∑

Sv The number of shifts working on a vehicle should be minimized

non-executed tasks when the vehicle leaves the terminal or the number of shifts working on
the vehicle. Table 2.1 presents values that may be taken by α, β and γ. Index v stands for
vehicles, index m for transport modes and index c for container movement requests.

2.2 Related literature

This section summarizes literature on the resource allocation problem and the task-scheduling
problem at container terminals. The resource allocation problem determines the number of
resources to use for a specific set of tasks, whereas the task-scheduling problem assigns and
schedules tasks on a predefined set of resources. For automated terminals, task assignment
and scheduling predominant at an operational level as the capacity of AGVs cannot be mod-
ified on a daily basis and AGVs are shared between all vessels. Due to the focus on vessel
turnaround times, most studies aim to minimize vessel service times.
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Resource allocation

Only few studies tackle the problem of how to allocate internal handling equipment. To
the best of our knowledge none of the existing literature has studied the straddle carrier
allocation problem with the aim to minimize overall delays at the terminal.

Gambardella et al. (2001) and Kozan (2000) model the resource allocation problem as
a network flow problem. Gambardella et al. (2001) determine a cost optimal allocation of
quay cranes, transport vehicles and yard cranes that serves all vessels. They formulate the
problem as a network design problem and present a mixed integer linear program, where
containers to be moved are modeled as flows and arc capacities are limited by the number
of allocated resources. The discrete-event simulation described in Gambardella et al. (1998)
verifies the feasibility of the obtained solution. Kozan (2000) presents a network model to
analyze container progress at the terminal. The aim is to minimize total throughput time of
containers from their arrival to their departure (traveling and handling times). The model
is meant to serve as a decision support system in the context of investment appraisal, but
not for improvements on operational methods.

Kang et al. (2008) and Alessandri et al. (2008) apply queuing models to solve the resource
allocation problem. Kang et al. (2008) present two models to optimize the size of the trans-
portation fleet (cranes and trucks) for vessel unloading operations at container terminals.
A cyclic queue model studies the steady-state port throughput which yields the optimum
fleet size for long-term operations. A Markovian decision model determines optimal poli-
cies for fleet management in real time minimizing fleet operating costs and vessel waiting
costs. Alessandri et al. (2008) present a predictive control approach to allocate available
resources to minimize turnaround times. Waiting queues represent arrivals of vessels, trucks
and trains, as well as containers to be loaded/unloaded and the presence of containers within
the yard. The handling capacities for the various queues depend on the number of resources
and their handling rates.

Vis et al. (2005) propose an integer linear program minimizing the number of vehicles
required to transport containers between the quay and the yard. Quay crane and yard crane
activities are represented by time-windows assigned to each container. Possible sequences of
containers with regard to their time-windows are presented as directed paths. The minimum
number of directed paths serving each container exactly once equals the minimum number
of vehicles needed to execute the tasks. Evaluation by simulation shows that the analytical
model performs well, but that it slightly underestimates the required fleet size.

Task-scheduling

Most studies schedule containers with the objective to minimize the vessel makespan; only
few papers consider task-scheduling with the objective to minimize truck delays. Almost
all studies assume to know exact container pick-up and delivery dates as well as precedence
constraints among containers. Other studies evaluate different dispatching strategies.

Das and Spasovic (2003) develop an assignment algorithm that dynamically matches
straddle carriers to waiting trucks. The objective is to minimize truck serving times and
empty travel of straddle carriers. They show that their algorithm outperforms two basic
dispatching approaches. They also evaluate how reducing the number of straddle carriers
impacts the performance. Hartmann (2004) develops a general model to assign jobs to
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container terminal resources and to temporally arrange the jobs with regard to precedence
constraints and sequence-dependent resource setup times. He presents exemplary applica-
tions to schedule straddle carriers, automated guided vehicles, stacking cranes and workers
who handle reefer containers. He introduces priority rule based heuristics and a genetic
algorithm to solve these problems. The straddle carrier application includes container move-
ments between quay, yard and landside gates. The objective is to serve quay cranes and
inland transport modes at time and to reduce empty travel of straddle carriers. Lee et al.
(2010) present a mixed integer program and two heuristics: a neighborhood search a method
based on a genetic algorithm and on a minimum cost flow network model. The genetic
algorithm represents the ready time of jobs and the minimum cost flow model decodes the
chromosome to determine the job sequence. Their objective is to minimize service times.
Skinner et al. (2013) present a mathematical model and a genetic algorithm where a chro-
mosome represents a set of jobs and the number of jobs assigned to each straddle carrier.
Their objective is to minimize travel and crane waiting times.

Böse et al. (2000) evaluate different strategies to dispatch straddle carriers to gantry
cranes; they compare vessel turnaround times and straddle carrier utilization rates. Results
show that dynamic strategies, where straddle carriers are not assigned to a single quay crane,
but shared among several vessels, improve the performance of the unloading/loading process.
Further improvements are obtained by applying an evolutionary algorithm. Bish et al. (2005)
present greedy-algorithms to come up with dispatching strategies for discharging a single
vessel based on container precedence constraints. They identify the absolute and asymptotic
worst-case performance ratios for these heuristics. Nguyen and Kim (2009) present a mixed
integer programming model to assign delivery tasks for vessels to automated lifting vehicles.
Buffer constraints at the quay are converted into time window constraints. They present a
heuristic algorithm for this model and to compare different dispatching strategies. Nguyen
and Kim (2010) propose different dispatching strategies taking into account the uncertainty
of vehicle travel times. They propose a mixed integer programming model using sequence
lists for tasks and penalties for delayed delivery and a heuristic dispatching algorithm. The
model and the heuristic are based on the work of Kim and Bae (2004) for the dispatching of
vehicles with deterministic travel times. A simulation study proved that the heuristic with
uncertain travel times outperforms the heuristic with deterministic travel times with regard
to delay of quay cranes and moves per vehicle, but at the expense of greater computational
time.

Briskorn et al. (2006) present an inventory based approach for dispatching vehicles. They
consider quay cranes as customers and AGVs as goods. The inventory level of a quay crane
is the number of AGVs in the buffer. The inventory level should not be zero and shouldn’t
be too high. This formulation does not depend on highly unreliable estimations of driving
times, completion times, due dates and tardiness. Simulation shows that the inventory
based model leads to better productivity than the scheduling based formulation. Froyland
et al. (2008) deal with the operating of a landside exchange area that is served by multiple
semi-automated rail mounted gantry cranes. The problem is divided into three sequential
subproblems. First, all container moves are assigned to an hourly level by an integer program.
Then, import containers are assigned to positions in the gantry-straddle carrier interface
via integer programs. Finally, containers are assigned to short-term stacking positions and
precise RMG operations are planned within each hour by an online algorithm.

10/2013 EMSE-CMP Page 21



CHAPTER 2. STRADDLE CARRIER ALLOCATION PROBLEM (SCAP)

Kim and Kim (1999) formulate a integer programming model to route a single straddle
carrier during the loading operation of export containers on a vessel. They determine the
number of containers picked up at each area in the yard (yard-bay), as well as the sequence
of yard-bays visited during the tour. They apply dynamic programming to obtain a route
minimizing the total travel distance of the straddle carrier. Balev et al. (2009) formulate
the straddle carrier routing problem as a dynamic vehicle routing problem with pick-up and
delivery and time windows. Their objectives are to minimize the number and the traveled
distance of straddle carriers, as well as the delay of tasks. Discrete-event simulation compared
different scheduling policies.

Integrated scheduling

Recent studies focus on the integrated scheduling of different handling equipment. They
integrate quay cranes, AGVs or yard trucks and yard cranes to minimize the vessel makespan.
Meersmans and Wagelmans (2001) present a beam search heuristic and several dispatching
rules for vessel loading operations. Chen et al. (2007) present a hybrid flow shop scheduling
model for vessel loading and unloading operations. Lau and Zhao (2008) present a mixed
integer programming model for loading and unloading operations. They apply a multi-layer
genetic algorithm as well as a genetic algorithm plus maximum matching to this problem.
Cao et al. (2010) present a mixed integer programming model for vessel loading operations
and two methods based on Bender’s decomposition to solve it. Zeng and Yang (2009) propose
an integrated optimization simulation approach with a genetic algorithm to improve the given
container sequence and a simulation model to evaluate a given schedule. Chen, Langevin
and Lu (2013) formulate the problem as a constraint programming-model. They develop
an iterative three-stage algorithm: generating crane schedules, solving the multiple-truck
routing problem and constructing a complete solution.

Other studies deal with the scheduling of equipment and the storage allocation in an
integrated way. The objective is to minimize container transfer times and service times.
Kozan and Preston (2006) apply an iterative search algorithm that integrates a container
transfer model with a container location model in a cyclic fashion. A genetic algorithm, a
tabu search and a tabu search/genetic algorithm hybrid are used to solve the problem. Had-
jiconstantinou and Ma (2009) mention an integer programming model minimizing handling
and storage costs. A simulation model based on the object-oriented paradigm validates the
results and proves the robustness of the optimization model. Lee et al. (2009) present a
mixed integer program and solve the problem with an hybrid insertion algorithm. Wu et al.
(2013) formulate a linear mixed integer program and a non-linear mixed integer program.
They solve the problem with a genetic algorithm where a chromosome represents the vehicle
and the yard location associated to each container.

Human resources

The allocation of manned equipment is highly related with human resource management.
Legato and Monaco (2003) solve the manpower planning problem with special focus on
the uncertainty of workforce demand. They consider that the arrival time of a container
vessel is known just a few hours in advance. They propose a two phase solution. First
a monthly planning constructs a set of feasible working schedules. This planning includes
some flexibility on the base of union agreements. Then, a daily planning assigns each worker
to a shift, a gang and a task. Fancello et al. (2011) continued this work by proposing
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a dynamic learning predictive algorithm based on neural networks to predict ship delays.
They also propose an optimization algorithm for the daily allocation problem. Kim et al.
(2004) search feasible solutions for the scheduling of operators of handling equipment. The
major constraints include: restrictions on the minimum workforce assignment to each time
slot, the maximum total operating time per operator per shift, the minimum and maximum
consecutive operating times for an operator, types of equipment that can be assigned to each
operator and the available time slots for each operator or piece of equipment. The problem
is defined as a constraint-satisfaction problem.
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Chapter 3

Mixed integer program for SCAP

Our objective is to provide the terminal operator with a tool to 1) estimate the number of
straddle carriers needed for the next day to handle the expected workload and 2) to propose
a possible allocation of these straddle carriers to different trucks, trains, barges and vessels
to minimize overall delays at the terminal.

We model the straddle carrier allocation problem as a network flow problem where con-
tainers to be moved are flows and arc capacities are limited by the capacity of allocated
straddle carriers. Section 3.1 introduces the core model allocating straddle carriers to dif-
ferent vehicles to serve each vehicle within its imposed time window. Section 3.2 presents
extensions to the core model to represent different service strategies. Section 3.3 evaluates
the impact of different model formulations and input parameters on the run time. Section 3.4
briefly discusses the complexity of the arising problems. Section 3.5 presents an aggregated
network flow model and compares its performance to the core model. Section 3.6 summarizes
the chapter.

3.1 Vehicle network flow model (core model)

We model the straddle carrier allocation problem as a network flow problem. This im-
plementation is inspired by the model in Gambardella et al. (2001). But, our objectives and
our formulation differ from theirs. Their objective is to find a cost minimal allocation to
serve each vessel within its time window. Whereas we model the entire terminal with special
focus on landside transportation modes and aim to minimize overall delays at the container
terminal.

Figure 3.1 illustrates our modeling approach. It represents a terminal with two vehicles
arriving over the day. Each network flow model represents one vehicle - thus, called vehicle
model. The round nodes stand for the discrete time periods of the working day. The
rectangular nodes, which are sources of flow, represent the arrival of vehicles with their
associated demand for container movement requests pm1 and pm2 . Each source is connected
to the period corresponding to the arrival of the vehicle: period 1 for vehicle 1 and period
4 for vehicle 2. The square nodes represent sinks of flow. Flows Wm

i,t from a period node to
a sink represent the number of container movements executed per vehicle per period. Arc
capacities limit the maximum number of container movements that may be executed by the
capacity of allocated straddle carriers. Flows Zm

i,t between two periods represent unexecuted
tasks which are transferred to the next period. All arcs delaying tasks after the due date of
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Vehicle 2

Vehicle 1

Arriving tasks (pmi )

Wm
2,10Wm

2,9Wm
2,8Wm

2,7Wm
2,6Wm

2,5Wm
2,4

Zm
2,9Zm

2,8Zm
2,7Zm

2,6Zm
2,5Zm

2,4

Wm
1,6Wm

1,5Wm
1,4Wm

1,3Wm
1,2Wm

1,1

Zm
1,5Zm

1,4Zm
1,3Zm

1,2Zm
1,1

pm2

pm1

Executed tasks (Wm
i,t), limited by allocated straddle carriers

Tasks delayed from one period to the next (Zm
i,t)

Figure 3.1: Scheme of the vehicle network flow model

the vehicle have a capacity of 0; here, arcs after period 6 for vehicle 1 and after period 10
for vehicle 2. Note that the different vehicle models are independent despite the fact that
they have to share the available straddle carriers. We use this modularity later on to include
vehicle specific constraints to each submodel.

We now state the mixed integer linear program formulating these network flows. In our
case, the expected workload and the capacity of the terminal represent the situation at a
container terminal. The expected workload is determined by the number of vehicles with
their arrival times and volumes. The capacity is given by the number of available straddle
carriers and their average handling capacity. We use the following parameters to describe
the expected workload and the capacity of the terminal:

T Number of time periods describing the working day
M Number of transport modes being served at the terminal
Im Number of vehicles of transport mode m arriving at the terminal
t Index of a time period, t = 1, . . . , T
m Index of a transport mode, m = 1, . . . ,M
i Index of a vehicle of transport mode m, i = 1, . . . , Im

rmi Period t in which vehicle i of transport mode m arrives at the terminal
dmi Period t in which vehicle i of transport mode m has to be ready for departure

(dmi ≤ T )
pmi Total number of tasks to be carried out for vehicle i of transport mode m
st Number of straddle carriers available at period t
hm Average number of tasks a straddle carrier serving transport mode m can

handle per period, we assume that hm ∈ N
+ and that hm ≥ 1 ∀m =

1, . . . ,M

Variables indicate the number of straddle carriers to allocated to each vehicle per period
and the number of delayed and executed tasks resulting from this allocation.
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Xm
i,t Number of straddle carriers allocated to vehicle i of transport mode m in

period t
Wm

i,t Number of tasks executed for vehicle i of transport mode m in period t
Zm

i,t Number of non-executed tasks for vehicle i of transport mode m which are
transferred from period t to period t+ 1

These parameters and variables enable us to formulate the straddle carrier allocation
problem. Straddle carriers are not shared and each vehicle has to be served within its
specified time window. We call this model the core model.

Wm
i,t ≤ hm ·Xm

i,t ∀m = 1, . . . ,M, i = 1, . . . , Im, t = 1, . . . , T (3.1)

Zm
i,t = pmi −Wm

i,t ∀m = 1, . . . ,M, i = 1, . . . , Im, t = rmi (3.2)

Zm
i,t = Zm

i,t−1 −Wm
i,t ∀m = 1, . . . ,M, i = 1, . . . , Im, t = rmi + 1, . . . , T (3.3)

Zm
i,dmi

= 0, ∀m = 1, . . . ,M, i = 1, . . . , Im (3.4)

M
∑

m=1

Im
∑

i=1

Xm
i,t ≤ st ∀t = 1, . . . , T (3.5)

Xm
i,t ∈

{

N
+,R+

}

∀m = 1, . . . ,M, i = 1, . . . , Im, t = 1, . . . , T (3.6)

Wm
i,t , Z

m
i,t ∈ R

+ ∀m = 1, . . . ,M, i = 1, . . . , Im, t = 1, . . . , T (3.7)

Constraint (3.1) ensures that the number of executed tasks per vehicle per period does
not exceed the capacity of straddle carriers allocated to this vehicle. Constraints (3.2) and
(3.3) formulate the mass balance constraints for arriving, executed and delayed tasks for each
vehicle. They also make sure that no tasks are executed prior to a vehicle’s arrival. Con-
straint (3.4) imposes that each vehicle is completely served prior to its deadline. Constraint
(3.5) guarantees that the number of allocated straddle carriers does not exceed the number
of straddle carriers available at the terminal. Constraint (3.6) indicates that Xm

i,t may take
real or natural numbers. The choice depends on the possibility to share straddle carriers
among different vehicles and is presented in detail in section 3.2. Tasks have to be executed
completely within one period (the container is transported from its origin to its destination
or not at all). This implies that Wm

i,t and Zm
i,t have to take integer values. For hm ∈ N

+

together with Constraints (3.1) to (3.3), Wm
i,t and Zm

i,t will always take integer values even if
defined as continuous variables like in Constraint (3.7). In Section 3.3.2, we see that using
continuous variables decreases solution times.

Constraints (3.8) to (3.10) are optional and have no impact on the objective function.
They prevent allocating excess straddle carriers and render the solution more comprehensible.
Constraint (3.8) imposes that each allocated straddle carrier executes at least one task.
Constraints (3.9) and (3.10) make sure that no straddle carrier is allocated to a vehicle prior
to its arrival or after its departure. In Section 3.3.2, we show that these constraints have
small, rather positive impacts on solution times.
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Wm
i,t ≥ hm · (Xm

i,t − 1) + 1 ∀m = 1, . . . ,M, i = 1, . . . , Im, t = 1, . . . , T (3.8)

Xm
i,t = 0 ∀m = 1, . . . ,M, i = 1, . . . , Im, t = 1, . . . , rm − 1 (3.9)

Xm
i,t = 0, ∀m = 1, . . . ,M, i = 1, . . . , Im, t = dmi + 1, . . . , T (3.10)

3.2 Extensions for different service strategies

This section illustrates how the core model may be adapted to the different service strategies
presented in Section 2.1. Let {1, . . . ,m′} be the transport modes for which the specified
service strategy applies.

3.2.1 Straddle carrier allocation

Straddle carriers may be allocated to one vehicle, shared among vehicles of the same transport
mode or shared between all vehicles. Manned equipment is often dedicated to one vehicle or
a group of vehicles for a given time period for organizational reasons.

ded|β|γ If straddle carriers are dedicated to one vehicle, excess capacity of one straddle
carrier in one period may not be used to serve other vehicles. Constraint (3.11) allocates a
straddle carrier to exactly one vehicle per period.

Xm
i,t ∈ N

+ ∀m = 1, . . . ,m′, i = 1, . . . , Im, t = 1, . . . , T (3.11)

shar|β|γ Straddle carriers are shared among all vehicles of the same transport mode within
one period; but not between transport modes. We introduce a new variable to model this
allocation strategy:

Xm
t Total number of straddle carriers allocated to all vehicles i of transport

mode m in period t

Constraint (3.12) allows partial allocation and thus sharing of straddle carriers. Con-
straints (3.13) and (3.14) prevent sharing among vehicles of different transport modes. Con-
straint (3.15) limits the total number of allocated straddle carriers. It is modified version of
Constraint (3.5) taking into account shared and dedicated straddle carriers.

Xm
i,t ∈ R

+ ∀m = 1, . . . ,m′, i = 1, . . . , Im, t = 1, . . . , T (3.12)

Im
∑

i=1

Xm
i,t ≤ Xm

t ∀m = 1, . . . ,m′, t = 1, . . . , T (3.13)

Xm
t ∈ N

+ ∀m = 1, . . . ,m′, t = 1, . . . , T (3.14)

M
∑

m=m′+1

Im
∑

i=1

Xm
i,t +

m′

∑

m=1

Xm
t ≤ st ∀t = 1, . . . , T (3.15)
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shar+|β|γ If straddle carriers are shared among all vehicles of all transport modes, the
scheduling of tasks becomes more important. Our model can be adapted to this case via
Constraint (3.16), but shouldn’t be applied since it does not include scheduling decisions.

Xm
i,t ∈ R

+ ∀m = 1, . . . ,m′, i = 1, . . . , Im, t = 1, . . . , T (3.16)

3.2.2 Service constraints

Service constraints represent arrival and due dates of vehicles, as well as space or capacity
restrictions.

α|rv|γ No tasks may be executed prior to the arrival of a vehicle. This specification is
valid for almost every vehicle and is already included in the core model and in some of the
constraints presented below. The model may be adapted easily to the few exceptions where
containers may be prepared in advance by setting rv = 1.

α|dv|γ No tasks may be executed after the due date of a vehicle. This constraint holds for
all vehicles and is already included in the core model. The due date is set to the imposed
departure time of the vehicle or to the end of the working day1.

α|maxv|γ The maximum number of tasks that can be executed per vehicle per period
is limited (e.g. linkage with other equipment or space restrictions). The parameter qmi
represents this limit.

Wm
i,t ≤ qmi ∀m = 1, . . . ,m′, i = 1, . . . , Im, t = 1, . . . , T (3.17)

α|maxm|γ The maximum number of tasks that can be executed per transport mode per
period is limited (e.g. space restrictions). The parameter qm represents this limit.

Im
∑

i=1

Wm
i,t ≤ qm ∀m = 1, . . . ,m′, t = 1, . . . , T (3.18)

α|pv = 1|γ Every vehicle requires exactly one container movement. This property does not
change the core model. But in some cases it may be used to simplify the modeling of the
objective function.

α|rv,non-incr |γ We impose a non-increasing number of straddle carriers serving the ve-
hicle. We allow withdrawing superfluous straddle carriers, but they cannot be reallocated
to the vehicle later on. We introduce a new variable, Dm

i,t, which indicates if the service of a
vehicle has already been started in t− 1. This variable is defined by Constraints (3.19) and
(3.20). Constraint (3.21) imposes a non-increasing number of allocated straddle carriers per
vehicle once the service of a vehicle has started.

1Vessels spending several days at the terminal are split into several vessels: one for each day. Their arrival
times, due dates and volumes are adapted.
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Dm
i,t =

{

0 if service on vehicle i has not started prior to period t (t excluded),

1 otherwise.

Dm
i,t ∈ {0, 1} ∀m = 1, . . . ,m′, i = 1, . . . , Im, t = rmi + 1, . . . , T (3.19)

Dm
i,t ≥

pmi − Zm
i,t−1

pmi
∀m = 1, . . . ,m′, i = 1, . . . , Im, t = rmi + 1, . . . , T (3.20)

Xm
i,t ≤ Xm

i,t−1 − st · (D
m
i,t − 1) ∀m = 1, . . . ,m′, i = 1, . . . , Im, t = rmi + 1, . . . , T (3.21)

3.2.3 Penalty of delays

We either penalize the completion time of a vehicle, its delayed departure or the number of
non-executed tasks.

α|rv, dv, β|
∑

Cv We want to minimize the time a vehicle spends at the terminal (waiting
and service times) and penalize each period it spends at the terminal. A binary variable,
Y m
i,t , indicates if the vehicle is completely served and may leave the terminal or not. Con-

straints (3.22) and (3.23) together with the objective function assert that Y m
i,t equals zero if

and only if the service of a vehicle is finished.

Y m
i,t =

{

0 if the service of vehicle i of transport mode m is finished in period t,

1 otherwise.

min
m′

∑

m=1

Im
∑

i=1

T
∑

t=rmi

Y m
i,t

Y m
i,t ≥

Zm
i,t

pmi
∀m = 1, . . . ,m′, i = 1, . . . , Im, t = rmi , . . . , T (3.22)

Y m
i,t ∈ {0, 1} ∀m = 1, . . . ,m′, i = 1, . . . , Im, t = rmi , . . . , T (3.23)

α|rv, dv, β|
∑

wvCv Some vehicles are considered more important than others and should
be served faster. We introduce weights wm

i to represent these priorities. Like before, we add
Constraints (3.22) and (3.23) to determine the time spent at the terminal.

min
m′

∑

m=1

Im
∑

i=1

T
∑

t=rmi

wm
i · Y

m
i,t
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α|rv, dv, pv = 1, β|
∑

Cv We penalize each delayed tasks to minimize the time vehicles spend
at the terminal. Since every vehicle requires exactly one container movement, each delayed
task is equivalent to a delayed vehicle. No variables or constraints have to be added.

min
m′

∑

m=1

Im
∑

i=1

T
∑

t=rmi

Zm
i,t

α|rv, d̃v, dv, β|
∑

Tv The vehicle has a preferred finishing time d̃v with d̃v < dv. The objec-
tive is to serve the vehicle before its preferred finishing time. Each period it spends at the
terminal after period d̃v is penalized in the objective function. We add Constraints (3.22)
and (3.23) but penalize only delays occurring after period d̃mi .

min
m′

∑

m=1

Im
∑

i=1

T
∑

t=d̃mi

Y m
i,t

It is possible to include weights wm
i into the objective function to express priorities among

different vehicles. For pv = 1, we can replace Y m
i,t by Zm

i,t and do not need Constraints (3.22)
and (3.23).

α|rv, dv, β|
∑

Uc Tasks should be executed prior to the departure of the vehicle. But, they
may remain unexecuted at a cost. Variable Um

i and Constraints (3.24) and (3.25) determine
the number of non-executed tasks.

Um
i Number of tasks which are not executed for vehicle i of transport mode m

at its departure

min
m′

∑

m=1

Im
∑

i=1

Um
i

Zm
i,dmi
− Um

i = 0 ∀m = 1, . . . ,m′, i = 1, . . . , Im (3.24)

Um
i ∈ R

+ ∀m = 1, . . . ,m′, i = 1, . . . , Im (3.25)

α|rv, dv, β|- Delays are forbidden and each vehicle has to be served prior to its due date. To
verify if such an allocation exists we solve the problem α|rv, dv, β|

∑

Uc. Either an allocation
where no delays occur exists or the problem is infeasible.

α|rv, dv, β|
∑

Sv Container terminals divide the working day into several shifts. We assume
that shifts have fix start and end times. The objective is to serve each vehicle with the fewest
number of shifts. Parameters J , bj and ej are introduced to represent the repartition of the
working day into shifts. Variables Hm

i,j indicate shifts that work on the vehicle. Constraints
(3.27) to (3.28) determine this variable. Each shift working on the vehicle is penalized in
the objective function.

Hm
i,j =

{

1 if vehicle i of transport mode m is served during shift j,

0 otherwise.
(3.26)
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min
m′

∑

m=1

Im
∑

i=1

J
∑

j=1

Hm
i,j

Hm
i,j · st ≥ Xm

i,t ∀m = 1, . . . ,m′, i = 1, . . . , Im, j = 1, . . . , J, t = bj, . . . , ej (3.27)

Hm
i,j ∈ {0, 1} ∀m = 1, . . . ,m′, i = 1, . . . , Im, j = 1, . . . , J (3.28)

3.3 Sensitivity analysis

We carry out a sensitivity analysis to evaluate how the model formulation and the input
parameters impact the solution time. We describe the generated instances. We compare
different variable domains and analyze the impacts of the non-mandatory constraints (3.8)
to (3.10). We also analyze the impact of different input parameters on the solution time.
We vary the number of vehicles arriving at the terminal and their volume, the number of
time intervals representing the time horizon, the number of available straddle carriers, the
length of time windows and the possibility to share straddle carriers.

We observe that the non-mandatory constraints enable us to solve slightly more problems
within the given time limit. This proves that despite increasing the clarity of the solution,
these constraints have also positive effects on the solution process. Results also show that
input parameters are highly interacting and that it is not possible to determine easy rules
to predict the influence of these parameters on the solution time.

3.3.1 Instance generation

We consider a small fictitious container terminal - inspired by a terminal at the Grand
Port Maritime de Marseille - for the sensitivity analysis. The terminal serves four different
transport modes (M = 4) with different service strategies and straddle carriers are not shared
among different transport modes. The working day is divided into 14 periods (T = 14) and
each straddle carrier may execute six (h = 6) container movements per period.

For transport modes 1 to 3, few vehicles with high volumes (e.g., vessels, barges and
trains) arrive over the time horizon. Straddle carriers are dedicated to single vehicles. We
set I1 = I2 = I3 = 1 and p11 = p21 = p31 = 100. Transport mode 1 is served with strat-
egy ded|rv, dv|

∑

Cv - the vehicle has to be served within the prescribed time window and
each period it stays at the terminal is penalized; transport mode 2 is served with strategy
ded|rv, dv|− - the vehicle has to be served within the prescribed time window; transport
mode 3 is served with strategy ded|rv, dv|

∑

Uc - the vehicle leaves the terminal at a fixed
time and non-executed task are penalized. Vehicles of transport modes 1, 2 and 3 stay 7
periods at the terminal. Arrival times (r11, r

2
1, r

3
1) are set to a random number between 1 and

T − 7 and departure times (d11, d
2
1, d

3
1) are set to rmi + 7.

For transport mode 4, a great number of vehicles with only one container movement
request (e.g. trucks) arrive over the time horizon. Straddle carriers are shared among
different vehicles. We set I4 = 200 and p4i = 1. Transport mode 4 is served with strategy
shar|rv, dv, pv = 1|

∑

Cv - delaying a vehicle from one period to the next is penalized. All

Page 32 EMSE-CMP Elisabeth Zehendner



3.3. SENSITIVITY ANALYSIS

Table 3.1: Experimental plan for the sensitivity analysis describing scenarios A to O with
their input parameters

I1 I2 I3 r1i , r
2
i , r

3
i d1i , d

2
i , d

3
i p1i , p

2
i , p

3
i I4 r4i d4i p4i T h s(p, T, h)

A 1 1 1 rmi rmi + 7 100 200 rmi T 1 14 6 6

B 3 0 0 rmi rmi + 7 100 200 rmi T 1 14 6 7
C 0 3 0 rmi rmi + 7 100 200 rmi T 1 14 6 7
D 0 0 3 rmi rmi + 7 100 200 rmi T 1 14 6 7

E 2 2 2 rmi rmi + 7 100 200 rmi T 1 14 6 10
F 1 1 1 rmi rmi + 7 200 200 rmi T 1 14 6 10

G 1 1 1 rmi rmi + 7 100 100 rmi T 1 14 6 5
H 1 1 1 rmi rmi + 7 100 400 rmi T 1 14 6 9
I 1 1 1 rmi rmi + 7 100 800 rmi T 1 14 6 13

J 1 1 1 rmi rmi + 7 100 200 rmi T 1 14 6 5
K 1 1 1 rmi rmi + 7 100 200 rmi T 1 14 6 7
L 1 1 1 rmi rmi + 7 100 200 rmi T 1 14 6 8

M 1 1 1 2 · rmi rmi + 14 100 200 2 · rmi T 1 28 3 6

N 1 1 1 rmi + 1 rmi + 5 100 200 rmi + 2 T 1 14 6 6
O 1 1 1 rmi − 1 rmi + 9 100 200 rmi − 2 T 1 14 6 6

vehicles have to be served at the end of the day (d4i = T ). Arrival times (r4i ) are set to a
random number between 1 and T .

The number of available straddle carriers per period (st = s) is determined as a function
of the total container movement requests, the number of time periods and the number of

tasks a straddle carrier may handle per period. We set s =
⌈

∑M

m=1

∑Im

i=1 p
m
i /(T · h)

⌉

. We

generate ten different instances (I to X) according to these specifications. In order to analyze
the impact of different parameters on the solution time, we created scenarios (B to O) of the
initial scenario A. Table 3.1 summarizes input parameters of scenarios A to O.

Scenarios B, C and D represent a terminal with only two transport modes with three
vehicles of either transport mode 1, 2 or 3 and an unchanged transport mode 4. These
scenarios allow us to analyze the impact of the chosen service strategy on the solution time.
For transport modes 1 and 2, all tasks have to be executed prior to the departure of the
vehicle. With 6 available straddle carriers not all tasks can be executed in time and scenarios
B and C are infeasible. Therefore, we increase the number of straddle carriers to 7. Scenario
D is feasible with 6 straddle carriers. But to compare its results with scenarios B and C, the
number of straddle carriers is also increased to 7.

Scenarios E to I vary the number of tasks to be executed. Either the number of vehicles
per transport mode is increased (E, H and I) or decreased (G) or the number of tasks per
vehicle is increased (F). The number of available straddle carriers is adapted to the new
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volumes by reapplying the formula presented above. For scenarios J to L the number of
available straddle carriers is decreased/increased for an identical demand. This allows us to
analyze the impact of changes in demand and available capacity.

For scenario M, the number of time periods is doubled. Since the time horizon is fixed
to one working day, time periods become shorter. Doubling the number of time periods is
identical to divide the length of each time period by two. We adapt the number of tasks a
straddle carrier can handle per period (hm = 3). Vehicle arrival times are set to r′mi = 2 · rmi
or r′mi = 2 · rmi − 1. Departure times for transport modes 1 to 3 are set to d′mi = r′mi + 14.
Departure times for transport mode 4 remain unchanged at T. These scenarios enable us to
analyze the impact of the number of time periods.

Scenarios N and O vary the length of the time window. In scenario N, the time window
length is decreased from 7 to 5 by setting r′mi = rmi +1 and d′mi = r′mi +5. In scenario O, the
time window length is increased from 7 to 9 by setting r′mi = rmi − 1 and d′mi = r′mi + 9. If
r′mi + 9 > T , d′mi is set to T and r′mi to T - 9. These instances allow to analyze the impacts
of the time vehicles may stay at the terminal on the solution time.

3.3.2 Impact of the model formulation

The core model presented in Section 3.1 contains constraints necessary to represent the strad-
dle carrier allocation problem correctly (Constraints (3.1) to (3.7)) and additional constraints
rendering the solution more comprehensible (Constraints (3.8) to (3.10)). We also discussed
that variables Wm

i,t and Zm
i,t may be integer of continuous. We compare four different models

with different variable domains and with and without the non-mandatory constraints. We
perceive that instances are solved faster if variables Wm

i,t and Zm
i,t are defined as continuous

rather than as integer variables. We also see that the non-mandatory constraints enable us
to solve slightly more problems within the given time limit.

Constraints (3.8) to (3.10) reduce the solution space since they prevent the allocation of
superfluous straddle carriers before, during and after the service of a vehicle. We suppose
that these constraints have similar effects on the solution time, as all three limit the solution
space. We compare four different model formulations:

– Model M1: Wm
i,t , Z

m
i,t ∈ N

+, with Constraints (3.8) to (3.10)

– Model M2: Wm
i,t , Z

m
i,t ∈ R

+, with Constraints (3.8) to (3.10)

– Model M3: Wm
i,t , Z

m
i,t ∈ N

+, without Constraints (3.8) to (3.10)

– Model M4: Wm
i,t , Z

m
i,t ∈ R

+, without Constraints (3.8) to (3.10)

We solve the four models using the commercial solver IBM ILOG CPLEX 12 on our
instances I to X for scenarios A to O and compare the results. We limit the execution time
to 600 seconds for each problem and measure the CPU time needed to solve the problem. If
the solution process is not finished after the imposed time limit, we register the gap between
the best found solution and the lower bound (relaxed solution).

Table 3.2 presents the results of these experiments. For each scenario, it indicates the
number of feasible instances (out of 10) and the number of instances that were solved within
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Table 3.2: Performance comparison of models M1 to M4 on scenarios A to O

A B C D E F G H I J K L M N O avg.

feasible 10 10 10 10 10 10 10 10 10 7 10 10 10 8 10 9.7

Number of instances solved within 600 seconds

M1 8 7 6 8 1 1 7 3 6 7 10 10 1 8 4 5.8
M2 10 10 8 10 3 10 10 10 10 7 10 10 3 8 9 8.5
M3 8 6 6 9 1 1 6 4 6 7 9 10 1 8 4 5.7
M4 10 9 7 10 3 9 10 10 10 7 10 10 2 8 10 8.3

Average CPU time in seconds for solved instances

M1 172.2 59.7 0.3 0.8 0.2 262.6 164.7 50.6 183.8 76.2 70.1 0.2 184.1 3.9 147.4 91.8
M2 13.7 30.4 10.2 2.0 147.0 4.2 18.2 7.1 10.0 5.8 6.5 0.2 23.5 0.4 139.0 27.9
M3 149.8 0.4 1.2 51.4 0.2 344.5 139.9 118.2 163.8 67.1 26.4 0.2 130.2 3.2 111.5 87.2
M4 8.5 0.8 15.4 14.8 56.5 8.6 13.8 7.3 30.3 0.6 0.6 0.1 12.5 0.4 53.8 14.9

Average gap in percentage for unsolved instances

M1 4.2 18.5 33.0 12.1 13.3 8.7 6.2 8.3 3.0 0.0 0.0 0.0 4.2 0.0 7.4 -
M2 0.0 0.0 21.7 11.0 9.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.0 0.0 9.1 -
M3 3.5 15.3 37.2 13.0 14.1 8.2 5.9 12.7 3.0 0.0 2.4 0.0 5.4 0.0 7.7 -
M4 0.0 3.4 17.9 8.6 10.0 8.1 0.0 0.0 0.0 0.0 0.0 0.0 3.4 0.0 0.0 -
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600 seconds for each model. It also shows average solution times for solved instances for
each scenario and each model. For unsolved instances, it reports average gaps between the
current solution and the lower bound for each scenario and model2. When comparing the
average solution time and the average gap, we have to keep in mind that those averages are
computed on the number of solved and unsolved instances which are not always identical for
the models.

By comparing the results from model M1 with M3 and from model M2 with M4, we
observe that it is generally advantageous to define Wm

i,t , Z
m
i,t in R

+ rather than in N
+. For all

scenarios A to O, more or as many instances are solved for models with real variables (M2
and M4) than for models with integer variables (M1 and M3). The difference is particularly
large for scenario F. By using real variables, the average solution time may be decreased by
more than 60%. Only for scenarios C and E the solution time of model M1 (respectively
M3) is inferior to the solution time of model M2 (respectively M4). But, for these scenarios,
M1 and M3 solve fewer instances than models M2 and M4.

To analyze the impacts of our non-mandatory Constraints (3.8) to (3.10) we compare
the results of model M1 with M3 and the results from model M2 with M4. We observe
that in average M1 (respectively M2) solves slightly more instance per scenario than M3
(respectively M4). But there is no dominance as M1 solves more instance than M3 for
scenarios B,G and K and M3 solves more instances for scenarios D and H. M2 solves more
instances than M4 for scenarios B, C, F and M and M4 solves more instances for scenario
O. In average M3 (respectively M4) is solved 14 seconds faster than M1 (respectively M2).
But, these values do not take into account that more instances are solved for models M1 and
M3 than for models M2 and M4. This shows that those non-mandatory constraints may be
included in the model to render the obtained solution more comprehensible and that they
have rather positive impacts on the solution process.

We may conclude that model M2 performs at least as well as the other models and use
it for further analysis; all reported results from now on were obtained with model M2.

3.3.3 Impact of input parameters

We analyze how different input parameters influence the solution time. We compare scenarios
B to O with the basic scenario A to analyze the impacts of the chosen service strategies, the
volumes to be handled, the number of available straddle carriers, the number of time periods
and the length of time windows. We add scenarios B’ to E’ to analyze the impact of sharing
straddle carriers on the solution time. Instances B’ to E’ are identical to instances B to E
but straddle carriers may be shared between vehicles of the same transport mode.

Table 3.3 presents the solution time for each instance and each scenario. Infeasible
instances are labeled with "inf". Instances that couldn’t be solved because a lack of memory
are labeled with "mem". An entry above 600 signifies that the time limit of 600 seconds was
reached. We observe that the optimal solution is either found very quickly (<10 seconds) or
that optimality cannot be shown within the given time limit. In the following, we discuss
these results and the impact of input parameters in more detail.

2For scenario M, several instances could not be solved because of a lack of memory. The average considers
only instances with sufficient memory space.
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Table 3.3: Average CPU time in seconds for each instance for scenarios A to O with a time
limit of 600 seconds

I II III IV V VI VII VIII IX X avg.

A 0.5 0.8 1.0 0.9 1.0 0.3 70.5 0.9 60.2 0.8 13.7

B 0.3 2.1 0.3 0.3 1.2 0.3 0.3 0.3 297.7 1.6 30.4
C 1.3 600.1 6.0 0.4 22.2 0.1 0.1 0.1 600.1 51.7 128.2
D 0.7 14.7 0.5 2.5 0.6 0.2 0.1 0.1 0.2 0.5 2.0

E 175.6 600.1 600.1 600.1 600.1 0.1 600.2 600.1 265.2 600.1 464.2
F 1.4 2.0 0.9 7.8 0.6 0.4 15.6 1.4 0.9 10.5 4.2

G 1.3 3.3 17.5 6.9 1.0 0.2 13.6 7.2 130.2 1.3 18.3
H 1.9 1.6 2.0 1.4 12.4 0.3 3.7 44.8 1.9 1.1 7.1
I 2.3 3.4 79.6 2.1 2.1 0.6 4.8 2.2 1.7 1.2 10.0

J inf 0.4 0.4 37.5 inf 0.3 0.3 0.5 inf 1.0 5.8
K 44.2 1.4 17.4 0.2 0.2 0.2 0.2 0.1 0.3 0.8 6.5
L 0.1 0.1 0.2 0.1 0.2 0.1 0.3 0.1 0.1 0.1 0.1

M 600.1 600.1 68.8 600.1 600.2 0.8 600.1 1.0 600.3 mem 407.9

N 0.4 0.2 0.2 1.1 0.4 0.4 inf 0.3 inf 0.4 0.4
O 600.1 1.8 264.5 1.5 0.4 0.3 2.1 451.0 0.7 528.7 185.1

B’ 0.3 0.4 0.4 0.2 0.2 0.5 0.4 0.5 0.4 0.6 0.4
C’ 0.2 0.3 0.2 0.2 0.2 0.1 0.2 0.2 0.3 0.3 0.2
D’ 0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.2

E’ 600.1 600.1 600.1 600.1 36.0 0.2 600.1 4.4 600.1 43.7 368.5

Legend: inf - infeasible, mem - out of memory status

Service strategies We use scenarios B to D to determine the impact of the chosen ser-
vice strategy. We compare them to scenario K instead of scenario A, since they have 7
straddle carriers available. Scenario K applies all four service strategies. Scenarios B to D
apply service strategy 4 for transport mode 4 and the same service strategy for transport
modes 1, 2 and 3: strategy ded|rv, dv|

∑

Cv for scenario B, ded|rv, dv|− for scenario C and
ded|rv, dv|

∑

Uc for scenario D.

Scenario B is always solved faster than scenario C. In both cases, vehicles have to be
served within their time windows, but for scenario B costs occur for each period a vehicle
spends at the terminal. These costs accelerate the solution process. They probably reduce
the search space by reducing the number of symmetric allocations. Scenarios B and D
are solved in similar times, except for instance II which is solved faster for scenario B and
scenario IX which is solved much faster for scenario D.

Comparing the results of scenarios C and K shows again that the problem is solved faster
if the delay of a vehicle or unexecuted tasks are penalized in the objective function. For most
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instances, results for K are similar to results for B and D. Applying several service strategies
rather than a single one may be advantageous in terms of solution time (C) or have almost
no impacts (B and D).

Volume of transport modes 1 to 3 We increase the volume to be handled for vehicles of
transport modes 1 to 3. We double the number of vehicles per transport mode (scenario E)
and the number of containers per vehicle (scenario F). By doubling the number of vehicles
the problem is more difficult to solve since the number of variables is doubled and more
possible allocations have to be compared. If we double the number of tasks per vehicle the
solution time increases only slightly.

Volume of transport mode 4 We vary the number of vehicles of transport mode 4
arriving at the terminal from 200 (scenario A) to 100 (scenario G), to 400 (scenario H) and to
800 (scenario I). No general decrease or increase in solution time occurs for changing number
of vehicles. The solution time reaches its peak for a certain number of arriving vehicles and
gets smaller for fewer or more vehicles. The number of available straddle carriers is adapted
to the truck workload. The number of available straddle carriers changes from 6 (scenario
A) to 5 (scenario G), to 9 (scenario H) and to 10 (scenario I). These straddle carriers are also
used to serve transport modes 1 to 3 and change the structure of the solution completely.

Available straddle carriers We vary the number of available straddle carriers for the
same workload from 6 (scenario A) to 5 (scenario J), to 7 (scenario K) and to 8 (scenario L).
For scenario J two instances become infeasible. The solution time reaches its peak for a
given number of straddle carriers and is solved faster for fewer or more available straddle
carriers. Probably, the problem is solved quickly if few straddle carriers are available and
only few allocations are feasible or if a lot of straddle carriers are available and the optimal
allocation is found very quickly. The problem gets more difficult to solve if a lot of feasible
allocations exist.

Number of time periods For scenario M, we double the number of time periods de-
scribing the working day. Only 3 instances could be solved within the given time limit. By
doubling the number of time periods, the number of variables and the length of vehicle time
windows are also doubled. Consequently, more possible straddle carrier allocations have to
be compared during the solution process and the problems gets harder to solve.

Length of vehicle time windows We shorten the length of vehicle time windows from
7 time periods (scenario A) to 5 (scenario N) and enlarge it to 9 (scenario O). If the time
window is shortened to 5 time periods instances VII and IX become infeasible. The other
instances are solved very quickly. If the time window is enlarged to 9 time periods the
solution time of most of the instances increases. Only instances VII and IX - the two long-
running instances in scenario A - do not follow this rule. Apparently, a shorter time window
accelerates the solution process since fewer feasible straddle carrier allocations exist and
larger time windows slow down the solution process because more alternatives exist.

Sharing straddle carriers We allow sharing straddle carriers among vehicles of the same
transport mode for scenarios B’, C’, D’ and E’. Scenarios B’, C’ and D’ are solved very
quickly. Differences are especially big for scenario C’ which solves more instances than C
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and solves them faster as well. Dedicating or sharing straddle carriers has less impact for
scenarios B’ and D’. Scenarios E’ and E solve different instances; in total scenario E’ solves
one instance more than scenario E. Probably, the benefits of sharing straddle carriers are
more important for a bigger pool of vehicles.

Other remarks The analysis above shows that the different input parameters are related.
With the given results no simple rules to predict their impacts on the solution time can
be established. We also notice that instance VI is solved in less than one second for all
scenarios A to O. A similar behavior is not observed for another instance. This suggests
that this instance has some specifications that make it easy to solve. For the moment, we
were not able to determine this attribute.

3.4 Complexity analysis

Our objective is to allocate straddle carriers to different vehicles in order to reduce delays at
the terminal. If all vehicles are served with the same service strategy, our allocation problem
generalizes some well-known scheduling problems with known complexity.

Table 3.4: Service strategies with their equivalent scheduling problems and complexity classes

Problem Equivalent scheduling Complexity
formulation problem

α|rv, dv = T |
∑

Cv 1|rj,pmtn|
∑

Cj P
α|rv, dv|

∑

Cv

α|rv, dv = T |
∑

wvCv 1|rj,pmtn|
∑

wjCj NP-hard

α|rv, d̃v, dv = T |
∑

Tv 1|rj,pmtn|
∑

Tj NP-hard
α|rv, d̃v, dv = T |

∑

wvTv 1|rj,pmtn|
∑

Tj NP-hard

α|rv, dv|
∑

Uc 1|rj,pj = p|
∑

Uj P

α|rv, dv|− 1|rj,pj = p|
∑

Uj P
α|rv, dv|

∑

Sv

α|rv, dv = T,non-incr|
∑

Cv 1|rj|
∑

Cj NP-hard
α|rv, dv,non-incr|

∑

Cv

α|rv, dv = T,non-incr|
∑

wvCv 1|rj|
∑

wjCj NP-hard

α|rv, d̃v, dv = T,non-incr|
∑

Tv 1|rj|
∑

Tj NP-hard
α|rv, d̃v, dv = T,non-incr|

∑

wvTv 1|rj|
∑

Tj NP-hard

α|rv, dv,non-incr|
∑

Uc 1|rj|Uj NP-hard

α|rv, dv,non-incr|- 1|rj|Uj NP-hard
α|rv, dv,non-incr|

∑

Sv

Consider a scheduling problem where a set of n jobs has to be processed on a single
machine which is always available. Each job j has a processing time pj, a release date rj
and a due date dj. The machine can process one job at a time and the processing of each
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Tasks delayed from one period to the next (Zm
t )
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Arriving tasks (pmt )

Executed tasks (Wm
t ), limited by the capacity of allocated straddle carriers

Figure 3.2: Scheme of the aggregated network flow model

job cannot start before its corresponding release time. To transform the scheduling problem
to our allocation problem with a single service strategy (m = 1) set st = 1, ∀t = 1, . . . , T ,
Im = n, pmi = pj and hm = 1, rmi = rj and dmi = dj. We suppose that all tasks may be
executed prior to T .

The straddle carrier allocation problems are at least as hard as the equivalent scheduling
problems. Table 3.4 presents allocation problems with different service strategies, the equiv-
alent scheduling problems and (if known) their complexity indicated by Brucker and Knust.
An equivalent standard scheduling problem does not exist for all service strategies and only
three strategies may be solved in polynomial time.

3.5 Alternative formulation

For the model presented in Section 3.1, the problem size increases with the number of
vehicles arriving at the terminal as a network flow model is created for each vehicle. In
this section, we present an alternative formulation where all vehicles of the same transport
mode are represented via one aggregated network flow model. We discuss which service
strategies qualify for such an aggregation and present their formulations as linear mixed
integer programs.

3.5.1 Aggregated network flow model

The aggregated network flow model reduces the problem size as it represents all vehicles of
the same transport mode by one network flow model. Figure 3.2 represents the idea of this
aggregated formulation. Vehicles are transformed into tasks arriving over time and straddle
carriers are allocated to tasks and not to vehicles. The optimal solution of the aggregated
model indicates the number of straddle carriers to allocate to each transport mode without
specifying single vehicles. To apply the aggregated model straddle carriers have to be shared
among vehicles of the same transport mode and it has to be possible to disaggregate the
obtained solution into an optimal allocation to single vehicles.

The aggregated formulation remains similar to the one presented in Section 3.1 with
the difference that vehicle specific parameters, variables and constraints are summed up to
represent all vehicles of the same transport mode.
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pmt Number of tasks from all vehicles i of transport mode m arriving in period t

pmt =
∑Im

i=1|rmi =t p
m
i ∀m = 1, . . . ,M, t = 1, . . . , T

Xm
t Number of straddle carriers allocated to transport mode m in period t

Xm
t =

∑Im

i=1 X
m
i,t ∀m = 1, . . . ,M, t = 1, . . . , T

Wm
t Number of tasks executed for transport mode m in period t

Wm
t =

∑Im

i=1 W
m
i,t ∀m = 1, . . . ,M, t = 1, . . . , T

Zm
t Number of non-executed tasks for transport mode m in period t which are

transferred to period t+ 1

Zm
t =

∑Im

i=1 Z
m
i,t ∀m = 1, . . . ,M, t = 1, . . . , T

We reformulate the model with these parameters and variables. Constraint (3.29) de-
scribes the relation between allocated straddle carriers and handled tasks. Constraints (3.30)
and (3.31) describe flow balance constraints for arriving, executed and delayed tasks. They
also impose that no straddle carriers are allocated to a task prior to its arrival3. Con-
straint (3.32) imposes that all tasks are executed at the end of the time horizon. Constraint
(3.33) guarantees that the number of allocated straddle carriers does not exceed the number
of straddle carriers available at the terminal. Constraint (3.34) renders the solution more
comprehensible by imposing that each allocated straddle carrier executes at least one task.
Constraint (3.35) imposes that straddle carriers are not shared among different transport
modes. Constraint (3.36) defines variable domains.

Wm
t ≤ hm ·Xm

t ∀m = 1, . . . ,M, t = 1, . . . , T (3.29)

Zm
t = pmt −Wm

t ∀m = 1, . . . ,M, t = 1 (3.30)

Zm
t = Zm

t−1 + pmt −Wm
t ∀m = 1, . . . ,M, t = 2, . . . , T (3.31)

Zm
T = 0 ∀m = 1, . . . ,M (3.32)

M
∑

m=1

Xm
t ≤ st ∀t = 1, . . . , T (3.33)

Wm
t ≥ hm · (Xm

t − 1) + 1 ∀m = 1, . . . ,M, t = 1, . . . , T (3.34)

Xm
t ∈ N

+ ∀m = 1, . . . ,M, t = 1, . . . , T (3.35)

Wm
t , Zm

t ∈ R
+ ∀m = 1, . . . ,M, t = 1, . . . , T (3.36)

3.5.2 Adapted aggregated network flow models

Only service strategies shar|rv, dv = T |
∑

Cv, shar|rv, dv|− and shar|rv, dv|
∑

Uc may be
represented in an aggregate way. This matches the findings in Section 3.4 where we have
seen that these strategies can be solved in polynomial time. This section presents adaptations
to represent those service strategies. Let {1, . . . ,m′} be the transport modes for which the
specified service strategy is applied.

3Constraint (3.9) is thus implicitly considered here.
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shar|rv, dv, pv = 1, β′|
∑

Cv We want to minimize the time a vehicle spends at the terminal
(waiting and service times). Since each vehicle requires exactly one task to be executed,
the number of delayed tasks is identical to the number of delayed vehicles. The objective
function penalizes the delay of each vehicle.

min
m′

∑

m=1

T
∑

t=1

Zm
t

Since all vehicles are identical in terms of execution time and delay costs, every allocation
where no straddle carrier remains (partly) idle while tasks have to be served is optimal.
Applying the FIFO rule to the obtained aggregated allocation yields an optimal allocation
to single vehicles.

shar|rv, dvβ
′|
∑

Uc We want to minimize the number of container movement requests that
remain unexecuted at the departure of the vehicle. Constraints (3.30) to (3.32) have to be
modified to include the possibility to leave some tasks unexecuted. Constraints (3.37) and
(3.38)describe flow constraints. Constraints (3.39) and (3.40) make sure that all tasks of
each vehicle are served within its time window or counted as unexecuted.

min
m′

∑

m=1

T
∑

t=1

Um
t

Zm
t = pmt −Wm

t − Um
t ∀m = 1, . . . ,m′, t = 1 (3.37)

Zm
t = Zm

t−1 + pmt −Wm
t − Um

t ∀m = 1, . . . ,m′, t = 2, . . . , T (3.38)

Zm
T − Um

T = 0 ∀m = 1, . . . ,m′ (3.39)

t2
∑

t=t1

Wm
t + Um

t ≥
∑

i=1,...,Im

|t1≤ri∧di≤t2

pmi
∀m = 1, . . . ,m′, t1 = 1, . . . , T,

t2 = t1 + 1, . . . , T
(3.40)

All tasks have the same delay costs. To obtain an optimal allocation of straddle carriers
to single vehicles, we use the earliest due date strategy to allocate available straddle carriers
and unexecuted tasks to single vehicles.

shar|rv, dv, β
′|− We want to obtain an allocation where each vehicle is served within its

time window. The problem may be solved by solving shar|rv, dv, β′|
∑

Uc; either an allocation
where no tasks remain unexecuted exists or the problem is infeasible. Allocating available
straddle carriers with the earliest due date strategy to single vehicles results in an optimal
allocation for single vehicles.

Additional constraints

Few additional constraints may be represented with the aggregated model.

shar|rv|γ
′ Constraints (3.30) and (3.31) already prevent allocation of straddle carriers to

periods prior to the arrival of the vehicle.
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shar|maxm|γ
′ The number of tasks that can be executed per transport mode per period

are limited due to space or capacity restrictions. This limit is expressed by parameter qm

Wm
t ≤ qm ∀m = 1, . . . ,m′, t = 1, . . . , T (3.41)

3.5.3 Model comparison

Representing trucks in an aggregated way promises most benefits since few trains, barges and
vessels, but hundreds of trucks arrive at a terminal within one working day. We suppose that
trucks are served with shar|rv, pv = 1, dv = T |

∑

Cv. This section shows that aggregating
vehicles for this service strategy reduces the problem size, as well as the solution time.

We implement Model 2A which is identical to Model M2 (defined on page 32) except for
transport mode 4 which is modeled in an aggregated way. Table 3.5 compares the model
sizes corresponding to transport mode 4. For the vehicle model, the number of variables and
constraints increases with the number of vehicles (I) and the number of time periods (T ).
The aggregated formulation is more compact and the number of variables and constraints
increases only with the number of time periods (T ). With an increasing number of vehicles,
the difference between both models becomes more significant.

To compare runtimes of the vehicle model and the aggregated model we execute model M2A
on the instances presented in section 3.3.1 with a time limit of 600 seconds. Table 3.6 com-
pares Model M2 and Model M2A. It indicates the number of feasible instance, the num-
ber of instances solved within 600 seconds for each model and average solution time for
solved instances. It compares run times of both models via the relative gap in percentage
(M2A/M2)and the absolute gap (M2 - M2A) in seconds. Gaps for solved instances for sce-
narios M and O are not displayed as the number of solved instances differ. It also reports
the average gap between the current solution and the lower bound for unsolved instances.

Both models solve the same number of instances for almost all scenarios; only for scenarios
M and O the vehicle model solves one instance more. The aggregated model solves almost all
scenarios faster than the vehicle model - on average instances are solved 30% or 23 seconds
faster. Especially for scenario E, the difference between both models is very big. This is
quite surprising because scenario E increases the number of vehicles of transport modes 1
to 3 and does not change transport mode 4. On the other hand, only small differences
occur for scenarios H and I where the number of vehicles of transport mode 4 is increased

Table 3.5: Problem size for vehicle and aggregated models for shar|rv, pv = 1, dv = T |
∑

Cv

Vehicle model Aggregated model
(Model M2) (Model M2A)

Continuous variables 3 · I · T 3 · T
Binary variables 0 0
Integer variables 0 0

Constraints 4 · I · T + I + T 4 · T + 1
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Table 3.6: Performance comparison of the vehicle model (M2) and the aggregated model
(M2A)

Scenario Feas. Solved inst. Avg. CPU time [s] Avg. gap [%]

M2 M2A M2 M2A gap [%] gap [s] M2 M2A

A 10 10 10 13.7 0.1 0.7 13.6 - -
B 10 10 10 30.4 0.3 1.0 30.1 - -
C 10 8 8 10.2 1.4 13.7 8.8 21.7 18.6
D 10 10 10 2.0 3.6 180.0 -1.6 - -
E 10 3 3 147.0 2.7 1.8 144.3 9.4 8.2
F 10 10 10 4.2 0.2 4.8 4.0 - -
G 10 10 10 18.2 2.7 14.8 15.5 - -
H 10 10 10 7.1 5.3 74.6 1.8 - -
I 10 10 10 10.0 0.2 2.0 9.8 - -
J 7 7 7 5.8 0.7 12.1 5.1 - -
K 10 10 10 6.5 1.0 15.4 5.5 - -
L 10 10 10 0.2 0.1 50.0 0.1 - -
M 10 3 2 23.5 2.9 - - 4.0 3.0
N 8 8 8 0.4 0.2 50.0 0.2 - -
O 10 9 8 139.0 46.1 - - 9.1 6.3

Avg. 8.5 8.4 27.9 4.5 32.4 18.2 11.0 9.0

to 400 and 800. Probably the straddle carrier allocation to vehicles of transport mode 4 on
its own does not have big impacts on the solution time. But, in combination with other
transport modes, the aggregating transport mode 4 helps to eliminate symmetric solutions
and shortens the solution process.

3.6 Conclusion

This chapter introduced a linear mixed integer programming model for the straddle carrier
allocation problem (SCAP) at intermodal container terminals. It allocates straddle carriers
to different transport modes with the objective to minimize overall delays at the terminal.
We presented a core linear mixed integer programming model where the service of a vehicle
is modeled as a network flow. Arriving, executed and delayed tasks are flows in the net-
work and the capacity of allocated straddle carriers limits the number of executed tasks via
the associated arc capacities. We presented parameters, variables and constraints that are
necessary to adapt the core model to different service strategies. The modular structure of
these vehicle models model makes it possible to represent terminals using different service
strategies for different transport modes.

We carried out a sensitivity analysis to analyze the impact of input parameters on the
solution time. Input parameters are highly interrelated and it was not possible to determine
general rules to describe the influence of all input parameters on the solution time. We
observed that a high number of time periods increases the solution time considerably and
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that the impact of the number of vehicles depends on the chosen service strategy.

We showed how to transform the straddle carrier allocation problem serving all vehicles
with the same strategy into classical scheduling problems. We used this analogy to state
the complexity of the straddle carrier allocation problem for different service strategies. It
appears that most of the analyzed problems are NP-hard.

For some service strategies, all vehicles of the same transport mode may be represented
by one aggregated model. We implemented all possible service strategies as mixed integer
programs and discussed how the aggregated solution may be transformed into an allocation
to single vehicles. Aggregating the model reduces the problem size as the number of variables
depends no longer on the number of vehicles. Experiments show that the aggregated model
outperforms the vehicle model with regard to computation time.

Several possibilities exist to continue our work. Firstly, develop the presented model
further by including more details or representing other service strategies. Secondly, include
stochasticity in the model or analyze the performance of the proposed allocation in a stochas-
tic environment. Thirdly, combine the straddle carrier allocation problem with interrelated
optimization problems.

Our linear mixed integer programming model represents the most important characteris-
tics of the straddle carrier allocation problem. More details can be added by differentiating
import, export, empty, reefer and hazardous containers with their specific handling require-
ments, service strategies and delay costs. The model can also be extended to define the
allocation in accordance with union agreements. For the current model implementation,
each task has to be finished in the time period in which it has been started. If the handling
capacity per straddle carrier per integer is real (and not integer like in our case) the model
has to be adapted to enable tasks to be served over two periods.

Our optimization model uses average handling times whereas real handling times depend
on the arrival pattern of trucks, the storage locations of containers, the scheduling of tasks
and the straddle carrier routing. It would be interesting to see how the allocation proposed
by the optimization model performs in a stochastic situation - like we do in Chapter 4 - or
to include dynamic aspects directly into the optimization model. The deterministic opti-
mization model could be combined with simulation or queuing models to include a nonlinear
relation between the number of allocated straddle carriers and the number of executed tasks.

A broader study (e.g., via simulation) could evaluate the impacts of different straddle
carrier and storage allocation strategies on straddle carrier scheduling and routing and on
handling times. This would provide more insights on the interconnection between these
problems and quantify how they influence each other. These findings could then be used to
improve the allocation proposed by the optimization problem.
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Chapter 4

Case study: Grand Port Maritime de
Marseille

Container terminals are highly complex and uncertain environments: exact arrival times and
volumes of vessels, trucks, trains and barges are not known in advance or differ from the
announced values and travel and handling times of straddle carriers vary among jobs. When
planning the straddle carrier allocation for the next day, exact arrival and handling times
are unknown. Simulation can include this unreliability easily, but is impracticable when
dealing with a large number of alternatives. We use the model based on average handling
times presented in Chapter 3 to determine an allocation and use simulation to evaluate this
allocation in a stochastic environment.

This chapter presents a case study carried out for a container terminal at the Grand
Port Maritime de Marseille. Section 4.1 presents the harbor of Marseilles and the analyzed
container terminal. Section 4.2 formulates the mixed integer programming model for this
container terminal, shows that the resulting allocation problem is NP-hard and presents
allocation obtained for real world instances. Section 4.3 presents and validates the simulation
model representing the analyzed container terminal. Experiments evaluate the quality of the
allocation proposed by the optimization model for different levels of variability. Section 4.4
concludes the chapter.

4.1 Situation at Marseilles

The Grand Port Maritime de Marseille (GPMM) in France is a general cargo seaport. It
deals with various types of traffic including crude oil and oil products (oil, gas and chemical
products), general cargo (containers and other packaging), dry bulk (minerals and cereals)
and liquid bulk (chemicals and food), as well as passenger traffic. The port features two
harbors: the “East Harbor” within the city of Marseilles and the “West Harbor” at Fos at
70km from Marseilles. GPMM is the largest port in France and among the largest in Europe
in terms of total throughput. It is especially active in oil cargo and is the third oil port
worldwide (European Sea Ports Organisation (2010)).

Three container terminals are operating at GPMM: Eurofos and Seayard at the West
Harbor and Intramar at the East Harbor. Most of the container activity takes place at the
West Harbor. Altogether the three container terminals handled 1 060 000 TEUs in 2012,
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Figure 4.1: Bird’s view of container terminals at GPMM

12% more than in 2009. The majority of inland transportation is done via trucks (80%) and
only a small part by trains (8.3%) or barges (7.4%).

GPMM aims to increase its volume of containerized cargo. Several projects were started
to increase the handling capacity of the container terminals. Through expansion the handling
capacity was doubled to 2 000 000 containers per year in 2012. In addition, Hutchison Port
Holdings (HPH) will start operating at GPMM in 2018 with an expected increase of handling
capacity of 1 500 000 TEU per year. To keep pace with the increased volumes, GPMM also
invests in infrastructure: on the seaside new super post panamax quay cranes were installed;
on the landside a new highway and a faster connection between the Rhone canal and the
container terminals will be constructed and the terminals will be connected to freight high
speed lines.

4.1.1 Applied service strategies

Our study is based on one of the terminal at GPMM. This terminal serves maritime vessels,
trucks, trains and barges and operates only with straddle carriers. Figure 4.1 shows a bird’s
view of this terminal (and parts of the adjacent one). The different areas where vessels,
barges, trains and trucks are unloaded and loaded, as well as the storage areas for import
and export containers, are perceptible. Import containers are stored close to the quay and
export containers close to the truck and train exchange areas to minimize travel times. The
dockers at GPMM work according to shifts with fixed starting and ending times and have
to be booked the day before. At present, straddle carriers are either allocated to vessels or
shared among inland transport modes (truck, train, barge). The sequence of containers to
be handled is determined by their terminal operating system.

Vessels (mode m = 1 in the sequel) are unloaded and loaded at the quay by quay cranes.
The quay crane throughput imposes the number of containers to be transported. Vessels
have to be completely served within their time windows which are defined by the terminal
operator. Straddle carriers are allocated to exactly one quay crane and are evenly distributed
among the vessel. No additional straddle carriers are allocated to a vessel once its service has
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started. But, superfluous straddle carriers may be retrieved. With the notation introduced
in Section 2.1, the service of vessels is described by ded|rv, dv,non-incr,maxv|-.

Barges (mode m = 2) are served at the same quays as vessels by one quay crane. The
number of containers to be transported depends on quay crane throughput. Barges should be
unloaded and loaded as fast as possible. But in reality, they are only served if the equipment
is not used by vessels. Hence, the ready and departure times of barges do not correspond
to their arrival and scheduled departure times, but on the availability of the quay cranes.
Straddle carriers are allocated to exactly one barge and are not shared among barges. The
service of barges is described by ded|rv, dv,maxv|

∑

Cv.

Trains (mode m = 3) are served at the rail station. Railcars stay during a fixed time
window at the terminal and are picked up by an engine according to a fixed schedule every
day. Penalties have to be paid for every container that is not loaded or unloaded when the
train leaves the terminal. Straddle carriers transport containers between the yard and the
buffer in front of the railcars. Loading and unloading to and from railcars is done by reach
stackers. Reach stackers are not represented as they are operated by different dockers and
do not represent a bottleneck. Straddle carriers are shared among all trains. The service of
trains is described by shar|rv, dv|

∑

Uc.

Trucks (mode m = 4) should be served as fast as possible, but at least at the end of
the working day. At the entering gate, trucks are assigned to parking slots where they are
loaded and unloaded directly by straddle carriers. Straddle carriers are shared among all
trucks. The service of trucks is described by shar|rv, dv = T |

∑

Cv.

4.1.2 Instances

We generated 10 instances from the historic data observed at the container terminal. An
instance represents the 14 hours of a working day where all four transport modes are served
at the terminal. The time horizon is divided into one-hour intervals to represent the fixed
allocation at the terminal where straddle carriers can be reallocated at most every hour. The
terminal operator also provided the average number of tasks straddle carriers (h1 = h2 =
h3 = 7 and h4 = 10) and quay cranes (q1, q2 = 20 · nb. cranes) can handle per hour. More
tasks can be handled for trucks as storage requests can be combined with retrieval requests;
this is not possible for trains, barges and vessels as the loading operation starts only when
the unloading operation is finished.

The terminal operator provided historic data about his workload and we chose ten days
among them. For trains, barges and vessels the arrival and due dates as well as the number of
containers to be loaded and unloaded equal the historic data. For trucks, the average numbers
of import and export containers per period are extracted from historic data. Table 4.1
indicates the volumes to be handled per day and per transport mode: 1 or 2 vessels, 0 or
1 barges, 0 or 1 trains and 279 to 769 truck containers have to be served per day.

4.2 Optimization model

This section combines the elements presented in Chapter 3 to model the situation at the
container terminal at Marseilles. The problem is NP-hard since the service strategies of
vessels is NP-hard (see Section 3.4).
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Table 4.1: Instances representing the workload (in containers to be handled) at the terminal
for trucks, trains, barges and vessels

Day 1 2 3 4 5 6 7 8 9 10

Vessel 1 285 477 126 137 191 375 169 266 351 627
Vessel 2 - - 282 - - - 192 575 - 195
Barge - 66 - 115 64 - 37 - 45 -
Train 16 15 - 26 45 23 20 54 23 37
Trucks 279 486 371 405 380 482 391 521 769 477
Total 580 1044 779 683 680 880 809 1416 1188 1336

Key: - No such vehicle arrives at the terminal

4.2.1 Problem formulation as MIP

Independent submodels are implemented for each transport mode to represent the chosen
service strategies. Table 4.2 presents the parameters, indices and variables used to model
the container terminal. For vessels (m = 1), barges (m = 2) and trains (m = 3), one
network flow is implemented for each vehicle. Trucks (m = 4) are aggregated and tasks are
represented by a single network flow model to reduce the solution size and speed up the
solution process.

The objective is to serve each vessel within its time window while minimizing the number
of periods a barge has to spend in the terminal, the number of non-executed tasks at the
departure of a train and the number of trucks delayed from one period to the next.

w2 ·
I2
∑

i=1

T
∑

t=r2i

Y 2
i,t + w3 ·

I3
∑

i=1

U3
i + w4 ·

T
∑

t=1

Z4
t

s.t.

Constraints limiting the number of executed tasks by the capacity of allocated straddle
carriers

Wm
i,t ≤ hm ·Xm

i,t m = 1, 2, 3, ∀i = 1, . . . , Im, t = 1, . . . , T (4.1)

Wm
t ≤ hm ·Xm

t m = 4, ∀t = 1, . . . , T (4.2)

Constraints imposing that each allocated straddle carrier executes at least one task

Wm
i,t ≥ hm · (Xm

i,t − 1) + 1 m = 1, 2, 3, ∀i = 1, . . . , Im, t = 1, . . . , T (4.3)

Wm
t ≥ hm · (Xm

t − 1) + 1 m = 4, ∀t = 1, . . . , T (4.4)

Constraints limiting the number of executed tasks per period to the quay crane capacity

Wm
i,t ≤ qmi m = 1, 2, ∀i = 1, . . . , Im, t = 1, . . . , T (4.5)
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Table 4.2: Parameters, indices and variables used to model the straddle carrier allocation
problem for the given container terminal at Marseille

Parameters and indices:
T Number of time periods describing the time horizon
M Number of transport modes being served at the terminal with m = 1 vessels,

m = 2 barges, m = 3 trains and m = 4 trucks
Im Number of vehicles of transport mode m arriving during the time horizon
t Index of a time period, t = 1, . . . , T
m Index of a transport mode, m = 1, . . . ,M
i Index of a vehicle of transport mode m, i = 1, . . . , Im

rmi Period t in which vehicle i of transport mode m arrives at the terminal
dmi Period t in which vehicle i of transport mode m leaves the terminal (dmi ≤ T )
pmi Total number of tasks to be carried out for vehicle i of transport mode m
pmt Total number of tasks arriving for transport mode m in period t
qmi Maximum number of tasks that can be executed per vehicle i of transport

mode m per period
st Number of available straddle carriers per period t
hm Average number of tasks a straddle carrier serving transport mode m can

handle per period, we assume that hm ∈ N
+, ∀m ∈M and that hm ≥ 1

wm
i Penalty for delaying vehicle i of transport mode m

Variables:
Xm

i,t Number of straddle carriers allocated in period t to vehicle i of transport
mode m

Xm
t Number of straddle carriers allocated in period t to transport mode m

Wm
i,t Number of tasks executed in period t for vehicle i of transport mode m

depending on the number of allocated straddle carriers
Wm

t Number of tasks executed in period t for transport mode m depending on
the number of allocated straddle carriers

Zm
i,t Number of non-executed tasks in period t for vehicle i of transport mode m

which are transferred to period t+ 1
Zm

t Number of non-executed tasks in period t for transport mode m which are
transferred to period t+ 1

Um
i Number of tasks which are not executed for vehicle i of transport mode m

at its departure
Y m
i,t Binary variable indicating if vehicle i of transport mode m is completely

served at the end of period t
Dm

i,t Binary variable indicating if the service of vehicle i of transport mode m
has already been started in t− 1
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Mass balance constraints for arrived, executed and delayed tasks

Zm
i,t = pmi −Wm

i,t m = 1, 2, 3, ∀i = 1, . . . , Im, t = rmi (4.6)

Zm
i,t = Zm

i,t−1 −Wm
i,t m = 1, 2, 3, ∀i = 1, . . . , Im, t = rmi + 1, . . . , T

(4.7)

Zm
t = pm −Wm

, m = 4, t = 1 (4.8)

Zm
t = Zm

t−1 −Wm
i,t m = 4, ∀t = 2, . . . , T (4.9)

Constraints imposing trucks, barges and vessels are served prior to their deadlines

Zm
i,dmi

= 0 m = 1, 2, ∀i = 1, . . . , Im (4.10)

Zm
T = 0 m = 4 (4.11)

Constraints determining delays of barges and trains

Y m
i,t ≥

Zm
i,t

pmi
m = 2, ∀i = 1, . . . , Im, t = rmi , . . . , T (4.12)

Zm
i,dmi
− Um

i = 0 m = 3, ∀i = 1, . . . , Im (4.13)

Constraints imposing a non-increasing service for vessels

Dm
i,t ≥

pmi − Zm
i,t−1

pmi
m = 1, ∀i = 1, . . . , Im, t = rmi + 1, . . . , T (4.14)

Xm
i,t ≤ Xm

i,t−1 − st · (D
m
i,t − 1) m = 1, ∀i = 1, . . . , Im, t = rmi + 1, . . . , T (4.15)

Constraints limiting the total number of allocated straddle carriers

∑

m=1,2

Im
∑

i=1

Xm
i,t +X3

t +X4
t ≤ st ∀t = 1, . . . , T (4.16)

Constraints allowing sharing straddle carriers for trains and trucks and preventing sharing
for barges and vessels

Xm
i,t ∈ N

+ m = 1, 2, ∀i = 1, . . . , Im, t = 1, . . . , T (4.17)

Xm
i,t ∈ R

+ m = 3, ∀i = 1, . . . , Im, t = 1, . . . , T (4.18)

Im
∑

i=1

Xm
i,t ≤ Xm

t m = 3, ∀t = 1, . . . , T (4.19)

Xm
t ∈ N

+ m = 3, 4, ∀t = 1, . . . , T (4.20)
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Variable domains

Wm
i,t , Z

m
i,t ∈ R

+ m = 1, 2, 3, i = 1, . . . , Im, t = 1, . . . , T (4.21)

Wm
t , Zm

t ∈ R
+ m = 4, t = 1, . . . , T (4.22)

Um
i ∈ R

+ m = 3, i = 1, . . . , Im (4.23)

Dm
i,t ∈ {0, 1} m = 1, ∀i = 1, . . . , Im, t = rmi + 1, . . . , T (4.24)

Y m
i,t ∈ {0, 1} m = 2, ∀i = 1, . . . , Im, t = rmi + 1, . . . , T (4.25)

4.2.2 Numerical experiments

The optimization is implemented in and solved with IBM ILOG CPLEX 12.1. We solve each
instance with a maximum of 10, 12 and 14 available straddle carriers. We set the delay costs
for barges (w2 = 50), trains (w3 = 10) and trucks (w4 = 1) so as to represent the service
priorities at the terminal favoring barges and trains. With these costs and h4 = 7, train
tasks are not executed only if the problem becomes infeasible otherwise. We first illustrate
the output of the allocation model for one instance and provide results for all instances
thereafter.

The solution of the optimization model provides information about the number of straddle
carriers to allocate to each vehicle or transport mode (Xm

i,t and Xm
t ) as well as about the

resulting delays for trucks (
∑

Zm
t ), trains (

∑

Um
i ) and barges (

∑

Y m
i,t ). Figure 4.2 shows

the results for 10, 12 and 14 available straddle carriers for Day 9 with one train, one barge
and one vessel. It illustrates how many straddle carriers to allocate to the vessel, the trucks,
the barge and the train at each of the periods 1 to 14. It also states the delays from trucks,
trains and barges resulting from this allocation. The vessel is always served within its time
window (1− 12).

For 14 straddle carriers, almost no delays occur: only one truck is delayed by one period.
The barge spends 3 periods at the terminal which is its minimum service due to the limited
quay crane throughput. All train containers are unloaded and loaded. For 12 straddle
carriers, more delays occur. Especially, the service quality of trucks decreases. Fewer straddle
carriers are allocated to trucks in periods 7, 10 and 11 and more straddle carriers in period
12 to serve the delayed trucks of previous periods. The barge has to spend four periods
in the terminal. All train tasks are executed within two periods. The service of the vessel
is partly shifted to periods 10 to 12 to free straddle carriers for the other transport modes
during periods 4, 5 and 9. For 10 straddle carriers, delays occur for all transport modes. A
high percentage of trucks are served after periods 13 and 14 after the vessel left the terminal.
The barge spends five periods in the terminal. The train is served later and not completely.
The service of the vessel is shifted as much as possible to the end of its time window to
minimize impacts on other transport modes.

To decide how many straddle carriers to order for the next day the terminal operator
executes the model for the expected workload for different numbers of available straddle
carriers and chooses the number of straddle carriers with an adequate service level. In this
case, he will probably chose 12 or 14 straddle carriers depending on the desired truck service
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(a) 14 straddle carriers: 1 delayed truck task, 3 periods
per barge, 0 unexecuted train containers
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(b) 12 straddle carriers: 63 delayed truck tasks, 4 peri-
ods per barge, 0 unexecuted train containers
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(c) 10 straddle carriers: 607 delayed truck tasks, 5 peri-
ods per barge, 2 unexecuted train containers

Figure 4.2: Optimal allocation and resulting delays for different numbers of available straddle
carriers

Page 54 EMSE-CMP Elisabeth Zehendner



4.3. SIMULATION MODEL

Table 4.3: Solution times and delays for trucks (nb. delayed tasks), trains (nb. of non-
executed tasks) and barges (nb. periods spent at the terminal) for 10, 12 and 14 available
straddle carriers

st Day 1 2 3 4 5 6 7 8 9 10

Truck 0 275 247 26 0 115 129 inf 607 inf
10 Train 0 1 - 0 0 0 0 inf 2 inf

Barge - 5 - 5 3 - 1 inf 4 inf

Time [s] 0.2 0.5 0.1 0.2 0.1 0.1 0.2 inf 0.3 inf

Truck 0 55 1 0 0 0 0 inf 63 inf
12 Train 0 0 - 0 0 0 0 inf 0 inf

Barge - 3 - 5 3 - 1 inf 3 inf

Time [s] 0.2 0.1 0.1 0.1 0.1 0.1 0.1 inf 0.2 inf

Truck 0 4 0 0 0 0 0 4 1 0
14 Train 0 0 - 0 0 0 0 0 0 0

Barge - 3 - 5 3 - 1 - 2 -

Time [s] 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1

Key: - No such vehicle arrives at the terminal

quality. If big changes occur with regard to the initial planning (e.g. delayed arrival of
a vessel), the model can easily be adapted to the new situation and provide an updated
allocation.

Table 4.3 presents the delays for all 10 days with 10, 12 and 14 available straddle carriers
and indicates the time needed to solve each instance. Unsurprisingly, the number of delays
increases if fewer straddle carriers are available. Some instances become even infeasible
(marked by inf) because the available straddle carriers cannot execute all tasks. All instances
are solved in less than a second; infeasibilty is also discovered immediately. Trucks have the
lowest priority at the terminal and are the first ones to be delayed if capacity is insufficient.
This explains why so many trucks are delayed while almost no delays for trains and barges
occur.

4.3 Simulation model

Container terminals are highly complex and dynamic environments. Arrival times and vol-
umes of external vehicles as well as internal handling times are subject to variability. Simu-
lation can easily represent these interactions and uncertainty and is widely used to represent
container terminals (see Angeloudis and Bell (2011) for a literature overview). Several stud-
ies (e.g., Gambardella et al.; 2001; Vis et al.; 2005; Briskorn et al.; 2006) use simulation to
validate the results of their analytical models in a stochastic environment. We use simulation
to evaluate the performance of the straddle carrier allocation proposed by our optimization
model.
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4.3.1 Discrete event simulation model

We use a terminating discrete event simulation to represent storage and transport operations
within the container terminal at GPMM. The simulation model is an adapted version of the
model presented in Rodriguez Verjan and Dauzère-Pérès (2010) and implemented in Arena.
Its objective is to evaluate the straddle carrier allocation proposed by the optimization
problem. The input parameters of the model are a straddle carrier allocation and the arriving
trucks, trains, barges and vessels together with their arrival and departure times and the
volumes to be handled.

All straddle carriers are assumed to be identical and can transport one container at a
time. Straddle carriers are allocated to one transport mode or one vehicle for a one-hour
interval. Export and import containers to be transported send transportation requests. If
an allocated straddle carrier is idle, it travels to the current container position, picks it
up, travels to the container destination and puts it down. Otherwise, the container waits
for a straddle carrier to become idle. Since our main objective is to evaluate the proposed
allocation plan, storage policies and straddle carrier routing are not modeled in detail. Travel
times and times for picking up or putting down a container are uniformly distributed around
average service times.

The arrival of trucks varies over the working day due to peak and low periods. We model
these time dependent truck arrivals via a non-stationary Poisson process. A truck can only
enter the terminal if a parking space in the loading/unloading area is free; otherwise it has to
wait at the gate. Once it arrives at the parking space it requests a straddle carrier to unload
the export container. A given percentage of trucks also request an import container to be
loaded. Different straddle carriers may transport the export and import container for the
same truck. The truck leaves the terminal as soon as it is unloaded (only export container)
or loaded (import and export container). We record the number of trucks that enter and
leave the terminal and the service time of each truck.

We model the arrival of a train as a uniform distribution and its volume as triangular
distribution around historic data. Unloading operations begin after the arrival of the train.
Straddle carriers allocated to trains transport the containers to the export area of the yard.
When the unloading process is completed, the loading operation begins and allocated strad-
dle carriers pick up import containers at the yard and transport them to the station. The
train leaves the terminal at the scheduled time even if loading/unloading operations are not
completed. We record the numbers of not unloaded and not loaded containers.

Vessels and barges are modeled in the same way. Their arrivals and volumes are modeled
as uniform and triangular distributions around historic data. Berth and quay crane assign-
ments are out of the scope of this study and we assume that the berth and the quay cranes
are free and operational at the vehicles planned arrival. Quay cranes unload containers from
the ship on the quay. If the unloading is finished they load containers from the quay into the
ship. The time needed to load or unload one container is modeled as a uniform distribution
about an average value. To avoid congestion at the bay, the number of containers that may
be stacked in a buffer below a quay crane are limited. Quay crane activity stops if this buffer
is full during unloading or empty during loading operations. Straddle carriers transport con-
tainers between the buffer and the yard. We record the number of loaded and unloaded
containers for each vessel and each barge. We also record the service times of barges.
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4.3.2 Model validation

Due to difficulties to obtain historic data about the allocation of straddle carriers it was
not possible to validate the simulation model against real data. We chose to validate a
non-stochastic version of our simulation model against the results of the optimization model.
Arrival times and volumes of vehicles are set to the historic values. Straddle carrier travel and
handling times are chosen to mimic the average handling capacities used in the optimization
model. In this case, delays of the optimization and the simulation model should resemble.

Table 4.4 compares the results of the optimization and the simulation model for the
instances presented in Section 4.1.2 with 10, 12 and 14 available straddle carriers. Delays
for both models are similar for all transport modes. The same number of train tasks remain
unexecuted; except for one instance. The barge service time obtained by the simulation
model is more precise and almost identical to the service time indicated by the optimization
model. All vessels are completely served within their time windows for both models; except
for one instance.

The comparison of trucks delays is not so straightforward as the optimization and the
simulation model measure truck delays in different ways. The optimization model measures
the number of containers delayed from one period to the next and the simulation model the
average service time per truck. To obtain the number of trucks delayed from one period to the
next for the optimization model, we divide the number of delayed containers by the average
load of 1.9 containers per truck. More truck delays in the optimization model find their
equivalent in higher average service times and a higher standard deviation. A correlation
coefficient of 0.94 with a p-value of 3.7E-9 proves that truck delays and truck service times
are significantly correlated. Figure 4.3 illustrates this correlation.

Results show that the average service times per container mimic the average straddle
carrier handling capacities of the optimization model. A straddle carrier needs averagely
200 seconds to travel between the yard and the loading/unloading area and averagely 60 sec-
onds to pick up or put down a container. For trains, barges and vessels, straddle carriers
are allocated to exactly one vessel and the loading process starts when the unloading pro-
cess is finished. The time needed to transport one container equals the time for picking up
and putting down the container and one full and one empty travel to and from the yard.
The service time per container in the simulation model is 2 · 200 + 2 · 60 = 520 seconds or
8.67 minutes. For h1 = h2 = h3 = 7 the service time per container in the optimization model
is 60/7 = 8.57 minutes. For trucks, straddle carriers serve several trucks in parallel and
may combine the storage of an export container with the retrieval of an import container.
This suppresses one empty travel between the parking slots and the yard. Whether import
and export tasks may be combined depends on the arrival of trucks and the number of al-
located straddle carriers. Trucks served without delays stay averagely 12.0 minutes at the
terminal. The average truck load is 1.9 containers, which leads to an average service time of
12.0/1.9 = 6.3 minutes per container which is close to the 60/10 = 6 minutes per container
(h4 = 4) in the optimization model.

We conclude that the simulation model represents the same situation as the optimization
model and may be used to analyze the solution quality of the straddle carrier allocation
proposed by the optimization model in a stochastic environment.
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Table 4.4: Comparison of delays obtained by optimization and simulation for 10, 12 and 14 available straddle carriers (SC)

Optimization model Simulation model

Inst. Truck Train Barge Vessels Truck Truck Train Barge Vessel 1 Vessel 2
[delayed [not served [service [not served [service [stdv. [not served [service [not served [not served

cont] cont] time h] cont] time min] time] cont] time h] cont] cont]

1_10SC 0.0 0 - 0 10.8 3.6 0 - 0 -
2_10SC 144.7 1 6 0 32.2 22.5 0 5.9 0 -
3_10SC 130.0 - - 0 44.4 43.6 - - 0 0
4_10SC 13.7 0 6 0 11.7 5.6 0 5.7 0 -
5_10SC 0.0 0 4 0 13.1 3.9 0 3.9 0 -
6_10SC 60.5 0 - 0 18.7 10.3 0 - 0 -
7_10SC 67.9 0 2 0 24.9 17.6 0 1.9 0 0
8_10SC inf inf inf inf inf inf inf inf inf inf
9_10SC 319.5 2 5 0 49.7 46.2 2 4.8 0 -
10_10SC inf inf inf inf inf inf inf inf inf inf

1_12SC 0.0 0 - 0 idem idem idem idem idem idem
2_12SC 28.9 0 4 0 13.1 5.8 0 3.9 0 -
3_12SC 0.5 - - 0 11.5 3.3 - - 0 0
4_12SC 0.0 0 6 0 11.1 3.3 0 5.7 0 -
5_12SC 0.0 0 4 0 13.1 3.9 0 3.9 0 -
6_12SC 0.0 0 - 0 12.8 3.0 0 - 0 -
7_12SC 0.0 0 2 0 13.2 4.7 0 1.9 0 0
8_12SC inf inf inf inf inf inf inf inf inf inf
9_12SC 33.2 0 4 0 14.2 5.5 0 3.9 0 -
10_12SC inf inf inf inf inf inf inf inf inf inf
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Optimization model Simulation model

Inst. Truck Train Barge Vessels Truck Truck Train Barge Vessel 1 Vessel 2
[delayed [not served [service [not served [service [Stdv. [not served [service [not served [not served

cont] cont] time h] cont] time min] time] cont] time h] cont] cont]

1_14SC 0.0 0 - 0 idem idem idem idem idem idem
2_14SC 2.1 0 4 0 11.5 3.1 0 3.9 0 -
3_14SC 0.0 - - 0 11.0 3.2 - - 0 0
4_14SC 0.0 0 - 0 idem idem idem idem idem idem
5_14SC 0.0 0 - 0 idem idem idem idem idem idem
6_14SC 0.0 0 - 0 12.8 3.0 0 - 0 -
7_14SC 0.0 0 2 0 13.2 4.7 0 1.9 0 0
8_14SC 2.1 0 - 0 14.9 7.2 0 - 1 0
9_14SC 0.5 0 3 0 11.7 3.8 0 2.9 0 -
10_14SC 0.0 0 - 0 12.2 7.2 0 - 0 0

Key: - no such vehicle arrived at the terminal idem same allocation than for instance with fewer available straddle carriers
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Figure 4.3: Correlation between truck delays of the optimization model and average truck
service times of the simulation model

4.3.3 Numerical experiments

We use discrete event simulation to evaluate how the straddle carrier allocation proposed
by the optimization model performs in a stochastic environment with uncertain arrivals,
volumes and handling times. We run the simulation model with the proposed straddle
carrier allocation for all instances for 10, 12 and 14 available straddle carriers with 10, 30
and 50 percent variability for handling and travel times of straddle carriers. 1000 replications
are executed for each experiment. Table 4.5 summarizes the simulation input.

Table 4.5: Input parameters for simulation runs

Trucks
Arrivals Non-stationary Poisson process with hourly averages equal to

historic arrivals

Trains, barges and vessels
Arrivals Uniformly distributed around the historic arrival plus/minus

15 minutes
Volumes Triangularly distributed around the historic volume

plus/minus 10 percent
Quay crane Service time per container uniformly distributed between 2

and 3 minutes
Crane buffer Space for 6 containers

Straddle carriers - three scenarios
Allocation As proposed by the optimization model
Travel times Uniformly distributed around 3.3 minutes plus minus 10, 30

or 50 percent
Storage times Uniformly distributed around 1.0 minute plus minus 10, 30 or

50 percent
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Table 4.6: Delays for trucks, trains, barges and vessels obtained via simulation with different
levels of variability for container handling

No variability 10% variability 30% variability 50% variability

Truck [service time min] 17.37 22.33 23.65 27.50
Std Dev. 15.57 18.34 19.23 21.55

Train [not served cont] 0.11 0.11 0.12 0.23
Std Dev. n.a. 0.23 0.33 0.60

Barge [not served cont] 0.21 0.01 0.02 0.31
Std Dev. n.a. 0.07 0.21 0.95

Vessels [not served cont] 0.03 2.03 4.42 13.46
Std Dev. n.a. 4.58 6.64 9.50

Table 4.6 shows average delays and standard deviations of delays for trucks, trains, barges
and vessels for the deterministic simulation and simulation with variabilities of 10, 30 and 50
percent. It displays average truck service times and the number of non-executed container
movements for trains, barges and vessels. For the deterministic case no standard deviation
is given as the scenario is run only once. Unsurprisingly, a bigger variability of travel and
handling times of straddle carriers decreases the performance at the terminal and increases
the standard deviation.

The average service time of trucks increases by 27.9% for a variability of 10 percent, by
35.5% for a variability of 30 percent and by 57.2% for a variability of 50 percent. Higher
variability deteriorates the service quality of vessels: the number of unexecuted tasks in-
creases from 0 without variability to over 13 for a variability of 50 percent. For trains,
impacts are less drastic: the number of not executed tasks remains almost unchanged for 10
and 30 percent variability, but delays are doubled for 50 percent variability. For barges, the
stochastic cases with variability of 10 and 30 percent perform better than the deterministic
case and the case with 50 percent variability slightly worse. In the deterministic case, one
barge container cannot be loaded at Day 7. In the stochastic case, this container can be
served most of the times. This gain offsets the small increases in delays of barges at other
days.

Student’s t-test show when the differences between the deterministic simulation and the
simulations with 10, 30 and 50 percent variability are statistically significant. The obtained
results confirm the observations above. For trucks, differences are only significant for a
variability of 50 percent. For vessels, differences are significant for all three scenarios. For
trains and barges, differences are not significant for all levels of variability.

To understand why vessels are more sensitive to variability than the other transport
modes we compare the number of tasks to be executed with the capacity of allocated straddle
carriers. Table 4.7 shows the average number of containers to be executed, the number of
additional movements allocated straddle carriers could execute and the percentage of unused
capacity. Trucks and barges have a excess capacity of around 10%, trains of around 13%
and vessels of around 6%. A smaller spare capacity increases the impact of variability, as
spare capacity counterbalances stochastic impacts. In addition, vessels (and barges) interact
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Table 4.7: Volumes and unused capacity per transport mode

Avg. demand Reserve capacity Unused capacity
[cont.] [cont.] [%]

Trucks 470.2 46.3 9.8
Trains 25.9 3.4 13.1
Barges 57.3 5.6 9.9
Vessels 284.0 18.0 6.3

with quay cranes which amplifies the negative impacts of variability. Straddle carriers are
shared among trucks and delays are passed on later trucks; this also increases the impact of
variability.

4.4 Conclusion

This chapter presented a case study for the straddle carrier allocation problem carried out
for a container terminal at the Grand Port Maritime de Marseille. We used the modeling
elements introduced in Chapter 3 to represent the terminal with its service strategies for
trucks, trains, barges and vessels. Experiments, conducted on actual data, illustrated how
to use optimization model to determine the number of straddle carriers needed for the next
day and to allocate these straddle carriers to different transport modes.

Since stochastic aspects of the container terminal were not included in the optimization
model, we used simulation to evaluate the performance of the allocation proposed by the
optimization model in a stochastic environment. We introduced a discrete event simulation
representing the analyzed terminal and validated it against the results of the optimization
model. We performed a sensitivity analysis to evaluate proposed allocation with different
levels of variability for straddle carrier handling times.

Results show that the proposed allocation performs well and that the optimization model
predicts resulting delays adequately for 10 and 30% of variability. For 50% variability,
delays increase considerably for trucks and vessels and are significantly different from the
deterministic case. Straddle carriers are shared among trucks and vessels interact with
quay cranes, this amplifies the impacts of variability in straddle carrier handling times.
Further analysis of these effects could be helpful to improve the allocation proposed by the
optimization model to become more robust.
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Chapter 5

SCAP and truck appointment systems

Container terminals use different policies like extended gate hours, truck appointment sys-
tems or congestion tolls to decrease congestion at the terminal (Morais and Lord; 2006;
Maguire et al.; 2010). The underlying idea is to reduce congestion at peak hour periods
by controlling and evening out truck arrivals and to minimize the stochasticity of truck op-
erations in the yard. We focus on terminals using truck appointment systems to limit the
number of trucks entering the terminal. Several case studies (e.g., Sgouridis and Angelides;
2002; Morais and Lord; 2006; Srour et al.; 2003; Giuliano and O’Brien; 2007) show that ap-
pointment systems have the potential to reduce congestion at the terminal. Terminals obtain
a better visibility on the moves per day and may adapt operations inside the terminal. The
trucking community benefits from faster turnaround times and a higher productivity.

This chapter analyzes the impacts of a truck appointment system on delays of trucks,
trains, barges and vessels at intermodal container terminals using straddle carriers to serve
all transport modes. Section 5.1 introduces the problem and summarizes related literature.
Section 5.2 adapts the mixed integer linear programming model for the straddle carrier
allocation problem to a container terminal using a truck appointment system. Section 5.3
evaluates the impact of a truck appointment system on overall delays via experiments with
our optimization and simulation models. Section 5.4 concludes the paper.

5.1 Introduction

Truck appointment systems are reservation systems that limit the number of trucks to be
served during a specified time slot. Morais and Lord (2006) and Giuliano and O’Brien (2007)
report different ways container terminals implement truck appointment systems. Some ter-
minals make the use of the appointment system mandatory, others serve trucks with and
without appointments. Terminals have to decide whether to offer appointments on a con-
tainer or on a truck basis. In the first case, appointments have to be made to deliver or pick
up a specific container; in the second case, appointments are made for trucks without further
information on container delivery or pick-up. Terminals also differ with regard to the used
appointment system provider, the reservation policy (how and when) and the way no-shows
are handled. Some terminals prepare container pick-ups based on the made appointments,
some make special arrangements at gates for trucks with appointments and others do not
differentiate between trucks with and without appointment systems.

These studies also highlight the fact that the success of an appointment system relies on
a large percentage of trucks using it. For an insufficient number of participants, the average
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truck turnaround time may increase since the service quality of trucks without appointments
decreases. This makes it difficult to promote the system as benefits are not seen immediately.
Therefore, incentives and clear benefits have to be provided to truck drivers to win them
over. Appointment systems have to be flexible (e.g., reservation, cancellation, reassignment
of slots) in order to be successful.

5.1.1 Problem description

We combine the straddle carrier allocation problem with the sizing of a truck appointment
system. In this case, the number of truck appointments that can be accepted are limited
by the number of straddle carriers allocated to trucks. The number of appointments also
influences the service quality of trains, barges and vessels since straddle carriers allocated
to trucks cannot serve trains, barges or vessels. Consequently, the allocation of straddle
carriers and the sizing of the appointment system should be planned simultaneously to
minimize overall delays at the terminal. Our objective is to determine a resource allocation
proposing appointments close to the preferred arrival pattern of trucks while minimizing the
delays of trains, barges and vessels.

We chose to represent container terminals using obligatory appointment systems. Trucks
have to book an appointment for a specific container for a specific time slot to enter the
terminal to deliver or pick up this container. Entering the terminal without an appointment
is not possible. In return and to minimize truck waiting times, each truck is served within
a guaranteed service time. To respect preferred truck arrivals, the maximal deviation ∆
between preferred and assigned time slots is limited.

5.1.2 Literature review

Several studies determine the number of truck appointments to accept. These studies assume
a given capacity (e.g., number of yard cranes) to serve trucks and determine the number of
trucks that may be accepted with this capacity to obtain the desired service quality. These
studies neglect interactions with other transport modes such as trains, barges and vessels.

Chen et al. (2011) develop a convex nonlinear programming model to determine the
number of appointments based on an analytical point-wise stationary approximation model
to represent time-dependent truck queuing processes at the gate and in the yard. The
objective is to minimize the total truck turnaround time and the difference between preferred
and assigned arrival times. They also propose a method to determine time-varying tolls that
lead to the optimized truck arrival pattern. Ioannou et al. (2006) develop an algorithm
to generate cooperative time windows: container terminals generate wide time windows
and trucking companies choose a narrower time window (of predetermined width) within
the original ones or renegotiate the time windows offered by the container terminal. To
determine the narrower time windows, they propose a heuristic based on an insertion method
to solve the Traveling Salesman Problem with Time Windows. Murty et al. (2005) present a
decision support system developed for the Hong Kong International Terminals which includes
a simulation model to determine the number of appointments to accept. They minimize a
combined penalty for yard-crane idle time and the fraction of time during which the queue
of trucks waiting at the block for service from the yard crane are too long.
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Chen, Govindan and Yang (2013) focus on container terminals assigning time windows
to each vessel for container deliveries and pick-ups to shorten container storage time. They
introduce a method to optimize these time windows to reduce truck waiting time, idling fuel
consumption, cargo storage time and storage yard fee. They estimate the length of the truck
queue with a non-stationary queuing model. Time window optimization is done by different
variants of genetic algorithms. Huynh and Walton (2008) examine the effect of limiting
truck arrivals on truck turn time and crane utilization via a combination of mathematical
formulation and simulation. They show that limiting truck arrivals can be beneficial. But,
setting caps to low is to the detriment of truckers and the terminal since resources remain
partly unused. Their methodology can also be used to determine the optimal number of
trucks to accept per time slot. Guan and Liu (2009) present a multi-server queuing model
to analyze gate congestion and to quantify the truck waiting cost. Their study is limited
to the entry gates and does not include possible congestion and waiting times within the
terminal. A nonlinear optimization problem with discrete variables determines the optimal
number of gate lanes to open while minimizing a combined cost of truck waiting times and
gate operating costs.

Other studies aim to minimize truck waiting times but do not analyze appointment sys-
tems. Huynh (2005) presents several regression models and a simulation model to determine
the number of yard cranes needed to achieve a desired service level for trucks. Other authors
(e.g., Kim et al.; 2003; Zhao and Goodchild; 2010) use the information on truck arrivals to
determine their service sequence in order to minimize the number of parasite movements.
Namboothiri (2006) and Namboothiri and Erera (2007) deal with appointment systems from
the truckers’ point of views. They study methods for managing a drayage fleet serving a
port with an appointment-based access control system.

5.2 Mixed integer program

We adapt the aggregated model for the straddle carrier allocation problem to represent con-
tainer terminals using obligatory truck appointment systems. As before, the truck submodel
may be combined with other submodels to represent the entire terminal. Figure 5.1 illus-
trates the network flow model used to assign truck tasks to time slots and to allocate straddle
carriers to trucks. The empty and shaded circle nodes represent the discrete time periods
of the working day. Flows pmr represent the number of tasks that should be executed in pe-
riod r. Flows Zm

r,t assign each container to a time slot, respecting the maximum deviation ∆,
during which it has to be delivered or picked up. Here, we set ∆ = 1. Flows Wm

t represent
the total number of tasks to be served per period. This number is limited the capacity of
allocated straddle carriers.

We use the following parameters to represent the expected truck workload and the ca-
pacity at the terminal:

Parameters:
T Number of time periods describing the working day
r Index of a time period related to trucks preferred arrivals, r = 1, . . . , T
t Index of a time period related to trucks assigned arrivals, t = 1, . . . , T
m Index representing the transport mode ’truck’
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Figure 5.1: Scheme of the network flow model for the dimensioning of a truck appointment
system

pmr Aggregated number of tasks wishing to arrive at period r
∆ Maximal allowed deviation (±) from preferred arrival time
wm

r,t Cost for deviating a task from period r to period t,
wm

r,t = 0 if t = r and wm
r,t > 0 otherwise

st Number of straddle carriers available at period t
hm Average number of tasks a straddle carrier serving transport mode m can

handle per period

The model’s output indicates the number of truck tasks to be executed per period and
an optimal allocation of straddle carriers. It also displays the deviations resulting from this
allocation. The following variables represent this information:

Variables:
Xm

t Number of straddle carriers allocated to trucks in period t
Zm

r,t Number of tasks wishing to arrive in period r that are assigned to period t
Wm

t Number of tasks assigned to period t indicating the number of appointments
to offer

These parameters and variables enable us to formulate the problem.

min
T
∑

r=1

T
∑

t=1

wc
r,t · Z

m
r,t

s.t.

pmr =
r+∆
∑

t=1

Zm
r,t ∀r = 1, . . . ,∆ (5.1)

pmr =
r+∆
∑

t=r−∆

Zm
r,t ∀r = ∆+ 1, . . . , T −∆ (5.2)
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pmr =
T
∑

t=r−∆

Zm
r,t ∀r = T −∆+ 1, . . . , T (5.3)

Wm
t =

t+∆
∑

r=1

Zm
r,t ∀t = 1, . . . ,∆ (5.4)

Wm
t =

t+∆
∑

r=t−∆

Zm
r,t ∀t = ∆+ 1, . . . , T −∆ (5.5)

Wm
t =

T
∑

r=t−∆

Zm
r,t ∀t = T −∆+ 1, . . . , T (5.6)

Wm
t ≤ hm ·Xm

t ∀t = 1, . . . , T (5.7)

Wm
t ≥ hm · (Xm

t − 1) + 1 ∀t = 1, . . . , T (5.8)

Xm
t ≤ st ∀t = 1, . . . , T (5.9)

Xm
t ∈ N

+ ∀t = 1, . . . , T (5.10)

Zm
t ∈ R

+ ∀t = 1, . . . , T (5.11)

Wm
r,t ∈ R

+ ∀r = 1, . . . , T, t = 1, . . . , T (5.12)

Constraints (5.1) to (5.6) formulate the mass balance constraints for incoming, deviated
and executed tasks for trucks. These constraints respect the maximum deviation and impose
that all tasks are served within one working day. Constraints (5.7) to (5.10) are identical
to the case without an appointment system. Constraint (5.7) limits the number of executed
tasks by the allocated capacity. Constraint (5.8) imposes that each allocated straddle carrier
executes at least one task. Constraint(5.9) makes sure that the number of allocated straddle
carriers does not exceed the number of available straddle carriers. Constraint (5.10) makes it
possible to share straddle carriers among trucks and prevents sharing among other transport
modes. Constraints (5.11) and (5.12) define variables domains.

5.3 Numerical experiments

We estimates the impacts of a truck appointment system on the service quality of trucks as
well as on trains, barges and vessels. We compare the delays at terminals with and without
an appointment system. The analysis is done for the container terminal at the Grand Port
Maritime de Marseille with our optimization and simulation models.

5.3.1 Results optimization model

To represent the container terminal with a truck appointment system, we combine the
adapted truck submodel with the submodels for trains, barges and vessels presented in
Section 4.2. We solve the model for the instances presented in Section 4.1.2 for 10, 12 and
14 available straddle carriers and maximum deviations of 1 and 2 periods.
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Table 5.1 shows the delays for trucks, trains and barges for terminals with and without
appointment systems. For both models, delays for trains are indicated by the number of
non-executed tasks and delays for barges by the number of periods spent in the terminal.
With an appointment system, truck delays represent the deviation between the preferred and
the assigned arrival of tasks; without an appointment system,truck delays represent periods
spent at the terminal. Vessels may not be delayed and are not displayed. Since we aim
to serve trucks at their preferred arrival times, offered truck appointments are identical to
preferred truck arrivals when enough resources are available to do so. In this case, results
with and without appointment systems are identical. Instances with different delays for the
different terminals are marked in bold.

With 14 available straddle carriers almost no delays occur at the terminal: very few truck
tasks are delayed, all train tasks are executed and all barges are served within the minimum
service time (resulting from quay crane capacity). If the number of available straddle carriers
is reduced to 12 or 10, more delays occur. Some instances may even become infeasible which
means that the number of available straddle carriers is not sufficient to serve all tasks within
their imposed time windows. Without an appointment system, trucks can be delayed until
the end of the working day. With an appointment system, the arrival of trucks can only
be forwarded or postponed by maximal ∆ periods and trucks have to be served within the
period to which they are assigned. This explains why instance 9_10SC is only infeasible for
∆ = 1.

Without an appointment system, truck tasks can only be delayed from one period to the
next until the end of the working day; with an appointment system, tasks can be forwarded
and delayed by maximal ∆ periods. It appears that the additional possibility to forward tasks
reduces truck delays considerably for most instances. Increasing the maximum deviation
from ∆ = 1 to ∆ = 2, increases room for maneuver and reduces truck delays further. These
results suggest that the introduction of a truck appointment system reduces the time trucks
have to spend at the terminal, especially if the workload is excessive. In addition, deviations
from the preferred arrival are probably less disturbing for trucks than long service times at
the terminal.

For instances 9_12SC and 10_12SC truck delays increase with the introduction of an
appointment system or an extension of ∆. In both cases, these additional delays are made
up by the reduction of delays of barges or trains. For instances 2_10SC and 9_10SC, trucks
and barges benefit from the introduction of the appointment system. For instance 9_10SC
however, delays for trains increase with the introduction of the truck appointment system.
In this case, trains are delayed as the instance would be infeasible otherwise. These results
suggest that trains and barges may also benefit from the truck appointment system: trucks
may be shifted to less busy periods and free straddle carriers for barges and trains. They
also highlight the importance of choosing the right values for weights wm and the maximum
deviation ∆ to represent priorities among transport modes correctly.

Our objective is to offer appointments close to the preferred arrival of tasks. Figure 5.2
compares the average arrival of truck tasks per period with the average number of appoint-
ments offered per period for a maximum deviation of one and two periods. Only instances
where truck arrivals are changed are included. The number of proposed appointments is
close to the preferred arrival pattern. With an appointment system, fewer tasks arrive for
periods 4 to 6. In fact, tasks are forwarded and postponed to free resources for barges which
arrive at period 4. We also observe that the peak arrival at period 10 is smoothed out.
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Table 5.1: Delays of trucks, trains and barges at the terminal without an appointment system
(w/o) and with a truck appointment system with a maximum deviation of one (∆ = 1) and
two (∆ = 2) for 14, 12 and 10 available straddle carriers (SC)

1 2 3 4 5 6 7 8 9 10

Truck - sum of delays / deviations

w/o 0 4 0 0 0 0 0 4 1 0
14 SC ∆ = 1 0 4 0 0 0 0 0 4 1 0

∆ = 2 0 4 0 0 0 0 0 4 1 0

w/o 0 55 1 0 0 0 0 inf 63 inf
12 SC ∆ = 1 0 43 1 0 0 0 0 inf 102 132

∆ = 2 0 43 1 0 0 0 0 inf 102 190

w/o 0 275 247 26 0 115 129 inf 607 inf
10 SC ∆ = 1 0 214 165 25 0 48 66 inf inf inf

∆ = 2 0 204 139 25 0 48 66 inf 598 inf

Train - number of non-executed tasks

w/o 0 0 - 0 0 0 0 0 0 0
14 SC ∆ = 1 0 0 - 0 0 0 0 0 0 0

∆ = 2 0 0 - 0 0 0 0 0 0 0

w/o 0 0 - 0 0 0 0 inf 0 inf
12 SC ∆ = 1 0 0 - 0 0 0 0 inf 0 37

∆ = 2 0 0 - 0 0 0 0 inf 0 23

w/o 0 1 - 0 0 0 0 inf 2 inf
10 SC ∆ = 1 0 1 - 0 0 0 0 inf inf inf

∆ = 2 0 1 - 0 0 0 0 inf 9 inf

Barge - number of periods spent at the terminal

w/o - 4 - 6 4 - 2 - 3 -
14 SC ∆ = 1 - 4 - 6 4 - 2 - 3 -

∆ = 2 - 4 - 6 4 - 2 - 3 -

w/o - 4 - 6 4 - 2 inf 4 inf
12 SC ∆ = 1 - 4 - 6 4 - 2 inf 3 -

∆ = 2 - 4 - 6 4 - 2 inf 3 -

w/o - 6 - 6 4 - 2 inf 5 inf
10 SC ∆ = 1 - 4 - 6 4 - 2 inf inf inf

∆ = 2 - 4 - 6 4 - 2 inf 3 inf
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Figure 5.2: Preferred truck arrivals and proposed appointments

5.3.2 Results simulation model

The optimization model suggests that the use of an appointment system improves the per-
formance of the terminal. We use the simulation model presented in Section 4.3 to validate
this finding in a stochastic environment. We compare two cases: a realistic and an ideal
appointment system. For the realistic case, arrivals differ slightly from the planned appoint-
ments. We model truck arrivals as a non-stationary Poisson process with averages set to
the number of appointments obtained by the optimization model. For the ideal case, trucks
arrive evenly distributed within the period to which they are assigned. We impose truck
arrivals via a given schedule.

We run experiments only for those 8 instances where truck delays differ for terminals
with and without an appointment system for a maximum deviation of 2. We analyze three
scenarios with ±10%, ±30% and ±50% of variability of handling and traveling times of
straddle carriers. 1000 replications are executed for each instance. Table 5.2 shows the
results for cases without, with a realistic and with an ideal appointment system. It indicates
the average truck service time in minutes and the standard deviation, as well as average
delays of trains, barges and vessel.

The realistic appointment system reduces the average truck service time by approximately
14 minutes. Results of Student’s t-tests show that differences are statistically significant for
all variability levels with p-values of 0.044, 0.048 and 0.046, respectively. The standard
deviation is reduced by 50 to 60 percent. Truck arrivals are stochastic and the benefit
results from the possibility to forward or postpone truck arrivals to less busy periods.

In the ideal case, average truck service times decrease by 17 to 22 minutes. Results of
Student’s t-tests show that differences are statistically significant for all variability levels
with p-values of 0.015, 0.012 and 0.008, respectively. The standard deviation is reduced by
70 percent. The additional benefit comes from the fact that truck arrivals equal the number
of offered appointments and are evenly distributed over a time period; allocated resources
are used very efficiently.
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Table 5.2: Delays for terminals without, with realistic and with ideal truck appointment
systems for different levels of variability of straddle carriers traveling and handling times

10% variability 30% variability 50% variability
none realistic ideal none realistic ideal none realistic ideal

Truck service 32.86 19.40 15.64 34.82 21.00 16.00 40.33 25.57 18.30
time [min]
Std dev. 23.69 10.72 8.38 24.87 11.72 8.51 27.93 14.38 9.48

Train not 0.21 0.96 0.96 0.21 0.96 0.96 0.35 1.07 1.09
served [cont]
Std dev. 0.16 0.22 0.22 0.23 0.25 0.26 0.41 0.34 0.40

Barge not 0.00 0.01 0.07 0.01 0.05 0.13 0.24 0.39 0.68
served [cont]
Std dev. 0.03 0.09 0.20 0.12 0.23 0.37 0.66 0.90 1.16

Vessels not 2.92 3.17 3.49 6.22 6.53 6.96 17.63 18.03 18.63
served [cont]
Std dev. 4.27 5.12 5.35 6.11 7.23 7.42 8.46 9.86 9.92

For the realistic and ideal appointment system, the allocation of straddle carriers to
trains, barges and vessels is identical. Results differ slightly due to stochastic inputs. We
concentrate our analysis on the differences between the terminal without an appointment
system and the realistic case. The average train delay increases if the appointment system
is used. This results from the allocation plan proposed by the optimization which results in
10 non-executed tasks with an appointment system against 3 non-executed tasks without an
appointment system. Results of Student’s t-tests show that differences are not statistically
significant. The corresponding p-values are 0.455, 0.453 and 0.492, respectively.

Delays for barges are very similar for all cases, but seem to increase slightly if the ap-
pointment system is used. With an appointment system every barge is served as soon as
it enters the terminal. Due to stochastic arrivals barges may arrive delayed and straddle
carriers may remain unused at the beginning of the period. If the service of barges starts at
a later period, like it is the case for three instances without an appointment system, vari-
ability of arrivals do not result in unused capacity. Results of Student’s t-tests show that
differences are not statistically significant. The corresponding p-values are 0.261, 0.191 and
0.165, respectively.

For vessels, delays are very similar for all cases. Differences result from different alloca-
tions: the numbers of allocated straddle carriers are identical, but their distributions over
time differ. Results of Student’s t-tests show that differences are not statistically significant.
The corresponding p-values are 0.485, 0.771 and 0.813, respectively.

5.4 Conclusion

This chapter analyzed the impacts of a truck appointment system on delays of trucks as well
as trains, barges and vessels. We combined the straddle carrier allocation problem with the
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dimensioning of the truck appointment system since the number of appointments to offer
depends on the number of allocated straddle carriers.

We adapted the mixed integer model for the straddle carrier allocation problem to rep-
resent terminals using obligatory truck appointment systems. The objective is to simultane-
ously determine the number of truck appointments to offer and a straddle carrier allocation
to reduce overall delays at the terminal.

Experiments conducted via optimization and simulation for the container terminal at the
Grand Port Maritime de Marseille indicate that the truck appointment system may reduce
truck delays and also delays of trains, barges and vessels. The appointment system may
deviate truck arrivals to free resource for the other transport modes. Benefits for trucks may
be even higher than suggested by our comparison since they are aware of deviations a priori
and do not need to wait at the terminal.

Simulation results also show that precise information on truck arrivals reduces truck
delays and that the distribution of allocated straddle carriers over time has impacts on
delays. It may thus be beneficial to get some more insight on the impacts of the allocation
pattern on delays and to include these findings in the optimization model.
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PART II

Container relocation problem





Container terminals stack containers to use their scarce land efficiently. They use GPS
or RFID to keep track of exact container locations. The drawback of stacking is that only
the topmost container of each stack can be accessed directly. If another container has to
be retrieved, parasite movements are necessary to relocate blocking containers. Poor yard
management increases the number of relocations and the time needed to retrieve containers.
Thereby, it decreases the overall productivity of the terminal. Relocations cannot be avoided
completely as little information about future retrievals is known when a container has to be
stored.

This part presents our work on the container relocation problem where a set of containers
has to be retrieved in a given sequence with a minimum number of relocations. Existing
studies on the container relocation problem assume that the entire retrieval sequence is
known in advance. But, in reality container terminals have only limited information on future
retrievals, especially for containers picked up by trucks. Our final objective is to address a
dynamic version of the container relocation problem where information on future retrievals
is revealed over time. We first studied the static version to get a better understanding of
the problem. We then started working on the dynamic version, but many possibilities exist
to continue this work.

Chapter 6 introduces the container relocation problem (CRP), summarizes related stud-
ies and introduces bounds on the number of relocations. Chapter 7 presents and improves
an existing binary programming model. This model solves small and medium instances, but
is impractical for bigger instances. Chapter 8 presents an exact branch and price approach.
It formulates the master problem based on the binary model of the previous chapter. It also
describes different pricing subproblems (based on mixed integer programming and enumer-
ation) and the branching procedure. But, the exact subproblems do not generate columns
quickly. Chapter 9 presents a heuristic branch and price approach. It uses column genera-
tion with a heuristic subproblem and runs a heuristic repeatedly. Its objective is to obtain
good integer solutions rather than the optimal fractional solution. Chapter 10 deals with
a dynamic version of the problem where the retrieval sequence is revealed over time. It
presents and compares different relocation strategies for the dynamic case.
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Chapter 6

Container relocation problem (CRP)

This chapter introduces the container relocation problem. Section 6.1 gives some background
on yard optimization at container terminals and states the container relocation problem as
dealt with in academic literature. Section 6.2 summarizes related literature. Section 6.3
presents existing upper and lower bounds on the number of relocations and introduces a new
upper bound. Section 6.4 details instances that are used for experiments throughout the
next chapters.

6.1 Problem description

To decouple seaside and landside operations, incoming containers are not immediately loaded
on an outgoing vehicle, but stored in the yard for up to several days. Due to limited space,
terminals stack containers. Consequently, only the topmost container of each stack can
be accessed directly. If another container has to be retrieved, containers above have to
be relocated. These unproductive relocations (also called reshuffles or rehandles) should
be avoided since they increase the retrieval time and hence the overall performance of the
terminal. However, relocations cannot be avoided completely as little information about
future retrievals is known when a container has to be stored.

The number of relocations increases with the stacking height of containers and is therefore
a bigger issue at terminals using stacking cranes for storage operations. The yard of such a
terminal is illustrated in Figure 6.1. The yard is divided into different blocks. Each block
consists of several bays, each bay of several stacks and each stack of several tiers. Thanks to
new technologies, the terminal knows exactly at which position (block, bay, stack, tier) each
container is stored and which positions are empty.

Block B

Transfer point

Block 2 ...

Key:
Yard crane

Block 1

(a) A container yard

Stacks

Bays

Tiers

(b) A single block

Figure 6.1: Blocks, bays, stacks and tiers
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Figure 6.2: Container relocation problem

Decisions where to place containers are taken, when containers enter the terminal or
when they have to be relocated. Different academic problems have been extracted for yard
optimization: the storage space allocation problem to determine storage locations (a block
or a single position) for incoming containers; the remarshalling / premarshalling problem
to reorganize a block / a bay in less busy periods as new information becomes available
in order to reduce the number of relocations during the retrieval process; the container
relocation problem to retrieve all containers from a bay in a given sequence with a minimum
number of relocations.

We deal with the container relocation problem. In this case, the stowage plan of vessels
and the service order of trucks are known and impose the retrieval order of containers.
Generally, the storage layout does not match the retrieval order and containers have to be
relocated. Figure 6.2 illustrates the problem. The objective is to retrieve all containers in
the given sequence with a minimum number of relocations. Two variants of the problem
exist: all containers may be relocated or only containers above the current target container
may be relocated. The problem definition relies on assumptions A1 to A7 and may or may
not include assumption A8.

A1: The initial bay layout and precedence constraints among single containers or groups
of containers are known in advance.

A2: No new containers arrive during the retrieval process.

A3: Only the topmost container of a stack can be picked up. A relocated container can
only be put on the top of another stack or on the ground.

A4: Containers are only relocated within the bay since relocations between bays are very
time consuming.

A5: The bay size is limited by the maximum numbers of stacks and tiers.

A6: Containers in the same bay have the same size and can be piled up in any order.

A7: The distance traveled within one bay (horizontally and vertically) has little impact on
the time to relocate or to retrieve containers.

A8: Only blocking containers located above the current target container may be relocated.
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Like most other studies, we address the container relocation problem with precedence
constraints among single containers and relocate only containers above the target container
(A8). We call these containers blocking containers. We use the notation introduced by
Caserta et al. (2012) to represent the container relocation problem. A bay consists of W
stacks and H tiers. Each slot within the bay is addressed with coordinates (i, j) where
i ∈ {1, . . . ,W} and j ∈ {1, . . . , H}. The initial configuration contains N containers, labeled
1, . . . , N . Containers have to be retrieved in ascending order, e.g. container 1 is the first one
to be retrieved and container N the last one. At each time period t (t = 1, . . . , T ), container
n = t is retrieved and any blocking containers are relocated.

6.2 Related literature

We provide an overview of studies dealing with the container relocation problem. The
problem is NP-hard (Caserta et al. (2012)) and few exact and several heuristic solution
approaches exist. For a broader review of literature on yard optimization refer to Caserta,
Schwarze and Voß (2011).

Lee and Hsu (2007) present different integer linear programming models based on a multi-
commodity flow problem with a set of side constraints for several stacking problems including
the container relocation problem. Caserta et al. (2012) present two binary programming
models for the problem with and without assumption A8. The models contain state variables
to represent the bay layout and movement variables to represent retrievals and relocations of
containers. They also propose a simple heuristic based on the computation of a stack score.
Petering and Hussein (2013) introduce a formulation with fewer decision variables for the
problem without assumption A8. Binary variables indicate the stack in which a container
is in and real variables its relative position to the top of this stack. They also adapt the
heuristic above to the case without assumption A8. Tang et al. (2012) deal with the plate
shuffling problem which is identical to the container relocation problem except that steel
plates are relocated instead of containers. Binary variables indicate the stack in which a
container is in, if two plates are in the same stack and if one plate is above another one.
They minimize the number of relocations and the traveled crane distance. They present a
tabu search to solve the problem.

Kim and Hong (2006) study the problem with priorities among single containers and
among groups of containers. They use a branch and bound algorithm that branches over
all bay layouts that may be reached by retrieving one container and relocating containers
above. They determine the expected number of additional relocations based on probabilities
of container relocations. They propose a heuristic relocating containers based on this value.
Wu and Ting (2010) apply different branch and bound based heuristics using different simple
relocation strategies. Ünlüyurt and Aydin (2012) aim to minimize the number of relocations
and the horizontally traveled distance. They apply a branch and bound approach and
existing heuristics to solve the problem.

Zhang et al. (2010) present an iterative deepening A* algorithm (IDA*) and introduce
lower bound measures. Zhu et al. (2012) extend IDA* to the case without assumption A8.
Forster and Bortfeldt (2012) present a tree search procedure for the problem without assump-
tion A8. Their approach is based on a classification of feasible moves, a greedy approach
to find an initial solution, a lower bound for the number of moves and a branching scheme.
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Rei and Pedroso (2012) study the scalability of an exact approach to this problem and pro-
pose two heuristic methods: a multiple simulation algorithm using semi-greedy construction
heuristics and a stochastic best-first tree search algorithm.

Wu et al. (2009) use tabu-search with a one-dimensional vector to represent relocations
and retrieval operations. Two simple heuristics are used to generate the initial solution
and two move operators are applied to obtain neighborhood solutions. Caserta, Voß and
Sniedovich (2011) use a corridor method which reduces the exponentially large number of
possible states by adding exogenous constraints to limit the number of possible relocations.
A dynamic programming scheme is then applied to the restricted solution space.

Caserta et al. (2009) and Caserta and Voß (2009) present two random based procedures.
For each container to be relocated, they define a neighborhood representing reachable bay
configurations. A greedy score is calculated for each configuration and a roulette-wheel mech-
anism selects the next configuration with its associated move. Caserta et al. (2009) propose
a binary description of the problem and apply this random based procedure. Caserta and
Voß (2009) use the corridor method to define the neighborhood of the current configuration
within the random based procedure.

6.3 Bounds on the number of relocations

This section presents existing upper and lower bounds on the number of relocations needed
to clear the bay. The upper bound (UB) is obtained via a heuristic and the lower bound (LB)
from the initial bay layout. Based on these bounds, we introduce an optimality criterion and
a new upper bound (Rt

max,1) limiting the maximum number of relocations per period.

Upper bound on the number of relocations The heuristic introduced by Caserta et al.
(2012) uses stack scores s(i) for i = 1 to W to decide into which stack i∗ a container should
be relocated to. Score s(i) indicates the first container that has to be retrieved from stack i.
Scores are computed according to Equation (6.1).

s(i) =

{

min(n) | n placed in stack i if at least one container is in stack i,

N + 1 if stack i is empty.
(6.1)

The heuristic chooses stack i∗ where container n should be relocated to according to
Equation (6.2). It prefers to put container n into a stack with s(i) > n. This does not cause
an additional relocation since container n has to be retrieved prior to all other containers
in stack i. If several stacks with s(i) > n exist, the container is relocated to the stack with
the smallest s(i) > n since stacks with large s(i) are valuable. If no stack i with s(i) > n
exists, the container causes an additional relocation in subsequent periods. It is put into
stack i with maximum s(i) to be relocated again as late as possible. Their heuristic makes
sure that containers are not relocated into the stack from which they have been retrieved.
But, it seems to neglect the fact that some stacks may already be full and cannot receive
containers. We introduce set W ⊂ {1, . . . ,W} to describe the set of stacks where containers
can be relocated to. It contains only stacks other than the retrieval stack that have at least
one empty position.
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i∗ =

{

argmini∈W {s(i)|s(i) > n} if ∃i with s(i) > n,

argmaxi∈W {s(i)} otherwise.
(6.2)

Algorithm 6.1 presents the complete heuristic. In the sequel, we refer to this heuristic
as Heuristic HC. At each period t, only containers above the target container may be
relocated. The heuristic relocates these containers starting from the topmost container to
the container just above the target container. This ensures that the LIFO order is respected.
It relocates every relocation container n to its target stack i∗ and updates the stack score
s(i∗) and the setW . If the current target container is accessible, it is retrieved and the stack
score updated. The heuristic stops if all containers are retrieved and returns the number of
executed relocations.

Algorithm 6.1 Heuristic HC for the container relocation problem
Input: a bay layout
Output: a solution for the container relocation problem

nb_relocations ← 0
for i = 1 to W do

determine s(i) using Equation (6.1)
end for
for t = 1 to T do

determine W
while ∃ container above target container do

n ← topmost relocation container
determine i∗ for n using Equation (6.2)
relocate container n to stack i∗

nb_relocations ← nb_relocations +1
s(i∗) ← min {s(i∗), n}
update W

end while
retrieve target container from s′

determine s(i′) using Equation (6.1)
end for
return nb_relocations and executed retrievals and relocations

Figure 6.3 applies Heuristic HC to an example with 6 containers. Figures 6.3a to 6.3f
present bay layouts at periods t = 1 to t = 6. They also indicate retrievals and relocations
executed by Heuristic HC. The heuristic executes 5 relocations to retrieve containers 1 to 6
from the bay.

Zhu et al. (2012) improve Heuristic HC by introducing an additional criterion. It applies
if the following three conditions are fulfilled: at least two containers n1 and n2 have to be
relocated, exactly one stack i exists with n1 < s(i) < n2 that has exactly one empty tier,
and s(j) < n1 for all stacks j 6= i. If container n2 has to be relocated first, Heuristic HC
relocates it to stack i. Stack i is then full and container n1 has to be relocated to a stack sj
with sj < n1. This causes an additional relocation in a later period. The improved heuristic
keeps stack s(i) free for container n1 and relocates container n2 to stack j 6= i with maximal
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s(j). Container n1 can then be relocated to stack i with s(i) < n1 and does not cause
additional relocations in later periods.

Figure 6.4 illustrates the benefit on the previous example. The improved heuristic re-
locates containers 3 and 5 differently at period 1 and applies the same relocation rules for
periods 2 to 6. Container 3 is never relocated and the heuristic needs only 4 relocation -
one less than Heuristic HC - to retrieve containers 1 to 6 from the bay. Zhu et al. (2012)
compared the performance of both heuristics on 12 500 instances with different bay sizes.
The average number of relocations over all instances is reduced by around 1% from 33.36 to
33.07.

Lower bound on the number of relocations Zhang et al. (2010) introduced lower
bound LB. It is computed from the initial bay layout with the help of LBt and LBt+. LBt

represents the minimum number of relocations needed to retrieve container t. It counts
how many containers n > t are located above container t in the initial bay layout. LBt+

represents the minimum number of additional relocations caused in subsequent periods by
relocations in period t. It counts how many containers n have to be relocated to a stack
containing containers n′ < n. Once a container is relocated, we have no information on its
position and it cannot be considered in subsequent periods. LB equals the sum of LBt and
LBt+ over all periods t. Algorithm 6.2 illustrates how to compute LB from the initial bay
layout.

Algorithm 6.2 Determine LB via LBt and LBt+

Input: a bay layout
Output: a lower bound LB on the number of relocations

LB ← 0
for t = 1 to T do
LBt ← number of containers placed above container t
LBt+ ← number of additional relocations caused by relocating containers n

to stacks with ∃ n′ < n
delete container t and its blocking containers from the bay
LB ← LB +LBt + LBt+

end for
return LB

Figure 6.5 illustrates the computation of LBt, LBt+ and LB. To retrieve container 1,
containers 3 and 5 have to be relocated and we obtain L1 = 2. Container 5 can be relocated
to stack 1 above container 2 or to stack 2 above containers 4 and 6. In both cases, it has
to be relocated again when container 2 or 4 is retrieved. Container 2 can be put on stack 2
without causing additional relocations since it is retrieved before containers 4 and 6. We
obtain LB1+ = 1. No containers are placed above container 2 and we set LB2 = 0 and
LB2+ = 0. Container 3 is already deleted from the bay due to its relocation in t = 1 and we
set LB3 = 0 and LB3+ = 0. The values for the remaining LBt and LBt+ are calculated in
the same way. We obtain LB = 4 which indicates that at least 4 relocations are necessary
to retrieve all containers from the bay.

Tang et al. (2012) improve this lower bound by including the number of empty tiers.
When computing LBt+, we only checked if at least one stack with s(i) > n exists. They
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Figure 6.5: Computation of lower bounds LBt, LBt+ and LB

check if the number of empty positions in stacks i with s(i) > n is sufficient to take all
relocations containers n′ > n. If not, LBt+ is adapted accordingly.

Optimality criterion If Constraint (6.3) holds, the lower bound equals the upper bound
and the heuristic solution UB is optimal.

UB =
T
∑

t=1

LBt +
T
∑

t=1

LBt+ (6.3)

Upper bound on the number of relocations per period We introduce a new upper
bound Rt

max,1. It is used to improve an existing upper bound on the global number of
relocations. In this case, Rt

max,1 represents the maximum number of relocations per period t
for which a solution with UB - 1 relocations may exist. It is defined by Equation (6.4).

Rt
max,1 = UB − 1−

t−1
∑

k=1

LBk −
T
∑

k=t+1

LBk −
T
∑

k=t

LBk+ ∀t = 1, . . . , T (6.4)

Proof. For each instance, we can compute a global upper bound UB (e.g., via Heuristic HC)
and lower bounds LBt and LBt+ for each period t = 1 to T . We know that UB = LB + K
with K ≥ 0. If a solution with UB - 1 relocations exists, UB - 1 = LB + K ′ with K ′ = K−1
and K ′ ≥ 0 holds. Hence,

UB − 1 =
T
∑

k=1

LBk +
T
∑

k=1

LBk+ +K ′ ⇔ K ′ = UB − 1−
T
∑

k=1

LBk −
T
∑

k=1

LBk+ (6.5)

Rt
max,1 defines an upper bound on the number of relocations in period t. The following

relocations may be executed in period t: sure relocations LBt, indirect relocations LBt′+

of earlier periods and these K ′ relocations on which we have no further information. This
defines Rt

max,1 as follows

Rt
max,1 = LBt +

t−1
∑

k=1

LBk+ +K ′ ∀t = 1, . . . , T (6.6)
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Combining Equations (6.5) and (6.6) leads to Equation (6.4).

Rt
max,1 = LBt +

t−1
∑

k=1

LBk+ +

(

UB − 1−
T
∑

k=1

LBk −
T
∑

k=1

LBk+

)

= UB − 1 + LBt −
T
∑

k=1

LBk +
t−1
∑

k=1

LBk+ −
T
∑

k=1

LBk+

= UB − 1−
t−1
∑

k=1

LBk −
T
∑

k=t+1

LBk −
T
∑

k=t

LBk+ ∀t = 1, . . . , T

We illustrate the computation of Rt
max,1 on the previous example. Heuristic HC obtained

a solution with 5 relocations and we set UB = 5. Values of lower bounds LBt and LBt+ are
reported in Figure 6.5. We obtain the following values:

– R1
max,1 = 5− 1− 0− 1− 1 = 2 for t = 1,

– R2
max,1 = 5− 1− 2− 1− 0 = 1 for t = 2,

– R3
max,1 = 5− 1− 2− 1− 0 = 1 for t = 3,

– R4
max,1 = 5− 1− 2− 0− 0 = 2 for t = 4,

– R5
max,1 = 5− 1− 3− 0− 0 = 1 for t = 5,

– R6
max,1 = 5− 1− 3− 0− 0 = 1 for t = 6.

6.4 Instances

Caserta, Voß and Sniedovich (2011) introduce instances1 that are commonly used to compare
different solution methods for the container relocation problem (e.g., Caserta et al.; 2009;
Caserta, Voß and Sniedovich; 2011; Caserta et al.; 2012; Forster and Bortfeldt; 2012; Petering
and Hussein; 2013; Zhu et al.; 2012). Each instance specifies the size of the bay - width W x
height H - and the initial position of N containers with priorities 1 to N . All stacks contain
the same number of containers S and the two topmost positions of every stack are empty
S = H−2. Consequently N = W x S containers are placed in the bay. They provide 21 sets
of instances for different bay sizes with 40 instances per set. Thus, a total of 840 instances.

Table 6.1 provides some indicators to evaluate the difficulty of these instances. It displays
the average values for the lower bound LB and the upper bound UB presented in Section 6.3.
It also indicates the average gap between the lower and the upper bound and the number of
trivial instances where the upper bound equals the lower bound.

Gaps between lower and upper bounds depend mainly on stack height S and remain
similar for different bay widths W . Bounds are tight for small and medium instances: the

1Instances can be downloaded from http://iwi.econ.uni-hamburg.de/IWIWeb/GetDocument.aspx?

documentid=1468
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Table 6.1: Information on instances from Caserta et al. (2012)

Set S-W N Avg. LB Avg. UB Avg. gap Nb. trivial

3-3 9 4.7 5.1 0.4 27
3-4 12 5.9 6.3 0.5 26
3-5 15 6.8 7.1 0.3 28
3-6 18 8.3 8.5 0.2 36
3-7 21 9.1 9.3 0.2 33
3-8 24 10.5 10.7 0.3 32
4-4 16 9.4 11.0 1.6 8
4-5 20 12.2 13.6 1.4 11
4-6 24 13.2 14.7 1.5 11
4-7 28 15.2 16.9 1.7 9
5-4 20 13.6 16.8 3.2 4
5-5 25 17.0 21.2 4.2 1
5-6 30 20.1 24.3 4.2 2
5-7 35 22.4 26.3 3.9 5
5-8 40 25.6 29.6 4.0 4
5-9 45 28.5 32.4 3.8 3
5-10 50 31.4 35.5 4.2 2
6-6 36 27.0 35.9 9.0 0
6-10 60 41.5 49.9 8.3 2
10-6 60 56.6 101.3 44.7 0
10-10 100 84.1 139.3 55.2 0

average gap is smaller than 1 for S = 3, smaller than 2 for S = 4 and smaller than 5 for
S = 5. It is less tight for bigger instances: smaller than 9 for S = 6 and smaller than 56
for S = 10. For 244 instances, the lower bound equals the upper bound and the solution of
Heuristic HC is optimal. The heuristic performs especially well for wide and low bays, but
the solution quality decreases as the bay gets higher or narrower.

The number of relocations increases with the number of containers in the bay (e.g., 3-3
vs 3-8, 4-4 vs 4-7). For the same number of containers, more relocations occur for narrow
and high bays than for wide and low bays (e.g., 3-8 vs 4-6 vs 5-5). For wide bays, it is likely
to be able to place relocation containers into stacks containing only containers with lower
priorities. For narrow bays, this is less likely. The difficulty of an instance increases with the
stack height, the percentage of occupied slots and the number of containers placed above
containers with higher priorities; and that it decreases with the width of the bay.

Page 88 EMSE-CMP Elisabeth Zehendner



Chapter 7

Binary integer program for CRP

This chapter presents a binary integer programming model for the container relocation prob-
lem relocating only blocking containers. Section 7.1 reports the model introduced by Caserta
et al. (2012) and discusses two errors in their formulation. Section 7.2 presents our reformu-
lation of their model which corrects the errors and reduces the number of variables. It also
presents a preprocessing mechanism to fix several variables and introduces cuts. Section 7.3
presents computational results for the reformulated model with and without preprocessing
and cuts. These results illustrate the benefits of the preprocessing step. Section 7.4 concludes
the chapter.

7.1 Model from Caserta et al.

Caserta et al. (2012) identify two sets of binary variables: configuration variables and move-
ment variables. Configuration variables bijnt represent the layout of the bay over time.
Parameters bijn1 with t = 1 represent the initial bay layout. Movement variables yijnt and
xijklnt represent container retrievals and relocations. Binary parameters vnt indicate if a
container is in the bay or already retrieved.

bijnt =

{

1 if container n is at position (i, j) at the beginning of period t,

0 otherwise;

xijklnt =

{

1 if container n is relocated from position (i, j) to (k, l) in period t,

0 otherwise;

yijnt =

{

1 if container n is retrieved from position (i, j) in period t,

0 otherwise;

vnt =

{

0 if container n is in the bay at the beginning of period t (n ≥ t),

1 otherwise (n < t).

These variables and parameters are used to formulate the problem.

W
∑

i=1

H
∑

j=1

W
∑

k=1

H
∑

l=1

N
∑

n=1

T
∑

t=1

xijklnt

s.t.
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W
∑

i=1

H
∑

j=1

bijnt + vnt = 1

∀n = 1, . . . , N, t = 1, . . . , T

(7.1)

N
∑

n=1

bijnt ≤ 1

∀i = 1, . . . ,W, j = 1, . . . H, t = 1, . . . , T

(7.2)

N
∑

n=1

bijnt ≥
N
∑

n=1

bij+1nt

∀i = 1, . . . ,W, j = 1, . . . H − 1, t = 1, . . . , T

(7.3)

bijnt+1 = bijnt +
W
∑

k=1

H
∑

l=1

xklijnt −
W
∑

k=1

H
∑

l=1

xijklnt − yijnt

∀i = 1, . . . ,W, j = 1, . . . H, n = 1, . . . , N, t = 1, . . . , T − 1

(7.4)

vnt =
W
∑

i=1

H
∑

j=1

t−1
∑

t′=1

yijnt′

∀n = 1, . . . , N, t = 1, . . . , T

(7.5)

1−
N
∑

n=1

xijklnt ≥
N
∑

n=1

H
∑

j′=j+1

H
∑

l′=l+1

xij′kl′nt

∀i = 1, . . . ,W, j = 1, . . . H, k = 1, . . . ,W, l = 1, . . . H, t = 1, . . . , T − 1

(7.6)

M ·

(

1−
H
∑

j=1

bijtt

)

≥
H
∑

j=1

W
∑

k=1

H
∑

l=1

N
∑

n=1

(

i−1
∑

i′=1

xi′jklnt +
W
∑

i′′=i+1

xi′′jklnt

)

∀i = 1, . . . ,W, t = 1, . . . , T

(7.7)

xijilnt = 0

∀i = 1, . . . ,W, j = 1, . . . H, l = 1, . . . H, n = 1, . . . , N, t = 1, . . . , T
(7.8)

xijklnt ∈ {0, 1}

∀i = 1, . . . ,W, j = 1, . . . H, k = 1, . . . ,W, l = 1, . . . H, n = 1, . . . , N,

t = 1, . . . , T

(7.9)

yijnt ∈ {0, 1}

∀i = 1, . . . ,W, j = 1, . . . H, n = 1, . . . , N, t = 1, . . . , T
(7.10)

bijnt ∈ {0, 1}

∀i = 1, . . . ,W, j = 1, . . . H, n = 1, . . . , N, t = 2, . . . , T
(7.11)
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The objective function minimizes the total number of relocations. Constraint (7.1) im-
poses that each container is either within the bay or retrieved. Constraint (7.2) makes sure
that each position (i, j) may be occupied by at most one container. Constraint (7.3) pre-
vents gaps within stacks. This makes sure that containers at positions (i, j′) with j′ > j are
relocated if a container is retrieved from position (i, j) and that no containers are relocated
to suspended positions. Constraint (7.4) ensures the consistency of the bay over time. It
links the layout at period t with the layout at period t + 1 via the executed retrieval and
relocations. Constraint (7.5) makes sure that container n = t is retrieved from the bay in
period t.

Constraint (7.6) is supposed to impose the LIFO order among two or more relocation
containers. It makes sure that container n cannot be stacked below container n′ after the
relocation, if container n was stacked below container n′ before the relocation. But, this
constraint is over-restrictive and makes it impossible to relocate two containers to the same
stack. Consider the case where no container is relocated from position (i, j) to position
(k, l) in period t. Then,

∑N

n=1 xi,j,k,l,n,t on the left hand side of the constraint equals 0.
Constraint (7.12) displays the resulting constraint which imposes that at most one container
may be relocated from a position above (i, j) to a position above (k, l). But, it has to be
possible to relocate two containers to the same stack if they respect the LIFO order.

1 ≥
N
∑

n=1

H
∑

j′=j+1

H
∑

l′=l+1

xij′kl′nt ∀i, j, k, l, t|
N
∑

n=1

xijklnt = 0 (7.12)

Constraint (7.7) limits relocations to containers stored in the same stack as the retrieval
container. However, it does not impose that only containers above the target container are
relocated (nor does any other constraint). Consequently, assumption A8 limiting relocations
to blocking container is not represented in their model. Constraint (7.8) reduces the number
of variables by excluding variables that relocate containers into the stack from which they
have been retrieved. Constraints (7.9) to (7.10) define the binary variables.

7.2 Model improvements

This section presents our reformulation of their model. It corrects the errors of the previous
model, removes superfluous variables, presents a preprocessing step to fix several variables
and cuts based on upper bounds on the number of relocations.

7.2.1 Reformulation

We formulate constraints to represent the LIFO order among several retrieval containers and
assumption A8 correctly. We replace Constraint (7.6) by Constraint (7.13) which allows M
relocations if

∑N

n=1 xijklnt = 0 and imposes the LIFO constraint otherwise. We set M to
H − 1 since the maximum number of relocations per period is limited by the bay height and
equals H − 1.

M ·

(

1−
N
∑

n=1

xijklnt

)

≥
N
∑

n=1

H
∑

j′=j+1

H
∑

l′=l+1

xij′kl′nt ∀i, j, k, l, t (7.13)
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We replace Constraint (7.7) by Constraints (7.14) and (7.15). Constraint (7.14) forbids
all relocations out of stacks other than the stack containing the target container; Con-
straint (7.15) forbids all relocations out of positions below the target container. Adding M
with M = H − 1 makes sure that these constraints are not over-restrictive.

M ·
H
∑

j=1

yijtt ≥
H
∑

j=1

W
∑

k=1

H
∑

l=1

N
∑

n=t+1

xijklnt ∀i, t (7.14)

M · yijtt +

j
∑

j′=1

W
∑

k=1

H
∑

l=1

N
∑

n=t+1

xij′klnt ≤M ∀i, j, t (7.15)

The model may be improved further by removing unnecessary variables and constraints.
We know that at each period t = 1, . . . , T container n = t has to be retrieved. This implies
that at the beginning of period t, only containers n = t, . . . , T are in the bay and that only
containers n = t + 1, . . . , T may be relocated. We define variables yijnt only for n = t,
variables bijnt only for n ≥ t and variables xijklnt only for n > t. In addition, period T may
be excluded from the model since the only remaining container has to be retrieved and no
relocations may occur. We use variables yijnt to impose that container n = t is retrieved
at period t and get rid of parameters vnt and Constraints (7.1) and (7.5) used for the same
purpose. Containers may only be relocated from above the target container. Hence, no
relocations from tier 1 may occur and we dismiss variables xi1klnt with j = 1. The modified
model is presented below.

W
∑

i=1

H
∑

j=2

W
∑

k=1

H
∑

l=1

T−1
∑

t=1

N
∑

n=t+1

xijklnt

s.t.

N
∑

n=t

bijnt ≤ 1

∀i = 1, . . . ,W, j = 1, . . . H, t = 1, . . . , T − 1

(7.16)

N
∑

n=t

bijnt ≥
N
∑

n=t

bij+1nt

∀i = 1, . . . ,W, j = 1, . . . H − 1, t = 1, . . . , T

(7.17)

bijnt+1 = bijnt +
W
∑

k=1

H
∑

l=2

xklijnt −
W
∑

k=1

H
∑

l=1

xijklnt

∀i = 1, . . . ,W, j = 1, . . . H, t = 1, . . . , T − 1, n = t+ 1, . . . , N

(7.18)

bijnt − yijtt = 0

∀i = 1, . . . ,W, j = 1, . . . H, t = 1, . . . , T − 1, n = t
(7.19)
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W
∑

i=1

H
∑

j=1

yijtt = 1

∀t = 1, . . . , T − 1

(7.20)

M ·

(

1−
N
∑

n=t+1

xijklnt

)

≥
N
∑

n=t+1

H
∑

j′=j+1

H
∑

l′=l+1

xij′kl′nt

∀i = 1, . . . ,W, j = 2, . . . H − 1, k = 1, . . . ,W, l = 1, . . . H − 1,

t = 1, . . . , T − 1

(7.21)

M ·
H
∑

j=1

yijtt ≥
H
∑

j=2

W
∑

k=1

H
∑

l=1

N
∑

n=t+1

xijklnt

∀i = 1, . . . ,W, t = 1, . . . , T − 1

(7.22)

M · yijtt +

j
∑

j′=2

W
∑

k=1

H
∑

l=1

N
∑

n=t+1

xij′klnt ≤M

∀i = 1, . . . ,W, j = 3, . . . H, t = 1, . . . , T − 1

(7.23)

xijilnt = 0

∀i = 1, . . . ,W, j = 2, . . . H, l = 1, . . . H, t = 1, . . . , T − 1, n = t+ 1, . . . , N
(7.24)

xijklnt ∈ {0, 1}

∀i = 1, . . . ,W, j = 2, . . . H, k = 1, . . . ,W, l = 1, . . . H, t = 1, . . . , T − 1,

n = t+ 1, . . . , N

(7.25)

yijtt ∈ {0, 1}

∀i = 1, . . . ,W, j = 1, . . . H, t = 1, . . . , T − 1
(7.26)

bijnt ∈ {0, 1}

∀i = 1, . . . ,W, j = 1, . . . H, t = 1, . . . , T, n = t, . . . , N
(7.27)

The objective function minimizes the total number of relocations. Constraints (7.16) and
(7.17) adapt Constraints (7.2) and (7.3) to the reduced number of variables. They make sure
that every position is occupied by at most one container and prevent gaps within stacks.
Constraint (7.4) is split into Constraints (7.18) and (7.19) since variables yijnt and xijklnt are
defined for different time periods. They link the bay layout from one period to the next.
Constraint (7.21) imposes the LIFO order. Constraints (7.22) and (7.23) limit relocations to
containers placed above the target container1. Constraint (7.24) is unchanged and forbids
relocations to the stack from which containers are retrieved. Constraints (7.25) to (7.27)
define the reduced variable domains of binary variables.

Table 7.1 roughly compares the size of the initial and the reformulated model. It indicates
the number of variables and constraints depending on the bay width W , the bay height H

1A tighter possiblity to limit relocations to blocking containers is
∑W

k=1

∑H

l=1

∑N

n=t+1
xijklnt ≤

∑j−1

j′=1
yij′tt ∀i = 1, . . . ,W, j = 2, . . . H, t = 1, . . . , T − 1. The results presented in the sequel, however,

are for the model with Constraints (7.22) and (7.23)
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Table 7.1: Size of the initial and the reformulated model

BIP from Caserta et al. (2012)

Inst H W N yijnt bijnt xijklnt Constraints∗1

S-W W ·H ·N2 W ·H ·N2 W 2 ·H2 ·N2

3-3 5 3 9 1 215 1 215 18 225 3 699
3-8 10 8 24 46 080 46 080 3 686 400 204 864
4-4 6 4 16 6 144 6 144 147 456 16 704
4-7 9 7 28 49 392 49 392 3 111 696 165 816
5-4 6 4 20 9 600 9 600 230 400 22 960
5-10 12 10 50 300 000 300 000 36 000 000 1 037 500
6-6 8 6 36 62 208 62 208 2 985 984 151 416
10-10 12 10 100 1 200 000 1 200 000 144 000 000 2 685 000
∗1Constraints: 2 ·N2 +W ·N + 2 ·W ·H ·N +W ·H ·N2 +W 2 ·H2 ·N

Reformulated BIP

Inst H W N yijnt bijnt xijklnt Constraints∗2

S-W W ·H ·N W ·H ·N2/2 W 2 ·H2 ·N2/2

3-3 5 3 9 135 608 9113 3209
3-8 10 8 24 1 920 23 040 1 843 200 184 536
4-4 6 4 16 384 3 072 73 728 13 904
4-7 9 7 28 1 764 24 696 1 555 848 143 108
5-4 6 4 20 480 4 800 115 200 18 340
5-10 12 10 50 6 000 150 000 18 000 000 894 550
6-6 8 6 36 1 728 31 104 1 492 992 121 212
10-10 12 10 100 12 000 600 000 72 000 000 2 089 100
∗2Constraints: N +W ·N + 4 ·W ·H ·N +W ·H ·N2/2 +W 2 ·H2 ·N

and the number of containers N . Remember that T = N and H = S + 2. It illustrates
the resulting problem size for different instances. For both models, the number of variables
increases faster than the number of constraints. The initial model uses approximately T
times as many variables yijnt and approximately twice as many variables bijnt and xijklnt

than the reformulated model. It needs approximately T (2T − 1)+W ·H ·T (1/2T − 2) more
constraints.

7.2.2 Preprocessing

We use information provided by the initial layout to fix several variables xijklnt and bijnt to
zero or one. We use (in, jn) to refer to the initial position of container n. Let πn be the
period when container n is removed from its initial position for the first time. Since only
blocking containers may be relocated, this happens either when the container is retrieved or
when it is relocated to free a target container beneath. Let π(i,j) be the period when position
(i, j) is empty for the first time. Either the positon is empty in the initial layout or when the
container initially located there is removed. Equations (7.28) and (7.29) define parameters πn
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π(1,5) 1

Figure 7.1: Preprocessing: computation of πn and π(i,j)

and π(i,j) accordingly. Figure 7.1 illustrates the computation of πn and π(i,j) on an example.
It displays the initial positions of containers 1 to 4 in stack 1 and the resulting values for π1

to π4 and π(1,1) to π(1,5).

πn = minn′ | n′ is placed at any position (in, 1) to (in, jn) (7.28)

π(i,j) =

{

πn + 1 if container n is placed at position (i, j),

1 if position (i, j) is empty
(7.29)

With the knowledge of the initial position (in, jn) for each container n and the information
provided by πn and π(in,jn) we may fix the following variables:

– Container n is not relocated prior to period πn and only from position (in, jn) in
period πn:
xijklnt = 0 ∀n, i, j, k, l, t < πn

xijklnt = 0 ∀n, i 6= in, j 6= jn, k, l, t = πn

– Container n is at position (in, jn) and nowhere else until period πn:
binjnnt = 1 ∀n, in, jn, t ≤ πn

bijnt = 0 ∀n, i 6= in, j 6= jn, t ≤ πn

– No container n′ may be relocated to position (in, jn) prior to period π(in,jn) since it
already contains container n:
xijinjnn′t = 0 ∀n, n′, i, j, in, jn, t < π(in,jn)

– If πn = n, container n is never relocated and retrieved from its initial position (in, jn).
In this case, only containers in stack in and above jn may be relocated in period πn:
xijklnt = 0 ∀n, i 6= in, j, t = πn|n = πn

xinjklnt = 0 ∀n, in, j ≤ jn, t = πn|n = πn

– If πn = n, we know that position (in, jn) and all positions above have to be empty in
period n+ 1:
bin,jnt = 0 ∀n, in, j ≥ jn, t = πn + 1|n = πn

We may fix further variables by using the fact that at each period exactly one container
is retrieved. Consequently, the number of containers remaining in the bay at the beginning
of period t is given by Nt = N + 1 − t. The number of containers in the bay limits the
maximum stack height:

10/2013 EMSE-CMP Page 95



CHAPTER 7. BINARY INTEGER PROGRAM FOR CRP

– At period t, tiers at height h > Nt may not be occupied:
bijnt = 0 ∀t, i, j > Nt

– At period t, relocation containers can only be retrieved from tiers h ≤ Nt:
xijklnt = 0 ∀t, i, j > Nt, k, l, n

– At period t, relocation containers can only be put into tiers h ≤ N(t+1) = Nt − 1:
xijklnt = 0 ∀t, i, j, k, l > Nt − 1, n

7.2.3 Cuts

We use the upper bounds presented in Section 6.3 to add cuts to the binary programming
model. UB represents the solution of Heuristic HC. Rt

max,1 the maximum number of relo-
cations for period t to be able to obtain a solution better than UB.

W
∑

i=1

H
∑

j=2

W
∑

k=1

H
∑

l=1

N
∑

n=t+1

xijklnt ≤ Rt
max,1 ∀t = 1, . . . , T − 1 (7.30)

W
∑

i=1

H
∑

j=2

W
∑

k=1

H
∑

l=1

T−1
∑

t=1

N
∑

n=t+1

xijklnt ≤ UB − 1 (7.31)

7.3 Model comparison

Unfortunately, we cannot compare our binary programming model with other models from
literature. They either represent a slightly different problem (Caserta et al. (2012), Petering
and Hussein (2013)) or run experiments on different instances (Tang et al. (2012)). Instead,
this section evaluates the benefits of the preprocessing step and of cuts. It compares the
optimal solution of different models as well as the lower bound of their linear relaxations.
Linear relaxations are also compared against the lower bound LB obtained from the initial
bay layout. We compare the following models:

– Reformulated model (BIP1): model presented in Section 7.2.1;

– Reformulated model with preprocessing (BIP2): identical to BIP1 with prepro-
cessing to fix variables xijklnt and bijnt if possible;

– Reformulated model with preprocessing and cuts (BIP3): identical to BIP2
with additional cuts limiting the number of relocations.

Experiments are carried out on a computer with Intel(R) Xeon(R) CPU clocked at
2.67GHz (dual core), 3.48GB RAM and operating with Windows XP Professional. We
use Cplex 12.1 to solve the binary programming models and their linear relaxations. Ex-
periments are run for the instances presented in section 6.4. We limit the run time to 60
minutes per instance.

Table 7.2 shows the results for BIP1 to BIP3 in an aggregate way for instance sets 3-3 to
5-6. It indicates the number of trivial and non-trivial instances per set. For all three models,
it displays the number of trivial and non-trivial instances that were solved to optimum and
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Figure 7.2: Two fractional solutions indicating container locations and values of variables
bijnt > 0 (in brackets)

average solution times for solved instances. It also displays the number of instances that
could not be solved because of time or memory limits. Results for instances 5-7 to 10-10 are
not displayed since all models run out of memory.

Results show that BIP2 and BIP3 outperform BIP1 by far. Solution times are decreased
by 8% for smaller instances to 99% for bigger instances. BIP2 and BIP3 also solve more
instances of sets 4-5 to 5-4 and bigger instances of sets 5-5 and 5-6. The reason is that fewer
instances are aborted because of time or memory limits. BIP2 and BIP3 perform similarly
with regard to the number of solved instances and solution times. These results show that
the preprocessing step fixing several variables is very effective. The added cuts have no
impact, since Constraint (7.22) already limits the number of relocations per period to M .
For all sets (except set 5-5 with one trivial instance), trivial instances are solved faster than
non-trivial instances. But, they are not solved immediately. It is hence beneficial to check
if the heuristic solution is optimal before starting the solution process. This check can be
done with the optimality criterion presented in Section 6.3.

When relaxing binary conditions, one container may be located in several positions and
several containers may be placed into the same position. In addition, the LIFO order does
not have to be respected, all containers and not only blocking ones may be relocated and not
all blocking containers have to be relocated. Only constraints preventing gaps within stacks
and constraints imposing the consistency of the bay over time hold. Figure 7.2 illustrates
feasible relocations in the linear relaxed case. It presents fractional layouts at period 7 and
at period 8 after retrieving container 7. They are determined by the values of variables bijnt.
Instead of relocating containers 10, 13 and 15 from above container 7 in stack 3 to another
stack, containers 10 and 14 (from stack 5) and container 15 (from stack 1) are relocated into
stack 3 to satisfy

∑

n bijnt ≥
∑

n bij+1nt.
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Table 7.2: Performance comparison of BIP1, BIP2 and BIP3 for trivial (tr) and non-trivial (ntr) instances

Inst. set 3-3 3-4 3-5 3-6 3-7 3-8 4-4 4-5 4-6 4-7 5-4 5-5 5-6 Total

Nb. trivial 27 26 28 36 33 32 8 11 11 9 4 1 2 228
Nb. non-trivial 13 14 12 4 7 8 32 29 29 31 36 39 38 292

BIP 1 Nb. solved tr 27 26 28 36 33 32 8 11 11 9 4 0 0 225
Avg. time tr [s] 0.2 0.6 1.8 5.2 12.0 29.3 6.6 156.5 615.0 615.6 840.8 n.a. n.a. 207.6
Nb. solved ntr 13 14 12 4 7 8 32 28 19 9 27 4 0 177
Avg. time ntr [s] 0.2 0.8 2.3 8.6 20.8 93.4 12.3 457.5 479.8 894.0 914.7 2080.2 n.a. 413.7
Nb. time ntr 0 0 0 0 0 0 0 1 6 22 9 13 0 51
Nb. mem ntr 0 0 0 0 0 0 0 0 4 0 0 23 40 67

BIP 2 Nb. solved tr 27 26 28 36 33 32 8 11 11 9 4 1 2 228
Avg. time tr [s] 0.1 0.3 0.8 2.1 3.7 7.0 1.1 3.4 7.9 15.3 20.1 922.6 36.6 78.6
Nb. solved ntr 13 14 12 4 7 8 32 29 27 24 36 30 12 248
Avg. time ntr [s] 0.1 0.4 1.2 4.5 6.6 11.2 2.0 15.4 24.6 84.4 329.3 356.5 828.9 128.1
Nb. time ntr 0 0 0 0 0 0 0 0 2 1 0 9 22 34
Nb. mem ntr 0 0 0 0 0 0 0 0 0 6 0 0 4 10

BIP 3 Nb. solved tr 27 26 28 36 33 32 8 11 11 9 4 1 2 228
Avg. time tr [s] 0.2 0.5 1.3 3.0 5.2 10.2 1.5 5.2 11.0 20.8 15.1 148.8 57.4 21.6
Nb. solved ntr 13 14 12 4 7 8 32 29 28 24 34 30 10 245
Avg. time ntr [s] 0.2 0.5 1.3 4.9 6.8 24.1 2.1 27.2 32.2 66.4 209.9 296.1 726.1 107.5
Nb. time ntr 0 0 0 0 0 0 0 0 1 2 2 9 23 37
Nb. mem ntr 0 0 0 0 0 0 0 0 0 5 0 0 5 10
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7.3. MODEL COMPARISON

Table 7.3 compares the lower bounds obtained from the linear relaxations LR_BIP1 to
LR_BIP3 of the binary models BIP1 to BIP3 with the lower bound LB obtained from the
initial layout. We use the rounded up solution of linear relaxations as their lower bounds.
For each instance set, the table indicates the average lower bound and the average and
maximum gap to the optimal or best known solution.

Table 7.3: Comparison of lower bounds obtained from the initial layout LB and by linear
relaxations of binary models LR_BIP1 to LR_BIP3

Inst. set 3-3 3-4 3-5 3-6 3-7 3-8 4-4

LB Avg. rel 4.7 5.9 6.8 8.3 9.1 10.5 9.4
Avg. gap [%] -4 -4 -3 -1 -1 -2 -7
Max gap [%] -17 -29 -14 -18 -15 -14 -30

LR_BIP 1 Avg. rel 4.6 5.7 6.6 8.0 8.8 9.9 9.1
Avg. gap [%] -5 -4 -4 -2 -2 -4 -8
Max gap [%] -20 -29 -17 -18 -20 -14 -25

LR_BIP 2 Avg. rel 4.8 5.9 6.8 8.3 9.1 10.5 9.6
Avg. gap [%] -2 -2 -2 -1 -1 -2 -5
Max gap [%] -17 -29 -14 -18 -9 -14 -23

LR_BIP 3 Avg. rel 4.8 5.9 6.8 8.3 9.1 10.5 9.6
Avg. gap [%] -2 -2 -2 -1 -1 -2 -5
Max gap [%] -17 -29 -14 -18 -9 -14 -23

Inst. set 4-5 4-6 4-7 5-4 5-5 5-6 Total

LB Avg. rel 12.2 13.2 15.2 13.6 17.0 20.1 11.2
Avg. gap [%] -6 -6 -5 -12 -10 -9 -5
Max gap [%] -21 -19 -15 -24 -25 -20 -30

LR_BIP 1 Avg. rel 11.3 12.2 14.1 12.5 15.8 18.4 10.5
Avg. gap [%] -10 -10 -10 -16 -14 -15 -8
Max gap [%] -36 -33 -33 -39 -41 -33 -41

LR_BIP 2 Avg. rel 12.2 13.3 15.3 13.9 17.2 20.2 11.3
Avg. gap [%] -5 -4 -4 -9 -8 -8 -4
Max gap [%] -18 -14 -15 -22 -25 -18 -29

LR_BIP 3 Avg. rel 12.2 13.3 15.3 13.9 17.2 20.2 11.3
Avg. gap [%] -5 -4 -4 -9 -8 -8 -4
Max gap [%] -18 -14 -15 -22 -25 -18 -29

LR_BIP1 provides a very weak lower bound since most constraints are relaxed for linear
variables. It has the highest average and maximum gap for almost all instances. It is
outperformed by LB on 128 instances, obtains the same bound on 377 instances and obtains
a better bound on only 15 instances.

BIP2 fixes variables bijnt and xijklnt to 0 or 1 for each container until it is retrieved or
relocated for the first time. This limits the solution space since several variables are forced
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to take integer values and as long as variables take integer values, constraints are tight.
LR_BIP2 performs similar to LB. However, LB does not consider containers after their
retrieval / first relocation whereas LR_BIP2 considers them in a relaxed way. It provides
a tighter bound than LB on 90 instances and the same bound on 430 instances. LR_BIP3
is identical to LR_BIP2 for all instances since cuts determined for the binary case are too
weak for the relaxed case.

7.4 Conclusion

This chapter improved an existing binary model for the container relocation problem where
only blocking containers are relocated. We reduced the model size by removing superfluous
variables and corrected two errors in the existing formulation. We also introduced a prepro-
cessing step and cuts. The preprocessing step uses information provided by the initial layout
to fix several variables. Cuts use the heuristic solution to limit the number of relocations.

Experimental results showed that the preprocessing step improves the performance of the
model: run times decrease considerably, more instances can be solved and the lower bound
obtained by the linear relaxation is tightened. Cuts are too weak and do not improve the
performance of the model.

It would be interesting to compare the performance of the reformulated model with other
models from literature. Unfortunately, this was not possible since they either represent
a slightly different problem (Caserta et al. (2012), Petering and Hussein (2013)) or run
experiments on different instances (Tang et al. (2012)).

The reformulated binary model with the preprocessing step solves small and medium
instances in reasonable time. Bigger instances however cannot be solved due to time and
memory. Alternative solution approaches have to be designed for bigger instances. The next
two chapters present an exact and a heuristic branch and price approach.
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Chapter 8

Branch and price approach for CRP

The binary programming models presented in Chapter 7 are impractical for bigger instances.
They require a huge number of variables and provide weak linear relaxations. Column
generation is suitable to solve linear programming models with a huge number of variables
and to determine tight linear relaxations of integer programming models.

This chapter presents a branch and price approach for the container relocation problem
where only blocking containers are relocated. Section 8.1 presents our column generation
approach. It details the decomposition of the binary model into a master problem and a
subproblem. It describes a column generation approach where both the master problem and
the subproblem are solved with an IP solver. It also interprets the information provided by
dual variables and shows how it can be used for a new upper bound on the number of reloca-
tions. Section 8.2 presents an enumerative subproblem and two mechanisms used to reduce
the number of columns to enumerate. Section 8.3 details the branching procedure chosen
for branch and price. Section 8.4 compares our different column generation approaches and
evaluates the branch and price. Results are also compared to the results obtained with the
binary model of the previous chapter. Section 8.5 concludes the chapter.

8.1 Column generation for CRP

Algorithm 8.1 recalls the general procedure of column generation. A restricted linear
programming master problem (a linear reformulation of the initial problem) is initialized
with all constraints and a subset of variables called columns. After solving the restricted
master problem, a pricing subproblem determines columns that could improve the objective
value of the restricted master problem (columns with negative reduced costs). Columns
are determined based on values of dual variables of the restricted master problem. These

Algorithm 8.1 General column generation procedure

initialize restricted master problem (RMP)
repeat

add column(s) with negative reduced costs to RMP
solve RMP
execute subproblem for updated values of dual variables

until no column with negative reduced costs found
return optimal solution for RMP
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Figure 8.1: The way column θs1 transforms the bay (if applied)

columns are then added to the restricted master problem. The updated model is solved and
the subproblem is executed for the updated values of dual variables. This iterative process
stops if no more columns with negative reduced costs exist. In this case, an optimal linear
solution is obtained which is a linear relaxation of the initial problem.

We keep physical constraints on the bay (e.g., no holes, consistency over time) in the
master problem and use the subproblem to generate a series of movements with one retrieval
and several relocations. We use columns θst to represent the retrieval of container n = t
and relocations of any containers stacked above. Binary parameters ysijnt and xs

ijklnt indicate
which retrieval and which relocations have to be executed for column θst . St is the number
of columns θst that retrieve container t in period t and

θst =

{

1 if the column is applied,

0 otherwise.
(8.1)

Figure 8.1 illustrates how columns θst represent retrievals and relocations and how they
transform the bay if applied. If θs1 is applied in period 1, it retrieves container 1 from position
(4, 2), relocates container 3 from position (4, 3) to (2, 3) and container 8 from position (4, 4)
to (1, 4). This leads to the bay depicted for period 2.

8.1.1 Master problem

The master problem is a reformulation of the binary model presented in Section 7.2.1.

min
W
∑

i=1

H
∑

j=2

W
∑

k=1

H
∑

l=1

T−1
∑

t=1

N
∑

n=t+1

St
∑

s=1

xs
ijklnt · θ

s
t

s.t.

N
∑

n=t

bijnt ≤ 1

∀i = 1, . . . ,W, j = 1, . . . , H, t = 1, . . . , T − 1

(8.2)
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N
∑

n=t

bijnt ≥
N
∑

n=t

bij+1nt

∀i = 1, . . . ,W, j = 1, . . . , H − 1, t = 1, . . . , T

(8.3)

bijnt+1 = bijnt +
St
∑

s=1

W
∑

k=1

H
∑

l=2

θst · x
s
klijnt −

St
∑

s=1

W
∑

k=1

H
∑

l=1

θst · x
s
ijklnt

∀i = 1, . . . ,W, j = 1, . . . , H, t = 1, . . . , T − 1, n = t+ 1, . . . , N

(8.4)

bijtt −
St
∑

s=1

θst · y
s
ijtt = 0

∀i = 1, . . . ,W, j = 1, . . . , H, t = 1, . . . , T − 1

(8.5)

St
∑

s=1

θst = 1

∀t = 1, . . . , T − 1

(8.6)

θst ≥ 0

∀t = 1, . . . , T − 1, s = 1, . . . , St

(8.7)

bijnt ≥ 0

∀i = 1, . . . ,W, j = 1, . . . , H, t = 1, . . . , T, n = t, . . . , N
(8.8)

The objective function minimizes the total number of relocations. Constraint (8.2) makes
sure that each position (i, j) is occupied by at most one container. Constraint (8.3) prevents
gaps within stacks. Constraint (8.4) links the bay layout at period t with the layout at
period t + 1 via the executed relocations. Constraint (8.5) makes sure that container t is
retrieved from the bay in period t. Constraint (8.6) imposes that one column is chosen per
period. Constraints (8.7) and (8.8) represent the domain definitions of the linear variables.
All bijn1 with t = 1 are parameters which indicate the initial configuration of the bay. We
also fix variables bijnt with the preprocessing step presented in Section 7.2.1.

Constraint (8.9) does not result from the reformulation. It is a cut to enhance the quality
of the model. It imposes that position (i, j) has to be empty at period t + 1 if container t
is retrieved from a position (i, j′) with j′ ≤ j. Because of the acceptable number of cuts, all
cuts are added to the model from the beginning on.

j
∑

j′=1

bij′tt +
N
∑

n=t+1

bijnt+1 ≤ 1

∀i = 1, . . . ,W, j = 1, . . . , H, t = 1, . . . , T − 1

(8.9)
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8.1.2 Pricing subproblem

The pricing subproblem generates new columns to be added to the master problem. These
columns have to be feasible with regard to the problem description. In addition, they must
have the potential to reduce the value of the objective function of the restricted master
problem. In other words, they must have negative reduced costs.

To obtain the reduced cost vector of a column, we formulate the dual of the restricted mas-
ter problem. Dual variables of the restricted master problem are: αijt for Constraint (8.2),
βijt for Constraint (8.3), γijnt for Constraint (8.4), δijt for Constraint (8.5) and µt for Con-
straint (8.6).

max
W
∑

i=1

H
∑

j=1

T−1
∑

t=1

αijt +
T−1
∑

t=1

µt

s.t.

W
∑

i=1

H
∑

j=2

W
∑

k=1

H
∑

l=1

N
∑

n=t+1

xs
ijklnt · (−γijnt + γklnt)−

W
∑

i=1

H
∑

j=1

yijtt · δijt + µt

≤
W
∑

i=1

H
∑

j=2

W
∑

k=1

H
∑

l=1

N
∑

n=t+1

xs
ijklnt

∀t = 1, . . . , T − 1

(8.10)

αijt + βijt − βij−1t + γijnt − γijnt−1 + δijt ≤ 0

∀i = 1, . . . ,W, j = 1, . . . , H, t = 1, . . . , T − 1, n = t, . . . , N
(8.11)

αijt ≤ 0

∀i = 1, . . . ,W, j = 1, . . . , H, t = 1, . . . , T − 1
(8.12)

βijt ≥ 0

∀i = 1, . . . ,W, j = 1, . . . , H − 1, t = 1, . . . , T − 1
(8.13)

γijnt ∈ R

∀i = 1, . . . ,W, j = 2, . . . , H, t = 1, . . . , T − 2, n = t+ 1, . . . , N
(8.14)

δijt ∈ R

∀i = 1, . . . ,W, j = 1, . . . , H, t = 1, . . . , T − 1
(8.15)

µt ∈ R

∀t = 1, . . . , T − 1
(8.16)

The reduced cost vector of a column for period t is given by Equation (8.17).

W
∑

i=1

H
∑

j=2

W
∑

k=1

H
∑

l=1

N
∑

n=t+1

xs
ijklnt · (1 + γijnt − γklnt) +

W
∑

i=1

H
∑

j=1

ysijtt · δijt − µt (8.17)

The subproblem is formulated for each period t. It determines the column with the
smallest negative reduced costs for period t respecting all constraints from the initial problem
description.
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min
W
∑

i=1

H
∑

j=2

W
∑

k=1

H
∑

l=1

N
∑

n=t+1

(1 + γijnt − γklnt) · xijklnt +
W
∑

i=1

H
∑

j=1

δijt · yijtt − µt

s.t.

W
∑

i=1

H
∑

j=1

yijtt = 1 (8.18)

M ·

(

1−
N
∑

n=t+1

xijklnt

)

≥
N
∑

n=t+1

H
∑

j′=j+1

H
∑

l′=l+1

xij′kl′nt

∀i = 1, . . . ,W, j = 2, . . . H − 1, k = 1, . . . ,W, l = 1, . . . H − 1

(8.19)

M ·
H
∑

j=1

yijtt ≥
H
∑

j=2

W
∑

k=1

H
∑

l=1

N
∑

n=t+1

xijklnt

∀i = 1, . . . ,W

(8.20)

M · yijtt +

j
∑

j′=2

W
∑

k=1

H
∑

l=1

N
∑

n=t+1

xij′klnt ≤M

∀i = 1, . . . ,W, j = 3, . . . H

(8.21)

xijilnt = 0

∀i = 1, . . . ,W, j = 2, . . . H, l = 1, . . . H, n = t+ 1, . . . , N
(8.22)

yijtt +
W
∑

k=1

H
∑

l=1

N
∑

n=t+1

xijklnt ≤ 1

∀i = 1, . . . ,W, j = 2, . . . , H

(8.23)

W
∑

i=1

H
∑

j=2

N
∑

n=t+1

xijklnt ≤ 1

∀k = 1, . . . ,W, l = 1, . . . , H

(8.24)

W
∑

i=1

H
∑

j=2

W
∑

k=1

H
∑

l=1

xijklnt ≤ 1

∀n = t+ 1, . . . , N

(8.25)

1− yijtt −
W
∑

k=1

H
∑

l=1

T
∑

n=t+1

xijklnt +

j′−1
∑

h=j+1

W
∑

k=1

H
∑

l=1

T
∑

n=t+1

xihklnt ≥
W
∑

k=1

H
∑

l=1

T
∑

n=t+1

xij′klnt

∀i = 1, . . . ,W, j = 2, . . . , H − 2, j′ = j + 2, . . . , H

(8.26)
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1−
W
∑

i=1

H
∑

j=2

T
∑

n=t+1

xijklnt +
W
∑

i=1

H
∑

j=2

j′−1
∑

h=j+1

T
∑

n=t+1

xijkhnt ≥
W
∑

i=1

H
∑

j=2

T
∑

n=t+1

xijkl′nt

∀k = 1, . . . ,W, l = 1, . . . , H − 2, l′ = l + 2, . . . , H

(8.27)

W
∑

i=1

H
∑

j=2

W
∑

k=1

H
∑

l=1

N
∑

n=t+1

xijklnt ≤ Rt
max,1 (8.28)

yijtt ∈ {0, 1}

∀i = 1, . . . ,W, j = 1, . . . , H
(8.29)

xijklnt ∈ {0, 1}

∀i = 1, . . . ,W, j = 2, . . . , H, k = 1, . . . ,W, l = 1, . . . , H, n = t+ 1, . . . , N
(8.30)

The objective function minimizes the reduced cost. If the objective value is not negative
no columns with negative reduced costs exist for period t. Constraints (8.18) to (8.22)
are taken from the initial binary formulation. Constraint (8.18) makes sure that container
n = t is retrieved at period t. Constraint (8.19) imposes the LIFO order between containers
being relocated into the same stack. Constraints (8.20) and (8.21) ensure that only blocking
containers are relocated. Constraint (8.22) prevents relocating a container into the stack
from which it has been retrieved.

Constraints (8.23) to (8.29) are added to represent physical constraints to obtain a col-
umn that is feasible with regard to the initial problem description. Constraint (8.23) makes
sure that at most one container (retrieval or relocation) is taken out of each position. Con-
straint (8.24) ensures that at most one relocation container is put into each position. Con-
straint (8.25) imposes that each container is relocated at most once within period t. Con-
straint (8.26) imposes that retrieval and relocation containers are taken from adjacent tiers.
If container n is retrieved from position (i, j) and container n′ from position (i, j′), we obtain
yijtt = 1 or xijklnt = 1 and xi′jkln′t = 1. To satisfy the inequality at least one container has to
be retrieved from each position (i, h) with h = j+1, . . . , j′− 1. Constraint (8.27) works in a
similar way and imposes that containers are relocated to adjacent tiers if they are put into
the same stack. Constraint (8.28) limits the number of relocations to the upper bound per
period Rt

max. Constraints (8.29) and (8.30) define variable domains. We also fix variables
xijklnt with the preprocessing step presented in Section 7.2.1.

Algorithm 8.2 describes how we use the binary subproblem within the column generation
approach. We first run Heuristic HC and check, via the optimality criterion presented in
section 6.3, if the heuristic solution is optimal. If yes, we return the optimal integer solution
and do not solve the linear relaxed problem1. If not, column generation is started and the
restricted master problem is initialized with columns from the heuristic solution and all
bounds Rt

max,1 are determined. At every iteration, the binary subproblem is run for each
period t = 1 to T − 1 and returns one column for each period. The process stops if none of
these columns has negative reduced costs. In this case, we found an optimal linear solution
for the restricted master problem.

1We are more interested in the optimal integer solution than in the optimal solution of the linear relax-
ation. In addition, we think that due to the preprocessing step the objective value of the linear relaxation
is always equal or bigger than the lower bound LB.
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Algorithm 8.2 Column generation with binary subproblem

run Heuristic HC
if optimality criterion holds then

return optimal heuristic solution
end if
initialize restricted master problem (RMP)
compute all Rt

max,1

repeat
add column(s) with negative reduced costs to RMP
solve RMP
for t = 1 to T − 1 do

solve binary subproblem
end for

until no column with negative reduced costs found
return optimal solution for RMP

We want to emphasize that not all columns added to the master problem may enter the
solution immediately. The restricted master problem imposes consistency over time (e.g.,
no container can be retrieved or relocated from a position where it cannot be located or
be relocated to a suspended position). Hence, it might happen that added columns violate
consistency constraints if corresponding columns are not added to the model yet.

8.1.3 Information provided by dual variables

This section interprets information provided by dual variables and shows why they do not
provide clear indications about the columns to be generated.

Variables δijt represent the costs or benefits to retrieve container t from position (i, j),
variables γijnt the costs or benefits to take a relocation container n > t from position (i, j),
variables γklnt the costs or benefits to put a relocation container n > t into position (k, l).
Generally, δijt < 0 indicates that container t should be retrieved from position (i, j); γijnt < 0
indicates that relocation container n should be taken out from position (i, j) and γklnt > 0
indicates that relocation container n should be put into position (k, l). To counterbalance
the cost of 1 per relocation in the primal problem, 1+γijnt− γklnt should ideally be negative
to relocate container n from position (i, j) to position (k, l).

Most of the time, dual variables do not provide such straightforward information. Most
variables equal 0 and columns with negative reduced costs may have a retrieval or relocations
with positive reduced costs (δijt ≥ 0 or 1+γijnt−γklnt ≥ 0). We illustrate different situations
that lead to columns with negative reduced costs with an example. Figure 8.2 indicates values
of dual variables at period 1 for a bay with 2 stacks and 3 tiers for retrieval container 1 and
relocation containers 2, 3 and 4. We define cijklnt as the cost or benefit of a relocation:
cijklnt = 1 + γijnt − γklnt. Let c− be the sum over all relocations of a column with cijklnt < 0
and c+ the sum over all relocations of a column with cijklnt > 0.
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Figure 8.2: Dual variables for containers 1 to 4 for period 1

The following cases lead to columns with negative reduced costs:

– Beneficial retrieval and no relocation (δijt < 0):

– column θ11: y11211 = 1 (reduced cost -2.0);

– Beneficial retrieval with beneficial relocation(s) (δijt < 0 and all cijklnt < 0):

– column θ21: y22111 = 1 and x2
221341 = 1 (reduced cost -1.5);

– Beneficial retrieval with costly relocation(s) (δijt < 0, all cijklnt > 0 and δijt < −c
+):

– column θ31: y31211 = 1 and x3
132121 = 1 (reduced cost -1.0);

– Costly retrieval with beneficial relocation(s) (δijt ≥ 0, all cijklnt < 0 and c− < −δijt):

– column θ41 with y42211 = 1 and x4
231221 = 1 (reduced cost -0.7);

– Neutral relocations (cijklnt = 0) that may be added to beneficial columns
(δijt + c+ + c− < 0):

– with γklnt = 1: column θ51: y52111 and x5
221131 = 1 (reduced cost -1.0),

– with γijnt = −1: column θ61: y62111 and x6
221141 = 1 (reduced cost -1.0),

– with γijnt + γklnt = −1: column θ71: y72111 and x7
221221 = 1 (reduced cost -1.0);

– Costly relocations(s) (cijklnt > 0) that may be added to beneficial columns
(−c+ < c− + δijt):

– column θ81: y82111 = 1, x8
221231 = 1 and x8

231121 = 1 (reduced cost -1.0).

8.1.4 New bound on the number of relocations

We may use the values of dual variables to determine a new upper bound on the number of
relocations per period t, Rt

max,2. It uses the fact that the potential gain of a column has to
outweigh its cost (the number of relocations). Equation (8.31) defines Rt

max,2. This bound
overestimates the maximum number of relocations, since it neglects several constraints (e.g.,
LIFO constraint, no holes, ...) that a column has to respect.
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Rt
max,2 =









N
∑

n=t+1



max

(

0,− min
i=1,...,I
j=2,...,J

γijnt + max
k=1,...,I
l=1,...,J

γklnt

)



− min
i=1,...,I
j=1,...,J

δijt + µt









− 1

∀t = 1, . . . , T − 1

(8.31)

Proof. Only columns with negative reduced costs are added to the restricted master problem.
These columns satisfy Equation (8.32). Transforming this equation into Equation (8.33)
shows that the number of relocations

∑

xs
ijklnt is limited by the value of dual variables.

W
∑

i=1

H
∑

j=2

W
∑

k=1

H
∑

l=1

N
∑

n=t+1

xs
ijklnt · (1 + γijnt − γklnt) +

W
∑

i=1

H
∑

j=1

ysijtt · δijt − µt < 0 (8.32)

⇔

W
∑

i=1

H
∑

j=2

W
∑

k=1

H
∑

l=1

N
∑

n=t+1

xs
ijklnt <

W
∑

i=1

H
∑

j=2

W
∑

k=1

H
∑

l=1

N
∑

n=t+1

xs
ijklnt · (−γijnt + γklnt)−

W
∑

i=1

H
∑

j=1

ysijtt · δijt + µt

(8.33)

We are only interested in the maximum number of relocations and determine an upper
bound on the right hand side (RHS) of Equation (8.33). The value of variable µt is given and
cannot be influenced. To maximize RHS, we want to minimize

∑

ysijtt · δijt. Each column
executes exactly one retrieval and exactly one ysijtt equals one. Hence,

W
∑

i=1

H
∑

j=1

ysijtt · δijt ≥ min
i=1,...,I
j=1,...,J

δijt

To maximize RHS, we want to maximize
∑

xs
ijklnt · (−γijnt + γklnt). Each container may

be relocated exactly once and each relocation is composed of exactly one pick-up and one
storage operation. For each container n, we obtain

W
∑

i=1

H
∑

j=2

W
∑

k=1

H
∑

l=1

xs
ijklnt · (−γijnt + γklnt) ≤ − min

i=1,...,I
j=2,...,J

γijnt + max
k=1,...,I
l=1,...,J

γklnt

A column may or may not contain relocations. Since we want to maximize RHS, we are
only interested in relocations with (−γijnt + γklnt > 0). And obtain

W
∑

i=1

H
∑

j=2

W
∑

k=1

H
∑

l=1

N
∑

n=t+1

xs
ijklnt · (−γijnt + γklnt)

≤
N
∑

n=t+1



max

(

0,− min
i=1,...,I
j=2,...,J

γijnt + max
i=1,...,I
j=1,...,J

γklnt

)
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We replace
∑

xs
ijklnt ·(−γijnt+γklnt) and

∑

yijtt ·δijt in Equation (8.33) by their respective
upper and lower bounds. We transform the fractional bound on the RHS into an integer
value smaller than the bound and obtain Equation (8.31).

8.2 Enumeration subproblem

This section presents two versions of an enumerative subproblem which enumerates all fea-
sible columns. A feasible column retrieves the target container, relocates only blocking con-
tainers, respects the LIFO constraint and relocates containers to empty and non-suspended
positions. We introduce two mechanisms to reduce the number of columns to enumerate.

8.2.1 Enumeration based on attainable layouts

The initial bay layout restricts positions where containers may be located in subsequent
periods. Attainable layouts are those layouts that can be reached from the initial layout via
a series of feasible columns. Using information on possible container positions reduces the
number of columns to enumerate at period t and hence the number of attainable layouts at
period t+ 1. This also reduces the number of columns to enumerate at period t+ 1 and so
on.

An example illustrates the benefit of attainable layouts. Figure 8.3a displays the initial
configuration at period 1; Figures 8.3b to 8.3i all attainable layouts for period 2 (obtained
by retrieving container 1 and relocating containers 4, 5 and 6). If we use the information
about the layout at period 1, we generate only feasible columns that retrieve container 1
from position (1, 1), container 4 from position (1, 2), container 5 from position (1, 3) and
container 6 from position (1, 4). Container 6 can only be relocated to positions (2, 1) and
(3, 1); container 5 only to positions (2, 1), (3, 1), (2, 2) and (3, 2) (depending on the relocation
of container 6); container 4 only to positions (2, 1), (3, 1), (2, 2), (3, 2), (2, 3) and (3, 3)
(depending on the relocations of containers 5 and 6). Only eight columns are feasible and
need to be enumerated. Without using the information on attainable layouts, all columns
retrieving container 1 from every position (1, 1) to (3, 3) with all possible combinations of
relocations of containers 2, 3 4, 5 and 6 have to be enumerated.

Since it is impractical to register all attainable layouts for each period, we use an aggregate
way to do so. For each period t from 1 to T −1, we register which containers may be located
at each position (i, j). This provides information about possible locations of all containers
and possible empty positions. Figure 8.3j illustrates the aggregated representation for the
example discussed above. A bold number indicates that the container is located at that
position and nowhere else. An italic number indicates that the container may be located
at that position or somewhere else. No entry indicates that the position is empty for sure.
By aggregating all attainable layouts of the same period, we lose some information and
unattainable layouts may seem attainable. Figure 8.3k illustrates such a layout.

We also use information on attainable layouts to tighten bound Rt
max,2. In this case,

Rt
max,2 ignores dual variables that correspond to movements of containers from positions

where containers cannot be located or to suspended or filled positions. Figure 8.4 illustrates
the benefit. Figure 8.4a represents the values of dual variables for containers 1 to 9 at
period 1. For each position (i, j), it displays the value of non-zero variables and the associated
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container in brackets. All dual variables equal zero except γ3,1,2,1 = −2 for container 2,
γ1,2,3,1 = −2 and γ3,2,3,1 = −2 for container 3, γ2,4,5,1 = 1 for container 5 and γ1,2,8,1 = −2
for container 8. Figure 8.4b represents the layout at period 1. Variables γ1,2,3,1, γ3,1,2,1
and γ3,2,3,1 correspond to infeasible movements: either the container is not located at the
position from which it should be retrieved or it is not placed above the target container
and cannot be relocated. Only γ1,2,8,1 and γ2,4,5,1 are used to compute R1

max,2 and we obtain
R1

max,2 = −(−2)+ 1− 1 = 2. Without including information on attainable layouts we would
have obtained −(−2)+ 1− (−2)− 1 = 4. The tightened bound may decrease the number of
columns to enumerate significantly.

Algorithm 8.3 describes the column generation approach based on an enumerative sub-
problem using attainable layouts. Parts specific to this subproblem are colored. The solution
procedure stops if the optimality criterion holds. Otherwise, we compute bounds Rt

max,1 and
generate attainable layouts for all periods t = 1 to T − 1. Attainable layouts at period t
are determined by enumerating all feasible columns with at most Rt−1

max,1 relocations for all
attainable layouts at period t−1. We use the aggregated representation of attainable layouts
throughout the entire solution procedure.

Then, the column generation process starts. The enumerative subproblem is called to
search for columns with negative reduced costs. We use an upper bound on the number of
relocations per period Rt

max to reduce the number of columns to be enumerated. Rt
max equals

the minimum of Rt
max,1 and Rt

max,2. It is updated every time the subproblem is called since
the value of Rt

max,2 depends on the values of dual variables.

Columns with fewer relocations have higher chances to have negative reduced costs since
each relocation has a cost of one. Therefore, the enumeration process starts enumerating
columns with one relocation (r = 1) and iterates over all periods. We know the lower
bound LBt and the upper bound Rt

max on the number of relocations for feasible columns of
period t with potentially negative reduced costs. The enumeration process is only executed
for periods t where the number of relocations r is within these bounds. In this case, it
enumerates all feasible columns at period t with r relocations. If no columns with negative
reduced costs and exactly r relocations exist for any period t, the number of authorized
relocations is increased by one.

The enumeration process stops if columns with negative reduced costs are found in any
period t or if the maximum number of relocations is exceeded. The maximum number of
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Algorithm 8.3 Column generation with enumerative subproblem

run Heuristic HC
if optimality criterion holds then

return optimal heuristic solution
end if
initialize restricted master problem (RMP)
for t = 1 to T − 1 do

compute Rt
max,1

generate attainable layouts for t based on the aggregated
representation of t− 1 and Rt−1

max,1

end for
repeat

add column(s) with negative reduced costs to RMP
solve RMP
for t = 1 to T − 1 do

compute Rt
max,2

Rt
max ← min(Rt

max,1, R
t
max,2)

end for
for r = 1 to H − 1 do

for t = 1 to T − 1 do
if LBt ≤ r and r ≤ Rt

max,1 then
enumerate all feasible columns for t with exactly r relocations
if column(s) with negative reduced costs exist then

exit loops on r and t
end if

end if
end for

end for
until no column with negative reduced costs found
return optimal solution for RMP

relocations is limited by the height of the bay and set to H−1. In the first case, all columns
of period t with negative reduced costs are added to the restricted master problem. The
restricted master problem is solved and the enumerative subproblem is executed again. In
the second case, an optimal linear solution is found and the column generation process ends.

8.2.2 Iterative solution approach

This section presents an iterative solution approach. It does not directly solve the entire
problem to retrieve containers 1 to N . It starts, instead, by determining an optimal solution
to retrieve container 1. Then, it determines an optimal solution to retrieve containers 1
and 2; then, an optimal solution to retrieve containers 1, 2 and 3; and so on. Like this,
it iterates over all periods t = 1 to T − 1. For each period t, it determines the optimal
solution to retrieve containers 1 to t with a minimum number of relocations. To solve each
of these problems, it uses the column generation approach with the enumerative subproblem
described in the previous section.

Knowing the minimum number of relocations zt needed to retrieve containers 1 to t makes
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it possible to tighten Rt
max,1 and to define a new optimality criterion. Constraint (6.4) recalls

the definition of Rt
max,1. It is computed with

∑t−1
k=1 LBk which provides a lower bound on

the number of relocations to retrieve containers 1 to t − 1. We replace the lower bound
∑t−1

k=1 LBk by the minimum number of relocations ⌈zt−1⌉. Rt
max,1′ is defined by the resulting

Constraint (8.34). Since ⌈zt−1⌉ ≥
∑t−1

k=1 LBk, Rt
max,1′ is tighter than Rt

max,1. It can easily be
seen that the proof mechanism developed in Section 6.3 still holds.

Rt
max,1 = UB − 1−

t−1
∑

k=1

LBk −
T
∑

k=t+1

LBk −
T
∑

k=t

LBk+ ∀t = 1, . . . , T (6.4)

Rt
max,1′ = UB − 1−

⌈

zt−1
⌉

−
T
∑

k=t+1

LBk −
T
∑

k=t

LBk+ ∀t = 1, . . . , T (8.34)

We also use ⌈zt⌉ to introduce a new optimality criterion: optimality criterion 2. If
Constraint (8.35) holds for any period t, the lower bound equals the upper bound and the
heuristic solution UB is optimal. The optimality criterion 2 is tighter than the one presented
in Section 6.3 if and only if ⌈zt⌉ >

∑t

k=1 LBk +
∑t−1

k=1 LBk+.

UB =
⌈

zt
⌉

+
T
∑

k=t+1

LBk +
T
∑

k=t

LBk+ ∃t = 1, . . . , T (8.35)

Proof. The optimality criterion 2 uses a new lower bound on the number of relocations
to retrieve all containers from the bay. At least ⌈zt⌉ relocations are necessary to retrieve
containers 1 to t. We use lower bounds LBk and LBk+ introduced in Section 6.3 to compute
a lower bound on the number of relocations to retrieve containers t+1 to T . Remember that
LBk relocations are executed in period k and LBk+ relocations in a period k′ > k. Since
we want to determine a lower bound on the number of relocations in periods t+ 1 to T , we
suppose that all relocations LBk+ for k = 1 to t− 1 are executed prior to period t+ 1. We
obtain the following lower bound on periods t+ 1 to T :

∑T

k=t+1 LBk +
∑T

k=t LBk+. Adding
up ⌈zt⌉ and the lower bound on periods t+ 1 to T leads to Constraint (8.35).

Equation (6.3) recalls the optimality criterion presented in Section 6.3 in a slightly mod-
ified representation. Comparing Equations (8.35) and (6.3) shows that the optimality crite-
rion 2 is tighter if and only if ⌈zt⌉ >

∑t

k=1 LBk +
∑t−1

k=1 LBk+.

UB =
t
∑

k=1

LBk +
t−1
∑

k=1

LBk+ +
T
∑

k=t+1

LBk +
T
∑

k=t

LBk+ (6.3)

Algorithm 8.4 describes the iterative column generation approach using an enumerative
subproblem. It solves the problem to optimum for each period t = 1 to T − 1. For each
period t, it determines the optimal solution to retrieve containers 1 to t with the column gen-
eration approach described in Section 8.2.1. This approach uses an enumerative subproblem
to generate columns and attainable layouts to reduce the number of columns to enumer-
ate. Changes from the non-iterative approach are colored. The iterative approach uses the
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tightened bound Rt
max,1′ instead of Rt

max,1 and checks after each iteration if the optimality
criterion 2 holds. When solving the problem for period t, only columns for periods t′ = 1 to
t are generated since we are not interested in later periods.

Algorithm 8.4 Iterative column generation approach with enumerative subproblem

run Heuristic HC
if optimality criterion holds then

return optimal heuristic solution
end if
initialize restricted master problem (RMP)
for t = 1 to T − 1 do

compute Rt
max,1′

generate all attainable layouts t based on the aggregated
representation of t− 1 and Rt−1

max,1′

repeat
add column(s) with negative reduced costs to RMP
solve RMP
for t′ = 1 to t do

compute Rt′

max,2

Rt′

max ← min(Rt′

max,1′ , R
t′

max,2)
end for
for r = 1 to H − 1 do

for t′ = 1 to t do
if LBt′ ≤ r and r ≤ Rt′

max then
enumerate all feasible columns for t with exactly r relocations
if column(s) with negative reduced costs exist then

exit loops on r and t′

end if
end if

end for
end for

until no column with negative reduced costs found
zt ← solution value of RMP
if optimality criterion 2 holds then

return optimal heuristic solution
end if

end for
return optimal solution for RMP
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8.3 Branch and price

Column generation provides a linear relaxed solution of the integer problem. Branch and
price embeds column generation in a branch and bound procedure to obtain the optimal
integer solution. It uses column generation to solve the nodes in the branching tree. Algo-
rithm 8.5 summarizes the general solution procedure. The root node is initialized with the
restricted master problem and solved. If a fractional solution is obtained, new nodes are
created by branching on fractional variables. Usually, variables of the initial problem are
used for branching rather than columns. New nodes are added to the list of nodes to be
handled. In the next iteration a node is retrieved from the list, solved via column generation
and new nodes are created. The procedure stops if all nodes have been evaluated. In this
case, the optimal integer solution has been determined.

Algorithm 8.5 Branch and price procedure

rootNode ← initialize restricted master problem (RMP)
nodesToHandle ← rootNode
repeat

node ← get node from nodesToHandle
solve node with column generation
create new nodes
nodesToHandle ← new nodes

until nodesToHandle is empty
return optimal integer solution

In our case, containers may be split and occupy several positions within the bay for
fractional solutions. Figure 8.5 illustrates two different situations that may occur: a container
is put into different stacks or a container is put into different tiers of the same stack. We
define the following branching strategies:

– If the container is split between two stacks i1 and i2, we create two nodes that forbid
relocations to i1 and i2, respectively. One node prevents relocations to stack i1 and to
the first ⌈W/2⌉ stacks without stacks i1 and i2. The other one prevents relocations to
stack i2 and the remaining stacks.

– If the container is split between two tiers j1 and j2 of the same stack i1, we create two
nodes that forbid relocations to (i, j1) and (i1, j2), respectively. The first node prevents
relocations to tiers 1, ...,min(j1, j2) of stack i1. The other one prevents relocations to
tiers min(j1, j2) + 1, ..., J of stack i1.

We branch on variables bijnt (indicating if container n is placed at position (i, j) at the
beginning of period t). If several split containers exist, we select the smallest period t′ with
a split container (fractional bijnt′). We determine the fractional variable bijnt′ whose value is
closest to 0.5 and set i1, j1 and n′ accordingly. If container n′ is split between several stacks,
we branch on stacks i1 and the leftmost stack i2 6= i1 containing container n′. If container
n′ is only split between different tiers in stack i1, we branch on tier j1 and the lowest tier
j2 6= j1 in stack i1 containing container n′. To prevent that container n is located in position
(i, j) at period t, we impose bijnt = 0 in the restricted master problem.
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Figure 8.5: Split container in a bay

8.4 Computational results

This section compares three column generation approaches against each other and the quality
of their linear relaxations against the linear relaxation of a binary model. It also discusses
the quality of the branching strategy. We compare the following approaches:

– Column generation with binary subproblem (sBIP);

– Column generation with enumerative subproblem (sEnum);

– Iterative column generation with enumerative subproblem (sIter);

– Branch and price (B&P) applied if the solution obtained by sIter is fractional and the
time limit is not reached.

Experiments are carried out on a computer with Intel(R) Xeon(R) CPU clocked at
2.67GHz (dual core), 3.48GB RAM and operating with Windows XP Professional. We
use Cplex 12.1 to solve the master problem and the binary subproblem. We limit the run
time to 60 minutes per instance.

Table 8.1 shows the results of sBIP, sEnum and sIter in an aggregate way for non-trivial
instances of sets 3-3 to 5-6. For sBIP, sEnum and sIter it indicates the number of instances
that were solved to optimum and the number of instances that could not be solved because
of time or memory limits. It also displays the average run time in seconds (solved and
non-solved instances combined) and the percentage of time spent solving the master and the
subproblem. For sEnum and sIter, it also shows the percentage of time needed to initialize
attainable layouts. Instances 5-7 to 10-10 are not displayed since they cannot be solved due
to memory problems (sBIP) or time limits (sEnum, sIter).

Results show that sBIP performs poorly: it solves only 42 of the smallest instances and
runs out of time or memory for bigger instances. Closer analysis shows that around 80% of
the solution time is needed to update the coefficients in the objective function for a huge
number (> W 2 · H2 · N) of variables. Consequently, almost no time is left to solve the
subproblem and the master problem which explains the bad performance.

Approaches sEnum and sIter perform better: they solve all instances up to 4-4 and most
instances up to 5-4. For bigger instances, they run mostly out of time. To initialize attainable
layouts at period t, all feasible columns at period t − 1 for all attainable layouts at period
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Table 8.1: Performance comparison of column generation approaches sBIP, sEnum and sIter for non-trivial instances

Inst. set 3-3 3-4 3-5 3-6 3-7 3-8 4-4 4-5 4-6 4-7 5-4 5-5 5-6 Total

Nb. non-trivial 13 14 12 4 7 8 32 29 29 31 36 39 38 292

sBIP Nb. solved 13 14 9 0 0 0 6 0 0 0 0 0 0 42
Nb. time 0 0 3 4 7 8 25 28 28 0 24 0 0 127
Nb. mem 27 26 28 36 33 32 9 12 12 40 16 40 40 351
Avg. time [s] 25.9 417.2 2479.5 3625.6 3663.3 3904.4 3179.7 3525.9 3753.3 n.a. 3645.0 3882.6 n.a. 2918.4
Time master [%] 0.8 0.3 0.2 0.1 0.1 0.2 3.5 3.5 3.6 n.a. 0.1 0.2 n.a. 1.2
Time sub [%] 99.2 99.7 99.8 99.9 99.9 99.8 96.5 96.5 96.4 n.a. 99.9 99.8 n.a. 98.8

sEnum Nb. solved 13 14 12 4 7 8 32 25 15 19 26 9 5 189
Nb. time 0 0 0 0 0 0 0 4 14 10 10 30 33 101
Nb. mem 0 0 0 0 0 0 0 0 0 2 0 0 0 2
Avg. time [s] 0.0 0.2 0.3 884.2 93.7 21.9 28.2 1074.6 1892.5 1630.6 1534.5 2923.9 3454.0 1041.4
Time layout [%] 0.0 12.6 27.1 59.9 61.7 48.5 46.8 62.0 76.3 66.4 59.8 93.7 95.2 54.6
Time master [%] 90.2 74.5 66.1 30.2 28.8 44.4 33.1 23.7 19.3 20.1 19.2 1.1 0.2 37.5
Time sub [%] 9.8 12.9 6.8 10.0 9.5 7.0 20.0 14.3 4.3 13.6 20.9 5.2 4.6 10.7

sIter Nb. solved 13 14 12 4 7 8 32 28 26 22 25 10 6 207
Nb. time 0 0 0 0 0 0 0 1 3 9 10 28 31 82
Nb. mem 0 0 0 0 0 0 0 0 0 0 1 1 1 3
Avg. time [s] 0.0 0.1 0.3 4.6 8.5 26.7 10.4 291.1 566.0 1346.1 1200.9 2725.4 3202.6 721.7
Time layout [%] 0.0 5.9 14.9 45.0 49.8 36.6 16.5 37.7 50.0 57.3 35.2 77.0 86.1 39.4
Time master [%] 96.8 82.4 69.6 34.0 33.9 46.7 56.5 31.9 32.6 23.0 30.0 2.3 1.9 41.7
Time sub [%] 3.2 11.7 15.6 21.1 16.3 16.8 27.0 30.3 17.5 19.7 34.8 20.7 12.0 19.0
Stop period n.a. n.a. n.a. n.a. n.a. n.a. n.a. 16.0 8.3 10.3 9.7 8.9 8.5 10.3
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8.4. COMPUTATIONAL RESULTS

t − 1 have to be enumerated. For bigger instances, the number of columns to enumerate
explodes. This explains why - apart from the smallest instances - sEnum spends most of the
time initializing attainable layouts. This implies that little time is used to actually solve the
problem. For sIter, the problem is solved iteratively and attainable layouts are initialized
iteratively. Due to the limited run time, for bigger instances the solution process stops far
before executing the last iteration. Consequently, the percentage of time spent initializing
attainable layouts is smaller but still significant.

Table 8.2 provides more information on sBIP, sEnum and sIter. It counts the number
of instances for which an optimal integer or fractional solution is obtained. It indicates
average values on all non-trivial instances (solved and non-solved) for the number of times the
subproblem was called, the number of generated columns and the number of columns added
to the master problem. For sEnum and sIter, it displays average values of feasible columns
which represent the number of columns that are enumerated while initializing attainable
layouts.

Approach sBIP obtains mostly fractional solutions. The subproblem is rarely called and
few columns are generated. We already mentioned that most of the solution time is spent
updating the objective function of the subproblem which leaves little time to solve the master
and the subproblem. In addition, the subproblem is called for each period t = 1 to T − 1
and generates exactly one column per period. Around 40% to 70% of the generated columns
are added to the model. This implies that the subproblem is frequently solved to optimum
only to discover that no column with negative reduced costs exists for the given period.

Approach sEnum obtains more integer solutions than sBIP. It generates only columns that
may be applied to attainable layouts whereas sBIP does not use this restriction. Results show
that using attainable layouts to create fewer columns leads to a better solution quality. For
sEnum, the subproblem is called rarely. For small instances, few iterations are necessary to
obtain the optimal solution; for big instances, most of the time is spent initializing attainable
layouts and few time solving the problem. The huge number of feasible and generated
columns - hundreds of millions for some instances - shows how the solution space explodes.
This illustrates the limits of an enumerative solution approach where all feasible columns
are enumerated every time the subproblem is called. In addition, at most 4% of generated
columns are added to the master problem.

The table distinguishes the number of columns that are used to initialize attainable
layouts (feasible columns) and the number of columns enumerated while executing the sub-
problem (generated columns). The number of generated columns can be lower than the
number of feasible columns for two reasons: first, the bound Rt

max,2 provided by dual vari-
ables might be tighter than bound Rt

max,1 and fewer columns have to be enumerated; second,
all time is spent initializing attainable layouts.

Approach sIter obtains more integer solutions than sEnum. The reason is the additional
optimality criterion 2 which proves the heuristic solution to be optimal. For sIter, the
subproblem is executed more often since the problem is solved for each iteration. However,
tightened bounds and optimality criterion 2 reduce the number of feasible and generated
columns and reduce the overall solution time.

10/2013 EMSE-CMP Page 119



C
H

A
P

T
E

R
8.

B
R

A
N

C
H

A
N

D
P

R
IC

E
A

P
P

R
O

A
C

H
F
O

R
C

R
P

Table 8.2: Details on performance of column generation approaches sBIP, sEnum and sIter for non-trivial instances

Inst. set 3-3 3-4 3-5 3-6 3-7 3-8 4-4

Nb. non-trivial 13 14 12 4 7 8 32

sBIP Nb. int sol 2 4 1 0 0 0 3
Nb. frac sol 11 10 8 0 0 0 3
Iter. sub 49.8 100.1 127.0 53.5 19.3 8.0 128.8
Nb. added col 192.3 549.4 867.9 675.8 118.9 58.4 1 281.8
Nb. gen col 398.8 1 101.6 1 778.0 909.5 385.7 184.0 1 994.0

sEnum Nb. int sol 5 3 1 0 0 0 7
Nb. frac sol 8 11 11 4 7 8 25
Iter. sub 12.5 19.4 18.7 39.8 37.6 36.0 44.8
Nb. added col 86.6 458.5 507.7 3 114.3 8 256.7 9 250.6 9 642.0
Nb. gen col 1 166.0 29 825.9 12 417.4 209 719.5 1 377 823.4 1 043 005.6 2 633 877.5
Nb. feas col 451.8 23 303.5 66 781.5 440 756 904.8 32 290 233.3 6 862 157.3 5 749 830.1

sIter Nb. int sol 11 10 10 1 5 4 12
Nb. frac sol 2 4 2 3 2 4 20
Iter. sub 16.7 23.5 28.3 50.3 44.9 44.0 45.9
Nb. added col 76.8 251.4 521.3 5 570.3 7 130.7 5 580.4 3 250.0
Nb. gen col 1 070.9 10 540.3 22 025.8 356 901.5 695 383.4 3 550 736.9 2 336 368.3
Nb. feas col 169.9 3 340.0 30 970.1 1 025 303.3 1 924 570.9 4 961 504.8 624 293.3
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Inst. set 4-5 4-6 4-7 5-4 5-5 5-6 Total

Nb. non-trivial 29 29 31 36 39 38 292

sBIP Nb. int sol 0 0 0 0 0 0 10
Nb. frac sol 0 0 0 0 0 0 32
Iter. sub 34.8 10.6 n.a. 40.3 9.9 n.a. 52.9
Nb. added col 376.3 99.7 n.a. 511.8 142.0 n.a. 443.1
Nb. gen col 684.0 252.2 n.a. 764.8 238.2 n.a. 790.1

sEnum Nb. int sol 6 2 2 4 0 2 32
Nb. frac sol 19 13 17 22 9 3 157
Iter. sub 44.8 21.0 49.8 64.9 18.2 17.3 32.7
Nb. added col 10 262.1 10 371.1 14 913.5 16 963.1 5 972.3 7 632.7 7 494.7
Nb. gen col 36 142 781.6 1 006 292.6 29 600 523.8 66 498 991.9 4 966 243.4 52 674 744.8 15 092 108.7
Nb. feas col 322 584

957.3
460 660 298.8 350 540 653.3 239 502 368.6 395 992 607.9 406 416 667.3 204 726 708.9

sIter Nb. int sol 11 8 11 6 4 0 93
Nb. frac sol 17 18 11 19 6 6 114
Iter. sub 58.0 60.6 55.0 70.1 40.9 41.7 44.6
Nb. added col 23 994.0 57 122.3 73 683.7 24 327.3 24 198.8 44 079.3 20 752.8
Nb. gen col 59 039 229.8 13 296 863.4 29 482 965.5 108 459 993.5 58 488 032.0 53 212 276.5 25 304 029.8
Nb. feas col 34 914 576.5 151 431 035.8 292 892 757.8 216 009 318.4 446 664 254.6 456 150 375.1 123 587 113.1
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CHAPTER 8. BRANCH AND PRICE APPROACH FOR CRP

Table 8.3: Performance comparison of iterative column generation and BIP 2

Inst. set 3-3 3-4 3-5 3-6 3-7 3-8 4-4

Nb. non-trivial 13 14 12 4 7 8 32

sIter Nb. solved 13 14 12 4 7 8 32
Avg. time [s] 0.0 0.1 0.3 4.6 8.5 26.7 10.4
LB improved 4 5 7 3 5 7 13

BIP2 Nb. solved 13 14 12 4 7 8 32
Avg. time [s] 0.1 0.4 1.2 4.5 6.6 11.2 2.0

Inst. set 4-5 4-6 4-7 5-4 5-5 5-6 Total

Nb. non-trivial 29 29 31 36 39 38 292

sIter 25 15 19 26 9 5 189
Avg. time [s] 171.8 215.8 423.5 239.8 273.0 1134.1 193.0
LB improved 15 10 13 16 3 3 104

BIP2 Nb. solved 29 27 24 36 30 12 248
Avg. time [s] 15.4 24.6 84.4 329.3 356.5 828.9 128.1

Table 8.3 compares the results of sIter to the results obtained with the binary model BIP2
and its linear relaxation LR_BIP2 from Section 7.3. It indicates the number of instances
solved by sIter and BIP2 and the average solution times of solved instances. It also displays
how often sIter tightens the lower bound obtained by LR_BIP2. We see that sIter provides
tighter lower bounds than LR_BIP2 for 104 instances. However, BIP2 has similar run times
than sIter, solves more instances and provides directly the integer solution. Consequently,
it seems not beneficial to apply the column generation approach since small instances can
directly be solved by the binary programming model and bigger instances cannot be solved by
the column generation approach within reasonable time due to the huge number of columns
to be enumerated.

We apply a branch and price approach on instances where sIter obtains a fractional
solution and does not reach the time limit. We use sIter to solve the root node, sEnum
to solve nodes in the branching tree and the branching procedure described in Section 8.3.
Table 8.4 presents the results. It indicates the number of instances for which branch and
price was executed. It displays how often the branch and price process finished and how
often it was stopped due to the time limit of one hour. For both cases, the table presents
the number of solved nodes and the average solution time per node.

Results show that branch and price finds the optimal integer solution for some smaller
instances. But for most instances, especially for bigger ones, it reaches the time limit. For
solved instances, the optimal solution value equals the round up value of the fractional
solution at the root node in these cases. This explains why relatively few nodes have to
be explored to find the optimal solution. If the time limit is reached either thousands of
nodes have to be explored or the solution time per node takes several minutes. Results
displayed in this table are obtained with a width-first branching strategy which obtained
better results than a best-node-first strategy. Probably, only the width-first strategy finds
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8.5. CONCLUSION

Table 8.4: Performance of branch and price combined with sIter for non-trivial instances

Inst. set 3-3 3-4 3-5 3-6 3-7 3-8 4-4

Nb. Inst 2 4 2 3 2 4 20

Nb. finished 1 4 1 1 1 1 12
Nb. nodes 1.0 8.0 41.0 1.0 317.0 109.0 344.3
Avg. time node [s] 0.5 0.0 0.0 0.1 0.3 0.0 0.6
Nb. not finished 1 0 1 2 1 3 8
Nb. nodes n.a n.a. 151 614.0 1 277.5 318.0 894.0 25 270.8
Avg. time node [s] n.a n.a. 0.0 8.5 11.3 11.2 21.2

Inst. set 4-5 4-6 4-7 5-4 5-5 5-6 Total

Nb. Inst 17 18 11 19 6 6 114

Nb. finished 1 0 0 2 0 0 24
Nb. nodes 33.5 4.0 n.a. 19.0 n.a. n.a. 87.8
Avg. time node [s] 3.6 1.6 n.a. 0.8 n.a. n.a. 0.8
Nb. not finished 16 18 11 17 6 6 90
Nb. nodes 151.9 2 861.4 109.0 6 429.0 69.6 24.5 17 183.6
Avg. time node [s] 80.3 121.8 199.6 52.6 446.6 206.4 105.4

an integer solution close to the initial fractional solution. Both strategies run out of time if
the gap between the solution at the root node and the optimal integer solution is bigger.

8.5 Conclusion

This chapter introduced the first column generation approach for the container relocation
problem. We defined columns representing the retrieval of one container and relocations of
any blocking containers. We presented a decomposition to split the initial binary program-
ming model into a master problem - ensuring the bay consistency over time - and a binary
subproblem - generating new feasible columns. We introduced a new upper bound on the
number of relocations per period based on the values of dual variables.

In addition, to the binary subproblem we also presented two implementations of an
enumerative subproblem to generate feasible columns. We introduced ’attainable layouts’
to indicate if a layout may be reached from the initial layout. We use attainable layouts to
reduce the number of columns to be enumerated. The second variant, solves the problem
iteratively for each period t = 1 to T − 1. This makes it possible to tighten the bound on
the maximum number of relocations per period and to introduce a new optimality criterion
to check if the heuristic solution is optimal.

Results show that column generation with the binary subproblem performs poorly. Most
of the solution time is used to update the objective function of the subproblem due to the
huge number of variables xijklnt. Maybe a binary subproblem where variables xijklnt are split
into variables xijnt for retrieval and zklnt for storage could lead to better results. This would
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CHAPTER 8. BRANCH AND PRICE APPROACH FOR CRP

reduce the number of variables from W 2 ·H2 · N to 2 ·W ·H · N , but would require some
new constraints.

Both enumerative subproblems perform well for smaller instances, but are impractical
for bigger instances due to the huge number of columns (up to hundreds of millions) to
enumerate. Consequently, a subproblem which does not need to enumerate all feasible
columns has to be designed to be able to solve bigger instances.

We also introduced a branching procedure that branches on variables indicating con-
tainer positions. It has been applied together with the enumerative subproblem in a branch
and price approach. The branching procedure works fine for problems where the fractional
solution is very close to the optimal value, but does not obtain the optimal value otherwise.
This is due to the fact that a lot of time is needed to solve nodes in the branching tree
because of the long run times of the enumerative subproblem. Before improving the branch
and price approach, the column generation has to be sped up first.

Even if the column generation approach does not work as well as expected, it helped to get
a deeper understanding of the problem. This enabled us to improve the binary formulation
and to introduce the preprocessing step described earlier and the heuristic approach described
in the next chapter.
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Chapter 9

Heuristic branch and price approach for
CRP

The previous chapter showed the limits of an exact branch and price approach using an
enumerative subproblem. This approach is impractical due to the huge number of columns
that have to be enumerated. This chapter presents a heuristic branch and price approach
that overcomes this problem. It uses the same master problem (see Section 8.1.1) and a
heuristic subproblem. This heuristic approach is meant to determine a good integer solution
rather than an optimal fractional solution.

Section 9.1 presents the heuristic subproblem that generates columns by solving a network
flow problems and applying heuristic relocation rules. Section 9.2 describes the heuristic
branch and price approach. It details the branching procedure and shows how heuristic HC
is used to obtain integer solutions. Section 9.3 presents computational results. Section 9.4
concludes the chapter.

9.1 Heuristic subproblem

This section presents a heuristic pricing subproblem to determine columns to be added to the
master problem. It is twofold: first, it decides which relocation containers should be picked
up; second, it decides where to relocate these containers. These decisions are taken based
on the values of dual variables and heuristic relocation rules. As before, we use attainable
layouts and different bounds to speed up the subproblem.

Algorithm 9.1 summarizes the column generation approach with the heuristic subprob-
lem. The restricted master problem is initialized with columns corresponding to the solution
of Heuristic HC. Attainable container positions describe at which positions each container
may be located at each period. Attainable positions at period 1 are identical to the initial
layout. For later periods, attainable positions are updated with relocations of columns added
to the restricted master problem.

During the solution procedure, the subproblem is executed for each period t. It generates
columns for every position (i, j) where the retrieval container t may be located. For each
position, we determine an upper bound on the number of relocations needed to retrieve
the target container. For this purpose, we use attainable container positions. We count
the number of potentially filled positions and the number of different containers above the
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Algorithm 9.1 Column generation with heuristic subproblem
initialize restricted master problem (RMP) and attainable positions
repeat

add column(s) with negative reduced cost to RMP
update attainable positions with added column(s)
solve RMP
for t = 1 to T − 1 do

for all attainable positions (i, j) of retrieval container t do
compute R(i,j) based on attainable container positions
compute stack heights smin

k and smax
k

for r = LBt to R = min(Rt
max,1, R(i,j)) do

if columns with r relocations may have negative reduced costs then
determine pick-up of r relocation containers (step 1)
update stack heights smax

k for pick ups
if columns with given pick-ups may have negative reduced costs then

determine input of r relocation containers (step 2)
end if

end if
end for

end for
end for

until no column with negative reduced costs found
return solution for RMP

target container. The bound R(i,j) is set to the minimum of these two values. The maximum
number of relocations R equals the minimum of Rt

max,1 and R(i,j).

We illustrate the computation of R(i,j) with two examples. Figure 9.1 displays an initial
bay layout with 16 containers. Figure 9.2 shows attainable positions for containers 9 to 16 at
period 9 for this layout. First, we compute R(4,3) to retrieve container 9 from position (4, 3)
(colored). Attainable container positions indicate that positions (4, 4) to (4, 6) may be oc-
cupied. They also show that containers 11, 12, 13 and 15 may be located in these three
positions. We obtain R(4,3) = min{3, 4} = 3. Second, we determine R(4,1) to retrieve con-
tainer 9 from position (4, 1) (colored). Positions (4, 2) to (4, 6) may be occupied. Containers
11, 12, 13 and 15 may be located in these five positions and R(4,1) = min{5, 4} = 4.

We aim to generate only columns that can be applied in an integer solution. We try not
to generate columns that relocate containers to suspended positions. For this purpose, we
determine minimum and maximum stack heights at period t, smin

k and smax
k , for all stacks k.

We allow only relocations to positions (k, l) with smin
k + 1 ≤ l ≤ smax

k + r. We use the initial
bay layout to determine smin

k . We simply count the number of containers that are neither
retrieved nor relocated in stack k up to period t (t included). Constraint (9.1) defines smax

k

based on values of variables bijnt of the restricted master problem. The current retrieval
container is excluded since it is impossible to relocate containers on its top.

smax
k =

⌈

N
∑

n=t+1

H
∑

l=1

bklnt

⌉

∀k = 1 . . . ,W (9.1)
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Figure 9.1: Initial bay lay-
out at period 1

6 9 11 12 9 11 12 9 11 12
13 15 13 15 13 15

5 9 11 12 9 11 12 9 11 12 9 11 12
13 15 13 15 13 15 13 15

4 9 11 12 9 11 12 9 11 12 9 11 12
13 15 13 15 13 15 13 15

3 9 11 12 9 11 12 9 11 12 9 11 12
13 15 13 15 13 15 13 15

2 9 11 12 16 9 11 12 9 11 12
13 15 13 15 13 15

1 10 14 9 11 12 9 11 12
13 15 13 15

1 2 3 4

Figure 9.2: Attainable container positions at
period 9

6 9 (0.13)

5 9 (0.35) 12 (0.39)

4 9 (0.13) 11 (0.22) 12 (0.19) 13 (0.17)
15 (0.03)

3 11 (0.78) 9 (0.03) 12 (0.22)
13 (0.17)

2 16 (1.00) 9 (0.14) 12 (0.20)
13 (0.22) 15 (0.22)

1 10 (1.00) 14 (1.00) 15 (0.54) 9 (0.22) 13 (0.43)
15 (0.22)

1 2 3 4

smin
k 1 2 0 0

smax
k 1 3 1 3

Figure 9.3: Bay layout at period 9 indicating container positions and values of variables
bijnt > 0 (values in brackets) as well as minimum and maximum stack heights

We illustrate the computation of smax
k with the help of Figure 9.3. It represents the bay

configuration at period 9 given by values of variables bijnt. Only variables bijnt > 0 are shown.
We compute smax

k with Constraint (9.1) for this configuration and obtain: smax
1 = ⌈1.00⌉ = 1,

smax
2 = ⌈3.00⌉ = 3, smax

3 = ⌈0.54⌉ = 1 and smax
4 = ⌈2.46⌉ = 3. We determine smin

k for the
initial layout depicted in Figure 9.1 and obtain: smin

1 = 1 (container 10), smin
2 = 2 (containers

14 and 16), smin
3 = 0 and smin

4 = 0.

We use the information provided by R, smin
k and smax

k during the next steps. For each
retrieval position (i, j), we create columns with different numbers of relocations. The number
of relocations is bounded by the initial lower bound LBt and the maximum number of
relocations R. We generate columns for each tuple (t′, i′, j′, r′) to retrieve container t′ from
position (i′, j′) and to relocate r′ blocking containers. We also impose that containers are
only relocated to positions (k, l) with k 6= i′ and smin

k + 1 ≤ l ≤ smax
k + r′.

We introduce two lower bounds on negative reduced costs to check if columns with
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negative reduced costs may exist for tuple (t′, i′, j′, r′). We use the following notation to
formulate the bounds:

– N j contains all containers that may be located at position (i′, j);

– γin
n represents the maximum value to put relocation container n into position (k, l):

γin
n = max(k=1,...,i′−1,i′+1,...,W,l=smin

k
+1,...,smax

k
+r′)(γklnt′);

– τn represents the maximum benefit that can be obtained by relocating container n:
τn = min(j=j′+1,...,j′+r′|n∈N j)(γi′jnt′ − γin

n ) ;

– N r is a set of size r′ that contains containers with the smallest τn;

– τij represents the maximum benefit that can be obtained by relocating containers from
position (i, j):
τij = min(n∈N j)(γi′jnt′ − γin

n ).

Constraint (9.2) determines a lower bound on reduced costs via the maximum benefit of
containers; Constraint (9.3) via the maximum benefit of positions. Only if both constraints
hold, the heuristic subproblem may generate columns with negative reduced costs.

r′ +
∑

n∈N r′

τn + δi′j′t′ − µt′ < 0 (9.2)

r′ +

j′+r
∑

j=j′+1

τi′j + δi′j′t′ − µt′ < 0 (9.3)

Proof. Only columns with negative reduced costs are added to the restricted master problem.
Bounds are computed for a given tuple (t′, i′, j′, r′). This implies that container t′ is retrieved
from position (i′, j′) and r′ containers are relocated from positions (i′, j′ + 1) to (i′, j′ + r)
to positions (k, l) with k 6= i′ and smin

k + 1 ≤ l ≤ smax
k + r′. In addition, containers may only

be picked up from attainable positions. Equation (9.4) defines reduced cost for this specific
case. It is an adapted version of the general Equation (8.32).

j′+r′
∑

j=j′+1

∑

k 6=i′

smax

k
+r′

∑

l=smin

k
+1

∑

n∈N j

xs
i′jklnt′ · (1 + γi′jnt′ − γklnt′) + δi′j′t′ − µt′ < 0 (9.4)

We know that
∑∑∑∑

xs
i′jklnt′ · 1 = r′. The term

∑

n∈N r′ τn is a valid lower bound on
∑∑∑∑

xs
i′jklnt′ · (γi′jnt′ − γklnt′) since it is computed with the most beneficial containers.

The term
∑j′+r

j=j′+1 τi′j is a valid lower bound on
∑∑∑∑

xs
i′jklnt′ · (γi′jnt′ − γklnt′) since it

is computed with the highest benefit for each position.

We illustrate the computation of γin
n , τn and τij with the help of Figure 9.4. It presents

non-zero values of dual variables γijnt at period 9. We consider the case where container 9
has to be retrieved from position (4, 3) with three relocations: t′ = 9, i′ = 4, j′ = 3 and
r′ = 3. This means that containers can be picked up from positions (4, 4) to (4, 6). These
positions are colored with dark gray. We determine possible relocation containers for these
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6 -0.61 (12)

5 0.13 (12) 0.84 (12) 0.13 (12) -0.63(13)
-0.35 (15)

0.17 (10) 0.26 (12) 0.13 (12) -0.63 (13)
4 0.61 (13) 0.17 (14) -0.17 (14) -0.35 (15)

0.17 (16)
0.39 (10) 0.39 (12) 0.39 (12) 0.98 (13) 0.35 (10) 0.35 (11)

3 1.00 (13) 0.39 (14) 0.13 (12) 0.98 (13)
0.39 (15) 0.39 (16) -0.17 (15)

0.09 (12) 0.60 (15) 0.39 (12) 0.98 (13) -0.30 (10) -0.30 (11)
2 0.65 (15) -0.17 (12) 0.50 (13)

-0.30 (14) -0.30 (16)
0.39 (12) 0.98 (13) 0.35 (11) 0.54 (12)

1 0.65 (15) 0.80 (13) 1.00 (15)
1.20 (16)

1 2 3 4

δ439 = 0.33 µ9 = 0.33

γin
11 = 0.00 γin

12 = 0.39 γin
13 = 1.00 γin

15 = 0.65

τ11 = 0.00 τ12 = −1.00 τ13 = −1.63 τ15 = −1.00
τ4,4 = −1.63 τ4,5 = −1.63 τ4,6 = −1.00

Figure 9.4: Values of dual variables γijnt at period 9 with associated containers (in brackets)
and resulting benefits for relocations

positions with Figure 9.2: N 4 = N 5 = N 6 = {11, 12, 13, 15}. Positions to which containers
may be relocated depend on minimum and maximum stack heights (see Figure 9.3). Possible
positions are colored with light gray.

We illustrate the computation of γin
n , τn and τij on some examples: γin

12 = max(0.00, 0.09,
0.13, 0.26, 0.39) = 0.39, τ13 = min(−0.63 − 1.00,−0.63 − 1.00, 0.00 − 1.00) = −1.63 and
τ4,4 = min(0.00−0.00, 0.13−0.39,−0.63−1.00,−0.35−0.65) = −1.63. All other parameters
are determined in the same way. The resulting values are reported in Figure 9.4. From the
dual solution we obtain δ439 = 0.33 and µ9 = 0.33. Here, columns with negative reduced
costs may exist: Constraint (9.2) holds since 3+(−1.63−1.00−1.00)+0.33−0.33 = −0.63;
Constraint (9.3) holds since 3 + (−1.63− 1.63− 1.00) + 0.33− 0.33 = −1.26.

Step 1 - Pickup of relocation containers

If columns with negative reduced may be generated for tuple (t′, i′, j′, r′), we determine which
container n is picked up from each position (i′, j′ +1) to (i′, j′ + r). We use a minimum cost
flow problem to represent possible pick-ups and their benefits. We define a directed graph
G = (V,A) with vertex set V = V 1∪ V 2∪ V 3∪ V 4 and arc set A = A1∪A2∪A3. We also
define lower and upper bounds l and u on arcs A1, A2 and A3 and weights k on arcs A2.
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uA1 = 1

lA1 = 0

h6

h5

h4

lA2 = 0

uA2 = 1

knj = γi′jnt′ − γin
n

c11

c12

c13

c15

o s

lA3 = 1

uA3 = 1

0.00
0.00

0.00

−1.00

−0.26

−0.26

−1.00

−1.63
−1.63

−0.65
−1.00

−1.00

Figure 9.5: Minimum cost flow network to determine container pick-ups for y4,3,9,9 and r = 3
and its optimal solution

– V 1 = {o} where o is the source node;

– V 2 = {cn | n ∈ N
j ∃ j = j′ + 1, . . . , j′ + r′} where cn represents container n;

– V 3 = {hj | j
′ + 1 ≤ j ≤ j′ + r′} where hj represents position (i′, j);

– V 4 = {s} where s is the sink node;

– A1 = {(o, cn)}
lA1 = 0 and uA1 = 1 since a container may or may not be picked up;

– A2 = {(cn, hj) | n ∈ N
j}

lA2 = 0 and uA2 = 1 since a container may or may not be picked up,
knj = γi′jnt′ − γin

n : maximum benefit to pick up container n from position (i′, j) and
relocate it;

– A3 = {(hj, s)}
lA3 = uA3 = 1 since a container has to be picked up from position (i′, j).

Figure 9.5 illustrates the flow network for our example where container 9 has to be
retrieved from position (4, 3) and where three blocking containers have to be relocated. It
also illustrates an optimal solution for this problem where container 12 is picked up from
position (4, 6), container 13 from position (4, 5) and container 15 from position (4, 4). The
minimum cost is −3.63.

We implement a linear programming model to solve the above described minimum cost
flow problem. Linear variables inn describe flows on arcs A1, variables anj flows on arcs A2
and parameters outj flows on arcs A3. We set inn = 0 if arc (o, cn) does not exist, anj = 0
if arc (cn, hj) does not exist, outn = 0 if arc (hj, s) does not exist and outn = 1 if arc (hj, s)
does exist. We obtain
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min
N
∑

n=1

H
∑

j=1

knj · anj

s.t.

inn =
H
∑

j=1

anj ∀n = 1, . . . , N (9.5)

N
∑

n=1

anj = outj ∀j = 1, . . . , H (9.6)

0 ≤ inn ≤ 1 ∀n = 1, . . . , N (9.7)

0 ≤ anj ≤ 1 ∀n = 1, . . . , N, j = 1, . . . , H (9.8)

The objective function minimizes the cost of the flow. Constraints (9.5) and (9.6) impose
mass balance constraints. Constraints (9.7) and (9.8) define variable domains. Since we
solve a flow problem all variables anj take integer values. The solution of this flow problem
indicates which containers have to be picked up: anj = 1 indicates that container n should
be picked up from position (i′, j). The set P contains the resulting relocation containers.

We use the obtained solution to tighten the lower bound on reduced costs. We update the
maximum stack height smax

k for k 6= i. Like before we sum over variables bijnt. But now, we
exclude container t and containers n ∈ P from the sum. These containers are not included
since they are supposed to be in stack i. We then update γin

n for pick-up containers with the
updated stack height. Only if Constraint (9.9) holds, the subproblem may generate columns
with negative reduced costs that pick up containers determined by the flow problem. This
validity of the bound may be proved with the same mechanism as before.

r′ +
∑

n∈P

j′+r
∑

j=j′+1

anj · γi′jnt′ −
∑

n∈P

γin
n + δi′j′t′ − µt′ < 0 (9.9)

For our example, only the maximum stack height of stack 3 changes: it is reduced from
1 to 0. This implies that containers can no longer be relocated to position (3, 4). However,
this has no impact on any γin

n since γijnt′ for position (3, 4) is not maximal for any container.
Constraint (9.9) holds since 3 + (−0.61− 0.63− 0.35)− (0.39 + 1.00 + 0.65) = −0.63.

Step 2 - Input of relocation containers

If Constraint (9.9) holds, we determine where to put relocation containers. Values of dual
variables and the relocation rules from Heuristic HC (see Section 6.3) guide this decision.
The objective is to relocate each container n ∈ P into position (k, l) for which γklnt′ is
maximal. If several positions have identical γklnt′ , relocation rules from Heuristic HC are
used to determine the target stack k. If several possible heights l in stack k have the same
benefit, one is chosen arbitrarily.
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For our example, we have to determine where to relocated containers 12, 13 and 15. We
start by relocating container 12. Dual variables (see Figure 9.4) do not indicate where to
relocate container 12 since several γkl12t′ are maximal. According to the relocation rules of
Heuristic HC, container 12 should be relocated to stack 3. The height is chosen arbitrarily,
e.g. 3. In this case, container 12 is relocated to position (3, 3). Then, container 13 is
relocated. Dual variables indicate that it should be relocated to position (2, 3). Finally,
container 15 is relocated. Dual variables suggest to relocate it to positions (3, 1) or (3, 2).
But, if container 15 is relocated to stack 3 it has to be relocated to position (3, 4) above
container 12. Instead, we relocate container 15 to position (1, 2) with the highest attainable
γklnt. The created column has a reduced cost of 3+(−0.61−0.39)+(−0.63−1.00)+(−0.35−
0.60) + 0.33− 0.33 = −0.58.

As seen in the example, executed relocations impact relocations of subsequent containers
and might block beneficial relocations. If the generated column does not have negative
reduced costs, we execute step 2 again, but relocate containers from the lowest to the topmost
relocation container. This increases the number of generated columns and decreases the risk
that we omit beneficial columns.

After generating columns for all periods, all retrieval positions and all numbers of re-
locations, we add columns with negative reduced to the restricted master problem. These
columns are also used to update attainable positions.

The columns generated by the heuristic subproblem depend on attainable positions and
on values of variables bijnt in the restricted master problem. This prevents the subproblem
from generating lots of columns that can never be part of an integer solution. But, this also
implies that some columns with negative reduced costs may not be generated. However,
dual variables should guide the heuristic subproblem towards promising columns that lead
to relevant attainable positions and a good solution of the restricted master problem.

9.2 Heuristic branch and price

There is no guarantee that the solution of the restricted master problem is optimal since the
heuristic subproblem does not necessarily generate all columns with negative reduced costs.
Consequently, the obtained solution cannot be used as a lower bound on the initial integer
problem. That is why, we aim to obtain good integer solutions quickly rather than solving
the restricted master problem to optimum.

Section 6.3 showed that Heuristic HC performs well, even if it does not obtain optimal
solutions. This implies that the used relocation rules perform well for most situations, but
not for all. The restricted master problem is initialized with the solution of Heuristic HC.
If the subproblem generates a new column with negative reduced costs for period t, this
indicates that the overall solution might be improved by relocating containers differently at
period t. We evaluate the quality of the suggested column with Heuristic HC. We apply
columns obtained by Heuristic HC for periods 1 to t − 1 and the new column for period t
to the initial layout. This leads to a new layout with fewer containers. We apply Heuristic
HC to the new layout.

The benefits are twofold. First, we obtain a new integer solution. Second, we generate
new columns for periods t+ 1 to T − 1 that can be added to the restricted master problem.
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These new columns for t′ > t ensure that the new column at period t can enter the solution
of the restricted master problem immediately. Without columns for periods t′ > t it might
happen that the new column would violate consistency constraints of the bay (e.g. if it
relocates container n to position (i, j), but no column in the model retrieves container n
from position (i, j) in subsequent periods). In addition, new columns for t′ > t are used to
update attainable positions and enlarge the pool of columns that can be generated in the
sequel.

Heuristic HC can only be applied to integer layouts where each container is located at
exactly one position (all variables bijnt take binary values). It cannot be applied to periods
after the first fractional layout (some variables bijnt take fractional values) and is run only
for few columns. We introduce a branching procedure to be able to run the heuristic for
more columns at different periods. We branch only on integer layouts. When branching
at period t, all created nodes impose the first t − 1 columns currently in the solution and
different columns for period t. This postpones the first fractional period and makes sure
that Heuristic HC can be run for later periods.

To evaluate the quality of a node, we determine lower and upper bounds on the number
of relocations. We apply the columns imposed by the node to the initial layout and count
the number of executed relocations. This leads to a new integer layout with fewer containers.
We compute lower and upper bounds for this new layout with the procedure explained in
Section 6.3 and with Heuristic HC. To obtain the lower and upper bounds of the node, we
add the number of already executed relocations to the lower and upper bound of the new
layout. We implemented three strategies to explore the branching tree: smallest lower bound
first, smallest upper bound first and smallest sum of lower and upper bound first. To avoid
memory problems we reduce the size of the branching tree by omitting nodes with an upper
bound above a given threshold.

The solution time of the restricted master problem increases with the number of added
columns. To speed up its solution, we remove columns from the model if a threshold is
overpassed. In this case, we remove all columns with a reduced cost above a given limit from
the model. Only for periods with few columns, no columns are removed.

Algorithm 9.2 describes the complete solution procedure. The restricted master problem
and attainable positions are initialized. Every node is solved using column generation with
the heuristic subproblem. If possible, we run Heuristic HC for columns added to the model.
These columns are added to the restricted master problem and used to update attainable
positions. If the number of columns in the restricted master problem reaches the threshold,
columns are removed based on their reduced costs. If no more columns are generated for the
node, we branch and create new nodes. Columns generated during the branching procedue
are also added to the restricted master problem and used to update attainable positions. The
solution procedure ends if no more nodes have to be handled and the best integer solution
is returned.

9.3 Computational results

This section evaluates different variants of the heuristic branch and price approach to deter-
mine which parameter settings obtain the best results. It also compares the obtained results
to other approaches from literature.

10/2013 EMSE-CMP Page 133



CHAPTER 9. HEURISTIC BRANCH AND PRICE APPROACH FOR CRP

Algorithm 9.2 Heuristic branch and price approach

if optimality criterion holds then
return optimal heuristic solution

end if
initialize attainable positions
rootNode ← initialize restricted master problem (RMP)
nodesToHandle ← rootNode
repeat

node ← get node from nodesToHandle
repeat

solve node with column generation with heuristic subproblem
run heuristic HC
add generated columns and update attainable positions
remove columns

until no new columns were generated
create new nodes
nodesToHandle ← new nodes
add generated columns and update attainable positions

until nodesToHandle is empty
return best integer solution

For the heuristic branch and price approach, we have to decide how much time should
be spent to solve each node and which columns should be kept in the master problem. This
is no easy choice. If each node is solved to optimum and all columns are kept in the master
problem, chances are higher to create those columns that may lead to a better solution.
But, only few nodes can be explored. If we limit the time spent to solve each node and keep
few columns in the master problem, more nodes may be explored. But, promising columns
may not be generated. Several parameters define the columns to be added and removed, the
branching strategy and time limits:

– maxAdd: maximum reduced cost for which a column is added to the master problem;

– maxUpdate: maximum reduced cost for which a column is used to update attainable
container positions;

– maxNbCol: threshold above which columns are removed from the master problem;

– minNbColPeriod: minimum number of columns per period to remove columns;

– maxRem: maximum reduced cost above which a column is removed;

– brStrat: chosen branching strategy;

– brOrder: order in which nodes are handled;

– maxUB: threshold above which a new node is omitted;

– timeGlobal: global time limit;

– timeNode: time limit per node.
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Table 9.1: Experimental settings to evaluate different variants of the heuristic branch and
price approach

General parameters:
maxNbCol = 50 ·N minNbColPeriod = 10
maxUB = 1.25 · best integer solution timeLimit = 5min

Variant maxAdd maxUpdate maxRem brStrat brOrder timeNode

BP -A 0- 0+ 0+ - - -
BP -B 0- 0+ 0+ last int LB + UB -
BP -C 0- 0+ 0+ last int LB -
BP -D 0- 0+ 0+ last int UB -
BP -E 0- 0+ 0+ tnode+1 LB + UB -
BP -F 0- 0+ 0+ tnode+1 LB -
BP -G 0- 0+ 0+ tnode+1 UB -
BP -H 0- 0+ 0+ tnode+1 LB + UB 1.0 ·N
BP -I 0- 0+ 1+ tnode+1 LB + UB -

Table 9.1 summarizes the different analyzed variants. Parameters maxNbCol, minNbCol-
Period, maxUB and timeGlobal are identical for all variants and only displayed once. Vari-
ant BP -A adds columns with reduced costs < 0 to the restricted master problem and uses
columns with reduced costs ≤ 0 to update possible container positions. When removing
columns, all columns with reduced costs > 0 are removed. Variant BP -A does not branch
but applies the Heuristic HC as often as possible for new columns. Variants BP -B to BP -
G test different branching strategies. Variants BP -B to BP -D branch on the last integer
layout in the solution. Variants BP -E to BP -G branch on the first period for which the
current node does not impose a column. In both cases, a node is generated for all columns
in the restricted master problem for the given period (also for those not in the solution).
Variants BP -B and BP -E handle the node with the smallest LB + UB first, variants BP -C
and BP -E the node with the smallest LB and variants BP -D and BP -G the node with
the smallest UB. Variant BP -H limits the time that is spent on each node. Variant BP -I
increases the threshold above which columns are removed from the model.

Experiments are carried out on a computer with Intel(R) Xeon(R) CPU clocked at
2.67GHz (dual core), 3.48GB RAM and operating with Windows XP Professional. We
use Cplex 12.1 to solve the master problem and the network flow problem in the subprob-
lem. Experiments are run on a sample of 10 instances for different bay sizes. The time limit
is set to 5 minutes. If the time limit is reached or the solution process stops due to memory
limits, the best integer solution obtained so far is returned.

Tables 9.2 and 9.3 compare the solution quality of variants BP -A to BP -I. Table 9.2
reports the best integer solution obtained with each variant for each instance. Optimal
solutions are marked in bold; solutions identical to the solution on Heuristic HC in italic.
Table 9.3 provides more details on the different variants. It reports average values for the
number of relocations and indicates the number of instances solved to optimum. It also
shows the number of handled and remaining nodes, the number of times the subproblem
and the Heuristic HC were executed and the number of columns added and removed from
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Table 9.2: Number of relocations for variants BP -A to BP -I for sample instances

Instance BP -A BP -B BP -C BP -D BP -E BP -F BP -G BP -H BP -I

4-5-8 17 16 17 16 17 17 16 17 17
4-6-27 16 14 14 14 14 14 14 14 14
4-7-35 21 20 21 20 20 21 20 20 20
5-4-24 18 17 17 17 17 17 17 17 17
5-5-31 24 24 24 24 24 24 24 24 24
5-6-32 29 24 25 24 24 25 24 26 24
5-7-30 29 29 29 29 29 29 29 29 29
6-6-29 39 39 39 39 39 39 39 39 39
6-10-32 63 63 63 63 63 63 63 63 63
10-10-1 144 144 144 144 144 144 144 144 144

the master problem. It also presents the percentage of time spent in the master problem, in
the subproblem and creating nodes during branching.

Variant BP -A solves the problem at the root node. It improves the heuristic solution for
some instances, but obtains the optimal solution only once. As discussed above, the heuristic
can be applied only to integer layouts. Here, it is run only few times and few solutions are
explored.

Variants BP -B to BP -D obtain better results. They branch on the last integer layout
of the master problem. This increases the number of explored nodes and consequently the
number of added columns and the number of times the Heuristic HC is run. They obtain
optimal solutions for several instances. But, for instance 10-10-1 the heuristic solution is
not improved. For this instance, the master problem is long to solve. Consequently, the
subproblem and the heuristic are called only few times and the branching procedure is not
started.

Variants BP -E to BP -G branch on each period. But, they mostly evaluate the same
nodes as BP -B to BP -D within the given time limit. Consequently, the performance of
BP -E to BP -G is similar to the performance of BP -B to BP -D.

Comparing the order in which nodes are handled shows that UB and LB + UB perform
slightly better than LB. This shows that the lower bound provides a poor estimation on the
number of relocations and misjudges nodes.

Variant BP -H imposes a time limit on each node to avoid that too much time is spent on
each node. The number of explored nodes increase, but the solution quality is not increased.
The subproblem and the heuristic are called fewer times, since the time limit on a node may
prevent their execution. If the time limit is reached while solving the master problem, the
master problem is not aborted. Thus, more time than imposed by the time limit may be
spent on a node.

For instances BP -B to BP -I, around 98% of all added columns are removed. Removed
columns may be added to the master problem later on. Adding columns previously removed
from the master problem, accounts for around 22 to 24% of added columns. Variant BP -I
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Table 9.3: Performance comparison of variants BP -A to BP -I

Variant Best sol Inst Nodes Nodes Calls Calls
[nb rel] opt handled remain sub heur

BP -A 40.0 1 1.0 0.0 48.4 32.3
BP -B 39.0 5 13.0 17.4 599.3 104.1
BP -C 39.3 3 13.0 25.4 609.3 107.7
BP -D 39.3 5 17.6 26.3 689.1 120.3
BP -E 39.1 5 16.7 18.6 2 291.1 1 758.8
BP -F 39.3 3 17.6 26.3 689.1 120.3
BP -G 39.0 5 15.0 16.1 577.6 106.3
BP -H 39.3 4 21.0 25.6 706.6 210.0
BP -I 39.1 5 18.6 19.8 574.0 94.2

Variant Columns Columns Time Time Time
added removed mas [%] sub [%] bra [%]

BP -A 9 250.2 7 939.9 88.3 10.6 0.0
BP -B 84 485.5 83 067.8 69.1 30.1 0.0
BP -C 80 848.3 79 435.2 70.7 28.5 0.0
BP -D 84 714.7 83 234.0 70.4 28.8 0.0
BP -E 87 077.5 85 597.0 62.5 36.7 0.0
BP -F 84 714.7 83 234.0 70.4 28.8 0.0
BP -G 84 125.6 82 630.6 71.0 28.2 0.0
BP -H 93 825.2 92 247.3 70.5 28.6 0.0
BP -I 45 215.1 42 218.9 76.0 23.0 0.0

shows the impact of removing fewer columns from the model. It removes around 93% of
added columns, but adding previously removed columns still accounts for around 17% of
added columns. BP -I performs worse than other variants. More time is spent on solving
the master problem, because of the increased number of variables. This reduces the number
of explored nodes and the number of times the subproblem and the heuristic are called.

On average more than 70% of the solution time is spent in the master problem and less
than 36% in the subproblem. The time spent in the master problem increases with the size
of the instance. It exceeds 95% for instances 6-10-32 and 10-10-1. As mentioned before, this
decreases the overall performance since the subproblem and the heuristic are executed only
few times. The time needed for creating nodes and branching can be neglected.

We run BP -H on all instances with a time limit of 5 minutes. Table 9.4 compares
BP -H to existing solution approaches relocating only blocking containers. It indicates the
average number of relocations and the average solution time per instance set for each solution
approach. KH refers to the heuristic proposed by Kim and Hong (2006), HC to the slightly
modified heuristic of Caserta et al. (2012), CM to the corridor method from Caserta, Voß
and Sniedovich (2011), RB to the random based procedure from Caserta et al. (2009), RCM
to the random based procedure using the corridor method from Caserta and Voß (2009) and
IDA∗ to the approach from Zhu et al. (2012). For CM , a feasible solution is not obtained for
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all instances and the average is computed only with solved instances (see Zhu et al. (2012)).
For RCM , results are only published for the biggest instances.

Variant BP -H obtains better results than KH, HC, CM and RB, but worse results than
RCM and IDA∗. For instances 3-3 to 4-5, the time needed to find the best integer solution
is comparable with run times of other approaches. For bigger instances, the time needed to
find the best integer solution increases and overpasses solution times of other approaches.

Only Zhu et al. (2012) publish results for single instances1. Table 9.5 compares their re-
sults and our results for non-trivial instances in more detail. It shows the average number of
relocations for IDA∗ and BP -H for non-trivial instances and counts the number of instances
where one approach outperforms the other. It also compares the number of evaluated relo-
cations. For IDA∗, each node in the branching tree corresponds to exactly one relocation.
For BP -H, we know the number of different columns added to the master problem. But,
each column may contain several relocations. To obtain an upper bound on the number
of explored relocations we multiply the number of columns with the maximum number of
relocations per column (H − 1).

Results show that IDA∗ obtains better results than BP -H for several instances of dif-
ferent instance sets. BP -H obtains better results than IDA∗ on 12 instances for instance
sets 5-9, 5-10 and 6-10. The exact values of explored relocations cannot be compared, but
we may use them to extract some tendencies. For instance sets 3-3 to 5-5, IDA∗ evaluates
fewer relocations then BP -H. When exploring the branching tree, it updates the global
lower bound and stops if the best found solution equals the global lower bound. BP -H does
not update the global lower bound and stops if all nodes are explored or if the time limit is
reached. For instance sets 5-6 to 10-10, IDA∗ explores much more nodes, but obtains only
slightly better results. This shows that the column generation approach guides the solution
into the right direction. But, results also show that the overall heuristic branch and price
approach has to be improved to obtain better results.

1Results can be downloaded from \http://www.zhuwb.com/crp
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Table 9.4: Average number of relocations for different solution approaches for CRP relocating only blocking containers

KH HC CM RB RCM IDA∗ BP -H

PC used Pentium IV Intel(R) Xeon Pentium IV Core 2 Duo Pentium IV Intel Core i7 Intel(R) Xeon
2.67 GHz 2 GHz 2.66 GHz 2.67 GHz

512 MB RAM 3.48 GB RAM 512 MB RAM 2 GB RAM 512 MB RAM 12 GB RAM 6.48 GB RAM

Inst nbRel time[s] nbRel time[s] nbRel time[s] nbRel time[s] nbRel time[s] nbRel time[s] nbRel best int [s]

3-3 7.1 0.1 5.1 0.1 5.4 0.1 5.1 60.0 5.0 1.0 5.0 0.1
3-4 10.7 0.1 6.3 0.1 6.5 0.1 6.2 60.0 6.2 1.0 6.2 0.1
3-5 14.5 0.1 7.1 0.1 7.3 0.1 7.1 60.0 7.0 1.0 7.0 0.1
3-6 18.1 0.1 8.5 0.1 7.9 0.2 8.6 60.0 8.4 1.0 8.4 0.2
3-7 20.1 0.1 9.3 0.1 8.6 0.1 9.4 60.0 9.3 1.0 9.3 0.1
3-8 26.0 0.1 10.7 0.1 10.5 0.2 10.8 60.0 10.7 1.0 10.7 0.1
4-4 16.0 0.1 11.0 0.1 9.9 0.1 10.3 60.0 10.2 1.0 10.4 0.2
4-5 23.4 0.1 13.6 0.1 16.5 0.5 13.4 60.0 13.0 1.0 13.1 0.4
4-6 26.2 0.1 14.7 0.1 19.8 0.5 14.4 60.0 14.0 1.0 14.1 2.0
4-7 32.2 0.1 16.9 0.1 21.5 0.5 16.6 60.0 16.1 1.0 16.2 4.5
5-4 23.7 0.1 16.8 0.1 16.6 0.5 15.7 60.0 15.4 1.0 15.6 15.4
5-5 37.5 0.1 21.2 0.1 18.8 0.5 19.8 60.0 18.9 1.0 19.2 27.2
5-6 45.5 0.1 24.3 0.1 22.1 0.8 23.1 60.0 22.1 1.0 22.5 28.6
5-7 52.3 0.1 26.3 0.1 25.8 0.8 24.9 60.0 24.3 1.0 24.7 41.0
5-8 61.8 0.1 29.6 0.1 30.1 0.8 29.1 60.0 27.9 1.0 28.2 21.2
5-9 72.4 0.1 32.4 0.1 33.1 1.4 32.0 60.0 30.7 1.0 30.9 41.1
5-10 80.9 0.1 35.5 0.1 36.4 1.9 34.8 60.0 33.6 1.0 33.8 56.3
6-6 37.3 0.1 35.9 0.1 32.4 1.7 32.6 60.0 30.9 60.0 31.1 1.0 33.0 44.6
6-10 75.1 0.1 49.9 0.1 49.5 2.0 47.8 60.0 46.2 60.0 47.2 1.0 48.0 66.0
10-6 141.6 0.1 101.3 0.1 102.0 4.7 83.6 60.0 76.6 60.0 85.0 1.0 97.6 32.3
10-10 178.6 0.2 139.3 0.1 128.3 6.3 121.3 60.0 105.5 60.0 126.3 1.0 136.7 13.6

Average 47.7 0.1 29.3 0.1 29.0 1.1 27.0 60.0 - - 26.8 1.0 28.1 18.8

1
0
/
2
0
1
3

E
M

S
E
-C

M
P

P
age

139



CHAPTER 9. HEURISTIC BRANCH AND PRICE APPROACH FOR CRP

Table 9.5: Comparison of IDA∗ and BP -H for non-trivial instances

Inst IDA∗ BP -H Nb. IDA∗ Nb. BP -H IDA∗ BP -H BP -H
nbRel nbRel better better rel columns max rel

3-3 6.8 6.8 0 0 17.7 36.0 144.0
3-4 7.5 7.6 1 0 47.0 109.0 436.0
3-5 8.8 8.8 0 0 60.6 89.3 357.0
3-6 11.5 11.5 0 0 889.3 2 094.5 8 378.0
3-7 11.7 11.7 0 0 848.7 284.9 1 139.4
3-8 12.3 12.3 0 0 424.1 543.9 2 175.5
4-4 10.7 10.9 6 0 218.0 2 415.2 12 075.9
4-5 13.6 13.7 3 0 2 015.2 21 672.6 108 362.8
4-6 14.6 14.6 2 0 16 967.5 21 941.3 109 706.6
4-7 16.9 16.9 1 0 14 831.7 26 077.4 130 386.8
5-4 15.6 15.8 6 0 5 021.9 44 523.6 267 141.3
5-5 18.8 19.1 11 0 87 344.2 73 642.1 441 852.3
5-6 22.3 22.7 10 0 1 160 108.1 93 442.2 560 653.3
5-7 24.8 25.3 12 0 2 850 340.3 73 754.1 442 524.9
5-8 28.1 28.4 8 0 4 489 678.1 64 369.3 386 215.5
5-9 30.8 31.1 10 3 5 430 310.5 49 873.5 299 240.8
5-10 33.9 34.1 8 4 5 224 125.4 34 998.9 209 993.5
6-6 31.1 33.0 27 0 7 162 773.0 82 292.4 576 047.0
6-10 47.5 48.3 15 5 9 070 816.0 13 004.2 91 029.1
10-6 85.0 97.6 40 0 12 522 798.9 12 753.4 140 287.7
10-10 126.3 136.7 38 0 9 404 815.6 7 174.0 78 913.5

Average 27.5 28.9 198.0 12.0 2 735 450.1 29 766.3 184 145.7
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9.4 Conclusion

This chapter presented a heuristic branch and price approach for the container relocation
problem. Its objective is to obtain good integer solutions rather than the optimal linear
relaxation of the initial problem. A heuristic subproblem generates columns to be added
to the restricted master problem. It works in two steps. First, a network flow problem
determines relocation containers to be picked. To do so, it uses values of dual variables, the
current primal solution of the master problem and attainable positions. It then determines
to which positions containers should be relocated to. To do so, it uses values of dual variables
and heuristic relocation rules.

To obtain new integer solutions, the Heuristic HC is run for columns generated by
the heuristic subproblem. The heuristic can only be run on integer layouts. To explore
columns generated after the first fractional layout, the heuristic column generation approach
is embedded in a branching procedure. We compared different variants of this heuristic
branch and price approach to evaluate different branching strategies and the impact of
different input parameters. One variant was then compared to existing solution approaches.
It outperformed some approaches and obtained some new best known solutions. However,
further improvements are necessary to become more competitive.

Several aspects of the branch and price approach can potentially be improved. Improving
the quality of lower and upper bounds should improve the obtained results. The heuristic
branch and price, uses lower and upper bounds presented in Section 6.3. Instead, it could
be implemented with the improved version of these bounds presented in the same section.
In addition, more experiments could be run to adjust input parameters.

Results show that most of the time is spent solving the master problem. Consequently, the
subproblem and the heuristic are called few times and few solutions are explored. Probably,
the solution approach would obtain better results if the solution time of the master problem
can be decreased. This is especially true for bigger instances.
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Chapter 10

Dynamic container relocation problem

The academic container relocation problem assumes that the entire retrieval sequence is
known in advance. This is realistic for vessels where the stowage plan is known ahead in time.
But, exact truck arrivals can hardly be forecasted and are revealed over time. Consequently,
the retrieval order is not known in advance. This chapter deals with a dynamic and more
realistic version of the container relocation problem, where information about container
retrievals becomes revealed over time.

Section 10.1 introduces the dynamic container relocation problem and presents related
literature. Section 10.2 discusses the expected value of relocations as a criteria to evaluate the
quality of a given bay layout. Section 10.3 details different relocation strategies. Section 10.4
evaluates the performance of these strategies. Section 10.5 concludes the chapter.

10.1 Introduction

10.1.1 Problem description

Container terminals have limited information on exact arrival times and on the arrival se-
quence of trucks. It is not uncommon, that terminals obtain this information only when
trucks check in at the terminal gate. When processing the truck at the terminal gate, a
container request is issued to retrieve the corresponding container from the storage area.
The terminal operator has to decide in which order to serve the current container requests
and where to relocate blocking containers. The decision is based on known requests, since
the terminal operators has no information on future retrievals. Figure 10.1 illustrates the
dynamic container relocation problem. The objective is to minimize truck service times.

The order in which requests are served impacts truck service times and the number of
relocations. Our main objective is to evaluate the benefit of knowing the retrieval sequence
ahead in time, rather than evaluating different service policies. We suppose that trucks
are served with a first-come, first-served policy. In this case, truck service times depend
mainly on the number of relocations. Our objective is to minimize the number of reloca-
tions. Assumptions A2 to A8 from the container relocation problem remain valid for the
dynamic container relocation problem. Assumption A1 (known retrieval order) is replaced
by assumption A9 and assumption A10 is added.
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Figure 10.1: Dynamic container relocation problem

A2: No new containers arrive during the retrieval process.

A3: Only the topmost container of a stack can be picked up. A relocated container can
only be put on the top of another stack or on the ground.

A4: Containers are only relocated within the bay since relocations between bays are very
time consuming.

A5: The bay size is limited by the maximum numbers of stacks and tiers.

A6: Containers in the same bay have the same size and can be piled up in any order.

A7: The distance traveled within one bay (horizontally and vertically) has little impact on
the time to relocate or to retrieve containers.

A8: Only blocking containers located above the current target container may be relocated.

A9: Container requests become known when trucks are processed at the terminal gate.

A10: Trucks are served with a first-come, first-served policy.

We recall the notation introduced in Chapter 6 for the container relocation problem.
We use the same notation for the dynamic container relocation problem. A bay consists of
W stacks and H tiers. Each slot within the bay is addressed with coordinates (i, j) where
i ∈ {1, . . . ,W} and j ∈ {1, . . . , H}. The initial configuration contains N containers, labeled
1, . . . , N . Containers have to be retrieved in ascending order, e.g. container 1 is the first one
to be retrieved and container N the last one. At each time period t (t = 1, . . . , T ), container
n = t has to be retrieved and several containers may be relocated. Contrary to previous
chapters, container labels are not known from the beginning, but revealed over time. To
represent partly knowledge about the future retrieval sequences, we introduce a look-ahead
horizon D (D ≥ 1). It indicates that at each period t the exact retrieval sequence for the
next D containers is known: at period t, Da

t = t is the first known retrieval container and
Db

t = t+D − 1 the last known retrieval container.
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10.1.2 Related literature

To the best of our knowledge no scientific literature exists on the dynamic container relo-
cation problem. But, several articles deal with the related stacking problem. The aim is
to find good storage positions for incoming containers based on partial knowledge about
their destinations, weights and departure times. The main objectives are to use the storage
space efficiently, to reduce traveling times within the terminal and to reduce the number of
relocations. Here, we only present studies aiming to minimize the number of relocations.

Dekker et al. (2006) and Borgman et al. (2010) evaluate different stacking strategies and
the impact of available information via simulation. The performance of each strategy is
measured via the number of relocations, the yard crane workload and the level of occupancy
of the yard. They show that stacking containers on ground positions reduces the number of
relocations. They compare scenarios with no information on future retrievals with scenarios
with imprecise information on future departure times. Results show that using imprecise
information increases the efficiency of the terminal. Park et al. (2011) present an online
search algorithm to decide where to stack incoming containers. The algorithm tries variants
of the best-so-far policy and can easily adapt to changes at the terminal. Results show that
this algorithm can reduce quay crane delays, but does not obtain the best results for average
truck waiting times.

Zhao and Goodchild (2010) use simulation to evaluate the use of information on truck
arrivals to reduce relocations during the retrieval process. They run experiments for differ-
ent levels of information and different bay configurations. Results show that already limited
information on future arrivals can reduce the number of relocations. They also show that up-
dating information in real time lowers information requirements. Jang et al. (2013) consider
the problem with groups of homogeneous containers. They present a genetic algorithm for
the case where the retrieval order of groups is known. They also present a statistical model
to estimate the expected number of relocations when no information on future retrievals is
available.

Yang and Kim (2006) consider the problem of stacking incoming containers in a way
that minimizes the expected number of relocations. They relocate each container at most
once. They address a static and a dynamic version of the problem. For the static problem,
arrival and due dates of all containers are known in advance; for the dynamic version, arrival
and due dates become known when containers arrive at the terminal. They use dynamic
programming and a genetic algorithm to solve the static problem and use heuristics based
on known departure times to solve the dynamic problem. Preston and Kozan (2001) present
a container location model that minimizes the time needed to transfer containers from the
storage area to vessels. This model includes traveling and relocation times. They formulate
a mixed integer linear programming model and solve the problem via a genetic algorithm.

10.2 Expected value of relocations

This section introduces a criteria to indicate the quality of a given bay layout if we do not
have any information on future retrievals. In this case, all containers in the bay are equally
likely to be retrieved next. We determine the expected value of relocations, EV R, necessary
to retrieve one container from the given bay. To do so, we compute the average number
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Figure 10.2: Expected value of relocations EV R for two different layouts with 6 containers

of blocking containers. Equation (10.1) defines the expected value EV R. It depends on
the number of containers in the bay, N ′, and on the number of containers per stack, s(i)
for all i = 1, . . . ,W . Figure 10.2 illustrates the computation on two examples: EV RA =
1/6 · ((0 + 1+ 2)+ (0+ 1)+ (0)) = 0.67 and EV RB = 1/6((0 + 1)+ (0+ 1)+ (0+ 1)) = 0.5.

EV R =
1

N ′
·

W
∑

i=1

s(i)−1
∑

j=0

j (10.1)

Lemma 1. The minimum difference between the lowest stack and the highest stack equals 0
if N ′ mod W = 0 and 1 if N ′ mod W 6= 0.

Proof. The minimum difference between the lowest stack and the highest stack is obtained if
containers are evenly distributed among stacks. If N ′ mod W = 0, each stack has a height
of N ′/W ; if N ′ mod W 6= 0 some stacks have height ⌈N ′/W ⌉ and others ⌊N ′/W ⌋.

Lemma 2. The expected value of relocations EV R is minimal if the difference between the
lowest stack and the highest stack is minimal.

Proof. We assume that for layout 1 the difference between the lowest stack and the highest
stack is not minimal. Let a be the lowest stack in layout 1 and b the highest stack. We
obtain layout 2 by moving the topmost container from stack b to stack a. Let EV Rab be the
expected value of layouts 1 and 2 without stacks a and b. We compare the expected value
of layouts 1 and 2.

EV R2 − EV R1 =



EV Rab +

s(a)
∑

j=0

j +

s(b)−2
∑

j=0

j



−



EV Rab +

s(a)−1
∑

j=0

j +

s(b)−1
∑

j=0

j





= s(a)− s(b− 1)

It is hence possible to reduce EV R by moving one container from the highest stack b to
the lowest stack a as long as s(a) < s(b)−1. Consequently, EV R is minimal if the difference
between stacks a and b is minimal.

Page 146 EMSE-CMP Elisabeth Zehendner



10.3. DIFFERENT RELOCATION STRATEGIES

10.3 Different relocation strategies

This section presents different relocation strategies that may be applied to the dynamic
container relocation problem for a partial known retrieval order of length D.

Strategy S1: Random heuristic

For each container to be relocated, the heuristic randomly chooses a stack that is not full.

Strategy S2: Leveling heuristics for D = 1 and D = 2

The objective of the leveling heuristic is to relocate containers in a way that minimizes
the expected value of relocations EV R. Lemma 1 and 2 show that containers should be
distributed equally over stacks to minimize EV R.

For D = 1, only the current retrieval container is known. For each container to be
relocated, the heuristic determines current stack heights and relocates the container to the
lowest stack. If several stacks have the same height, the leftmost stack among them is chosen.
For D = 2, the heuristic uses information about the second retrieval container to keep it
accessible. Like before it balances stack heights by relocating containers to the lowest stack.
But containers are only relocated on top of the second retrieval container if no other positions
are free. If the second retrieval container itself has to be relocated, it is relocated to the
highest stack.

The subsequent strategies S3 to S8 determine a partial solution to retrieve the next D
containers with a minimum number of relocations. We use an adapted version of the model
presented in Section 7.2.1 to do so (details are given below).

Strategy S3: Relocations are updated every time new information becomes avail-
able

The problem is solved repeatedly for each period t = 1, . . . , T with information on containers
n = Da

t , . . . , D
b
t . We initialize the model for period t = 1 with variables and constraints

corresponding to periods t = Da
1 , . . . , D

b
1 and solve it. We then adapt the model to the

next period t = t+ 1 by adding variables and constraints corresponding to period Db
t (since

variables and constraints corresponding to periods Da
t to Db

t − 1 are already in the model).
Since it is not possible to revoke decisions taken at earlier periods we fix variables representing
container positions at the beginning of period t according to the solution obtained in the
previous iteration. We solve the updated model. The process ends when the time horizon is
reached. At each iteration, the objective function (10.2) minimizes the number of relocations
necessary to retrieve all D containers for the given initial layout.

min
W
∑

i=1

H
∑

j=2

W
∑

k=1

H
∑

l=1

Db
t

∑

t′=Da
t

N
∑

n=t′+1

xijklnt′ (10.2)
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Strategy S4: Relocations are determined for the next D containers and are not
updated

The complete relocation sequence to retrieve the next D containers is determined with the
information on these D containers. The solution is not updated if new information becomes
available. The problem is solved repeatedly at periods 1, 1+D, 1+2D, . . . with information
on the next D retrieval containers. We initialize the model for period t = 1 with variables
and constraints corresponding to periods t = Da

1 , . . . , D
b
1 and solve it. We then adapt the

model to the next iteration at period t = t + D by adding variables and constraints for
periods Da

t to Db
t . To prevent revoking decisions taken at earlier periods, we set variables

representing container positions at the beginning of periods t − D + 1 to t to the values
obtained in the previous iteration. We solve the updated model. The process ends when
the time horizon is reached. At each iteration, the objective function (10.3) minimizes the
number of relocations necessary to retrieve all D containers for the given initial layout.

min
W
∑

i=1

H
∑

j=2

W
∑

k=1

H
∑

l=1

Db
t

∑

t′=Da
t

N
∑

n=t′+1

xijklnt′ (10.3)

Strategy S5: No detailed information about far-away retrievals

We suppose that we know the exact retrieval sequence of the next D containers. In addition,
we know the subsequent D′ containers to be retrieved, but not their exact retrieval order.
Keeping subsequent retrieval containers D′ on top of stacks should reduce the number of
relocations necessary at the next iteration to retrieve these containers. We introduce integer
variables aijnt that count the number of containers located above the next retrieval contain-
ers n ∈ D′:

aijnt =











0 if container n is not located at position (i, j) at the beginning of period t,

R number of containers above container n if it is located at position (i, j)

at the beginning of period t.

The objective function (10.4) penalizes the number of relocations for the current iteration
(periods Da

t to Db
t ). In addition, it penalizes the number of containers above subsequent

retrieval containers at the beginning of the next iteration at period Db
t +1. Constraint (10.5)

defines variables aijnt for period Db
t + 1 for the next D′ retrieval containers.

min
W
∑

i=1

H
∑

j=2

W
∑

k=1

H
∑

l=1

Db
t

∑

t′=Da
t

N
∑

n=t′+1

xijklnt′ + w1 ·
W
∑

i=1

H−1
∑

j=1

∑

n∈D′

aijnDb
t+1 (10.4)

H
∑

j′=j+1

∑

n′∈N\{n}

bij′n′Db
t+1 ≤ aijnDb

t+1 + (H − 1) · (1− bijnDb
t+1)

∀i = 1, . . . ,W, j = 1, . . . , H − 1, n ∈ D′

(10.5)

With strategies S6 and S7, we want to analyze the impact of different intermediate bay
layouts on the total number of relocations. The objective is to be able to determine layouts
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that are advantageous with regard to unknown future retrievals. We compare two cases:
distribute containers evenly among stacks and keep one stack empty. Again, only the initial
layout for the next iteration (the layout at period Dt

b + 1) is of interest.

Strategy S6: Distribute containers evenly among stacks

The objective is to distribute containers evenly among all stacks to reduce the expected value
EV R. We use integer variables aijnt (introduced above) to count the number of containers
located above each container. The expected value EV R is identical to the total of all aijnt.
The objective function (10.6) penalizes the number of relocations and to minimizes the
expected value at period Db

t + 1. Constraint (10.7) defines variables aijnt for period Db
t + 1

for all containers.

min
W
∑

i=1

H
∑

j=2

W
∑

k=1

H
∑

l=1

Db
t

∑

t′=Da
t

N
∑

n=t′+1

xijklnt′ + w1 ·
W
∑

i=1

H−1
∑

j=1

N
∑

n=Db
t+1

aijnDb
t+1 (10.6)

H
∑

j′=j+1

∑

n′∈N\{n}

bij′n′Db
t+1 ≤ aijnDb

t+1 + (H − 1) · (1− bijnDb
t+1)

∀i = 1, . . . ,W, j = 1, . . . , H − 1, n = Db
t + 1, . . . , N

(10.7)

Strategy S7: Keep one stack free

The objective is to obtain a layout with at least one empty stack. This increases the expected
value EV R. It might nevertheless be beneficial to have an empty stack to place containers
in the next iteration. We add integer variables fit and et to determine if at least one stack
is empty.

fit =

{

0 if stack i is empty at the beginning of period t,

1 otherwise;

et =

{

1 if at least one stack i is empty at the beginning of period t,

0 otherwise.

The objective function (10.8) penalizes the number of relocations and rewards an empty
stack at period Db − t + 1. Constraint (10.9) makes sure that fit equals 0 only if stack i is
empty. Constraint (10.10) determines if at least one empty stack exists.

min
W
∑

i=1

H
∑

j=2

W
∑

k=1

H
∑

l=1

Db
t

∑

t′=Da
t

N
∑

n=t′+1

xijklnt′ − w3 · eDb
t+1 (10.8)

H
∑

j=1

N
∑

n=Db
t+1

bijnDb
t+1 ≤ H · fi,Db

t+1 ∀i = 1, . . . ,W (10.9)

W
∑

i=1

fi,Db
t+1 + eDb

t+1 ≤ W (10.10)
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Strategy S8: First-come, first served policy not necessary

We want to analyze the impact of being able to serve the next D trucks in any order. This
should decrease the number of relocations. A container blocking a retrieval container may
itself be a retrieval container. In this case, it can be retrieved directly, rather than being
relocated. Until now we imposed, that container n is retrieved at period n. Now, container n
may be retrieved at any period n−D + 1, . . . , n+D − 1.

The objective function (10.11) minimizes the number of relocations. It takes into account
that some containers n < t may be relocated at period t. Constraints (10.12) imposes that
each container is retrieved within its time window. Constraint (10.13) makes sure that each
container is retrieved exactly once. Variables xijklnt and bijnt for n ≤ t have to be added
to existing constraints. A part from this, constraints remain identical and are not repeated
here.

min
W
∑

i=1

H
∑

j=2

W
∑

k=1

H
∑

l=1

Db
t

∑

t′=Da
t

N
∑

n=t′−D+2

xijklnt′ (10.11)

W
∑

i=1

H
∑

j=1

t+D−1
∑

t′=t−D+1

yijnt′ = 1 ∀n = 1, . . . , N (10.12)

t+D−1
∑

n=t−D+1

yijnt = 1 ∀t = 1, . . . , T (10.13)

10.4 Computational results

We test strategies S1 to S8 on the instances sets 3-3, 3-4, 3-5, 3-6, 3-7, 3-8, 4-4, 4-5, 4-6, 4-7,
5-4 and 5-5 introduced by Caserta et al. (2012) and hence on 12 · 40 = 480 instances. All
experiments are carried out on a computer with Inter(R) Xeon(R) CPU clocked at 2.67GHz
(dual core), 3.48GB RAM and operating with Windows XP Professional. We limit the run
time to 60 minutes per instance. Cplex 12.1 is used to solve the mixed integer programming
models for S3 to S8.

Table 10.1 summarizes the experimental settings. We test these strategies with different
look-ahead horizons D = 1, 2, 3, 5 and 7. For S5, we set D′ = D. We impose a strict
hierarchy to i) minimize the number of relocations per iteration and ii) optimize the initial
bay layout for the next iteration. Weights w1, w2 and w3 are defined based on the following
observations. A relocation has a cost of 1. For S5, the maximum layout cost is obtained if
all D′ containers are located at height 1 and H− 1 containers are located above. For S6, the
maximum layout cost is obtained if containers are stacked as high as possible. In this case,
⌊N
H
⌋ stacks contain H containers and one stack contains N −H · ⌊N

H
⌋ containers. For S7, the

maximum benefit from one empty stack should be lower than the cost of one relocation.

Table 10.2 presents experimental results. It displays the numbers of solved instances (out
of 480), the average numbers of relocations and the average run times of service strategies
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10.4. COMPUTATIONAL RESULTS

Table 10.1: Experimental setting for evaluating relocation strategies

Strategy Look-ahead horizon D Weights w

S1 n.a.
S2 1, 2
S3 3, 5, 7
S4 3, 5, 7
S5 3, 5, 7 w1 = (D′ · (H − 1) + 1)−1

S6 3, 5, 7 w2 = (⌊N
H
⌋ ·
∑H−1

i=0 i+
∑N−H·⌊N

H
⌋−1

i=0 i+ 1)−1

S7 3, 5, 7 w3 = 0.5
S8 3

Table 10.2: Performance of relocation strategies S1 to S8 for different look-ahead horizons

Strategy S1 S2-1 S2-2

Solved inst. 480 480 480
Avg. relocations 18.9 15.0 14.0
Avg. CPU time [s] <0.1 <0.1 <0.1

Strategy S3-3 S4-3 S5-3 S6-3 S7-3 S8-3

Solved inst. 480 480 480 480 480 460
Avg. relocations 14.9 16.1 13.2 13.8 16.8 13.6
Avg. CPU time [s] 24.8 11.4 11.4 12.1 12.7 66.4
Avg. time per iter. 1.2 1.4 1.4 1.5 1.6 8.0

Strategy S3-5 S4-5 S5-5 S6-5 S7-5

Solved inst. 480 480 480 480 480
Avg. relocations 13.1 14.6 12.5 13.2 15.0
Avg. CPU time [s] 28.1 10.6 10.8 12.9 11.4
Avg. time per iter. 1.5 2.2 2.2 2.6 2.3

Strategy S3-7 S4-7 S5-7 S6-7 S7-7

Solved inst. 480 480 480 479 480
Avg. relocations 12.4 13.6 12.2 12.7 13.7
Avg. CPU time [s] 38.3 15.9 22.6 35.5 18.4
Avg. time per iter. 2.2 4.4 6.3 9.7 5.0

SX-Y represents service strategy X with look-ahead horizon Y
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S1 to S8 for different look-ahead horizons D. Strategy SX-Y refers to strategy X with look-
ahead horizon Y. With strategies S1, S2, S3, S4, S5 and S7 all instances can be solved. One
instance cannot be solved sith S6-7 and 20 instances cannot be solved with S8-3.

Run times for strategies S1, S2-1 and S2-2 are fast enough to be applied in real-time at
the terminal. For strategies S3 to S7, run times per iteration increase for bigger look-ahead
horizons since the underlying models get bigger. But, for bigger look-ahead horizons fewer
iterations are necessary and the total run time may decrease. If the truck travel time between
the gate and the (un)loading area may be used to determine relocation moves, run times per
iteration for strategies S3 to S7 are also sufficient.

The numbers of relocations for all service strategies for different look-ahead horizons are
presented in more detail in Figure 10.3. It also compares the dynamic results to the offline
solution (Off) where the entire retrieval sequence is known in advance. The x-axis states the
service strategy with the associated look-ahead horizon. The y-axis indicates the number
of relocations. The boxplots represent the number of relocations obtained for 459 instances
(those solved by all strategies). Every boxplot indicates the median, the upper and lower
quartiles and outliers for one relocation strategy.

Relocation strategies S2 to S7 with limited knowledge on future retrievals perform well.
They outperform the random relocation strategy S1, but cannot reach the solution quality
of the offline solution with complete knowledge. For each strategy, the number of relocations
and their variances decrease when the look-ahead horizon increases.

Comparing strategies S3 and S4 suggests that it is beneficial to update relocation decisions
every time new information becomes available. However, results of S1, S2, S3 and S6 show
that for little information (D ≤ 3) seeking a leveled bay layout may be more beneficial than
updating relocation moves; for more information (D = 5, D = 7) results are similar.

Results for S1, S2 and S6, also show that the benefit of knowing more than the next 3
retrieval containers is limited. Comparing results S5-3 (D + D′ = 6) with S3-5 and S3-7
(D = 5 and D = 7) shows that knowing the exact retrieval order of far-away containers is of
little benefit. Results of S7 show that keeping one stack empty decreases the solution quality
since containers have to be stacked higher in the remaining stacks. Results of S4-3 and S8-3
show that serving trucks in any order rather than in FIFO order reduces the number of
relocations.

10.5 Conclusion

This chapter introduced the dynamic container relocation problem that has not been ad-
dressed in literature yet. We introduced the expected value of relocations EV R as an
indicator to determine the quality of a bay layout with no information on future retrievals.
We proved that EV R is minimal for balanced stack heights.

We presented different relocation strategies for partial knowledge of the retrieval se-
quence. We compared their solution qualities - indicated via the number of relocations -
for different look-ahead horizons. Results were also compared to a random relocation strat-
egy and to the optimal offline solution obtained if the entire retrieval sequence is known in
advance. It appeared that relocation strategies perform well and outperform the random

Page 152 EMSE-CMP Elisabeth Zehendner



10.5.
C

O
N

C
L
U

SIO
N

●

●●

●●

●●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●●●

●

●

●

●

●

●

●●

●

0
10

20
30

40
50

Strategy − Look−ahead horizon

N
b.

 r
el

oc
at

io
ns

Off S1 S2−1 S2−2 S3−3 S3−5 S3−7 S4−3 S4−5 S4−7 S5−3 S5−5 S5−7 S6−3 S6−5 S6−7 S7−3 S7−5 S7−7 S8−3

F
igure

10.3:
C

om
parison

of
diff

erent
relocation

strategies
for

diff
erent

look-ahead
horizons

1
0
/
2
0
1
3

E
M

S
E
-C

M
P

P
age

153



CHAPTER 10. DYNAMIC CONTAINER RELOCATION PROBLEM

strategy, but cannot reach the solution quality of the offline solution. Especially, strategies
trying to balance stack heights perform well. Run times seem to be short enough to be
applied at a terminal in real time.

To continue this work a more generic heuristic for D > 2 could be designed. This heuristic
could try to balance stack heights and to relocate known retrieval containers using reloca-
tion rules from heuristic HC. It would also be interesting to evaluate the competitiveness
ratio of the leveling heuristic to obtain more information on the worst case performance of
heuristic S2.

For strategies S5 and S6, the layout obtained among those with the same number of
relocations depends on cost parameters w1 and w2. The obtained layout strongly influences
the number of relocations in the subsequent periods since the solution obtained at one
iteration fixes the starting layout for the next iteration. It would be interesting to test how
the cost parameters influence the solution quality.

It would also be interesting to evaluate the impacts of information on future retrievals
and of the point in time when information becomes available (e.g., Wasesa et al.; 2011). This
would make it possible to evaluate the potential benefit of new technologies providing the
terminal with more details on truck arrivals.

Another approach to tackle the dynamic version would be stochastic programming to
include uncertainty directly into the model. The problem can also be extended to deal with
dynamic storage and retrieval requests simultaneously. In this case, the problem is to decide
in which order to serve trucks, where to locate incoming containers and where to relocate
blocking containers in order to minimize truck service times. Little literature exists on this
problem (Kim et al.; 2003; Casey and Kozan; 2012).

Page 154 EMSE-CMP Elisabeth Zehendner







Conclusion and outlook

Intelligent freight technologies (e.g., EDI, RFID and GPS) monitor and manage physical
assets and information flows. Container terminals use these technologies to exchange data
with their partners, to locate containers and equipment within the terminal, and to automate
tasks. This thesis illustrated, via two examples, how this information may be used to optimize
operations at the terminal. In the first part, announced arrival and departure dates and
announced volumes are used to optimize the allocation of straddle carriers. In the second
part, announced container retrievals and detailed knowledge of container positions are used
to optimize retrieval operations. This chapter summarizes the executed work and outlines
possibilities to continue this work.

The first part of this thesis addressed the straddle carrier allocation problem (SCAP).
The objective is to efficiently allocate straddle carriers to different transport modes (e.g.,
trucks, trains, barges and vessels). The objective is to minimize overall delays at the termi-
nal. This problem has not been addressed in literature before. The four main contributions
of this thesis for the straddle carrier allocation problem are the following. First, we intro-
duced a notation to describe different service strategies applied for different transport modes
at different container terminals. We also determined the complexity for some of these service
strategies. Second, we represented the straddle carrier allocation problem as a network flow
problem: containers to be moved are modeled as flows and available straddle carriers as arc
capacities. We modeled the network flow as a generic mixed integer linear program and
showed that the generic model can easily be adapted to different service strategies. Third,
we carried out a case study for a terminal at the Grand Port Maritime de Marseille. We
showed via simulation that results obtained by the deterministic optimization problem re-
main valid in an uncertain environment. Fourth, we combined the straddle carrier allocation
problem with the dimensioning of a truck appointment system. The idea is to use the truck
appointment system to deviate truck arrivals to less busy periods. Experiments carried out
with the adapted deterministic optimization model and the simulation model showed that
this combined approach reduces overall delays at the terminal.

To continue this work, the model may be extended to represent the situation within
the terminal in more detail. Container types with their specific requirements could be
differentiated. The handling capacity could also be represented in a more detailed way, e.g.
by including congestion and container positions within the yard. This would also provide
insights on the interconnection between straddle carrier allocation and storage allocation.
For this purpose, the optimization model could be combined with simulation or queuing
models. It would also be interesting to include stochastic aspects in the optimization model
or to combine the straddle carrier allocation problem with human resource management.



CONCLUSION AND OUTLOOK

The second part of this thesis addressed the container relocation problem (CRP). The
objective is to retrieve containers from a bay in a given sequence with a minimum number of
parasite relocations. Like most other studies, we considered the case where only containers
above the target container may be relocated. The four main contributions of this thesis for
the container relocation problem are the following. First, we improved an existing binary
program for the container relocation problem. We introduced a preprocessing step - that
improves the performance of the binary program considerably - and two new upper bounds
on the number of relocations. Second, we presented the first column generation approach
for the container relocation problem. We implemented a binary programming subproblem
and two variants of an enumerative subproblem. We embedded column generation in a
branch and price approach. This approach solves small instances, but does not perform
well for bigger instances. Third, we introduced a heuristic branch and price approach. Its
objective is to obtain good integer solutions rather than the optimal fractional solution. It
uses a heuristic subproblem to generate new columns - based on dual variables and heuristic
relocation rules - and runs a heuristic repeatedly to obtain new integer solutions. It obtained
good results for some bigger instances, but can probably be improved further. Finally, we
addressed the dynamic container relocation problem where the retrieval sequence becomes
revealed over time. We introduced a criterion to evaluate the quality of a bay and evaluated
different relocation strategies.

This work may be continued in several directions. For a deeper understanding of the
problem, domination rules on relocations could be determined. These rules could then be
used to obtain more performing heuristics. It would also be interesting to compare the
performance of the binary model used here to other existing mixed integer models. It should
be worthwhile to search for cuts to add to the binary model and to the master problem.
For the exact branch and price approach, a more performing subproblem has to be found
to speed up the solution procedure. Alternative branching strategies could also be tested.
For the heuristic branch and price approach, the best setting for its parameters has to be
determined. In addition, the time spent solving the master problem has to be reduced.
The solution quality may also be improved if the solution of the repeatedly run heuristic
is improved. For the dynamic container relocation problem, a more theoretic analysis of
the problem should be carried out to determine worst case performances. It is also possible
to address different variants of the container relocation problem. It would be possible to
relax assumption A8 limiting relocations on containers above the target container or to
include storage operations. For the dynamic version, different scenarios with regard to the
availability and reliability of information could be analyzed.
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Appendix A

Extended summary in French

Dans cette thèse, nous utilisons les informations obtenues par les nouvelles technologies
(telles que l’échange de données informatisées (EDI), la géolocalisation (GPS) ou la radio-
identification (RFID)) pour optimiser les opérations d’un terminal à conteneurs. Nous étu-
dions deux cas : l’affectation de ressources internes dans un terminal et l’enlèvement de
conteneurs de la zone de stockage. Ce résumé fait la synthèse du travail présenté dans ce
mémoire et met en avant nos différentes contributions.

Chapitre 1 : Introduction générale

Ce chapitre familiarise le lecteur avec le transport conteneurisé. Il décrit le fonctionnement
des terminaux à conteneurs et les problèmes d’optimisation existants. De plus, il détaille le
contenu du mémoire.

1.1 Transport conteneurisé

Le transport conteneurisé a connu une forte croissance dans les 30 dernières années. Les
volumes transportés (mesurés en TEU (équivalent vingt pieds)) ont été multipliés entre
1980 et 2012 pour atteindre 160 millions TEU en 2012. Pour faire face à cette croissance,
le nombre et la taille des navires n’ont pas cessé d’augmenter. Le marché du transport
conteneurisé maritime est dominé par quelques grands armateurs qui effectuent environ 50%
du transport conteneurisé. Les terminaux à conteneurs sont en concurrence pour attirer
les armateurs. Etant donné que les coûts d’exploitation des navires sont très importants,
la compétitivité d’un terminal à conteneurs dépend surtout des délais d’exécution et des
charges pour le (dé)chargement. Mais depuis plusieurs années, améliorer le raccordement
d’un terminal à son arrière-pays devient de plus en plus important pour optimiser la chaine
de transport globale.

1.2 Terminaux à conteneurs

Les terminaux à conteneurs sont composés de trois zones : le côté maritime où les navires sont
(dé)chargés, le yard où les conteneurs sont stockés et le côté terrestre où les camions, les trains
et les péniches sont (dé)chargés. Les terminaux utilisent différents types d’équipements. Les
grues de quai (dé)chargent les navires. Des cavaliers, des camions ou des véhicules à guidage
automatique (AGVs) transportent les conteneurs entre les différentes zones du terminal. Les
cavaliers peuvent soulever et poser les conteneurs eux-mêmes, alors que les camions et les
AGVs doivent être chargés et déchargés par des grues. Les cavaliers ou des portiques gèrent
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la zone de stockage. Dans le premier cas, les cavaliers opèrent le yard et transportent les
conteneurs entre les différentes zones. Dans le deuxième cas, les portiques gèrent le yard et
un autre type de véhicule transporte les conteneurs.

1.3 Problèmes d’optimisations présents dans les terminaux à conteneurs

La communauté de la recherche opérationnelle trouve une multitude de problèmes d’optimisation
dans les terminaux à conteneurs, p.ex. établir le plan de chargement, affecter les postes
d’amarrage et les grues de quai aux navires, affecter et ordonnancer le déplacement des con-
teneurs par les véhicules de transport internes, affecter les conteneurs aux emplacements de
stockage. Les approches de résolution exacte ne considèrent souvent qu’un problème spéci-
fique du terminal, alors que les différents problèmes sont fortement reliés. La simulation est
souvent utilisée pour représenter le terminal entier et les aspects stochastiques.

1.4 Nouvelles technologies

Les nouvelles technologies permettent de contrôler et de gérer les biens physiques et le flux
d’informations. Les terminaux à conteneurs les utilisent pour échanger des données avec
les armateurs, les transporteurs et la douane, mais aussi pour localiser les conteneurs et
leurs véhicules dans le terminal. Les nouvelles technologies sont aussi indispensables pour
l’automatisation. Les nouvelles technologies permettent au terminal d’améliorer la prise de
décisions et de renforcer la sécurité.

En communiquant avec les armateurs et les transporteurs, les terminaux à conteneurs
obtiennent des informations sur les volumes et les arrivées prévues et peuvent mieux gérer
leurs ressources internes. En ayant des informations exactes sur l’emplacement de chaque
conteneur, les terminaux peuvent gère la zone de stockage plus efficacement. Le GPS et /
ou la RFID sont utilisés pour localiser les conteneurs.

Part I : Problème d’affectation de cavaliers

La première partie de cette thèse traite le problème d’affectation de cavaliers aux véhicules
externes. Nous utilisons les informations sur les volumes et les dates d’arrivées prévues
pour optimiser l’affectation de cavaliers dans le but de minimiser la globalité des retards
au terminal. Cette étude se limite aux terminaux à conteneurs utilisant des cavaliers pour
transporter et (dé)stocker des conteneurs. Les cavaliers sont partagés entre différents mode de
transport (navire, camion, train, péniche). Le temps de service d’un véhicule externe dépend
fortement du nombre de cavaliers qui lui sont affectés. Actuellement, quelques terminaux
utilisent des systèmes de rendez-vous pour camions pour réduire les temps de service des
camions. Nous analysons les impacts d’un tel système sur la globalité des retards dans le
terminal. Nous utilisons la programmation en nombres entiers pour résoudre ce problème.

Chapitre 2 : Problème d’affectation de cavaliers

Le problème d’affectation de cavaliers n’a pas encore été étudié dans la littérature scientifique.
Ce chapitre introduit la problématique et résume la littérature reliée.
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2.1 Description du problème

Nous considérons un terminal qui n’utilise que des cavaliers pour les tâches de transport
et de stockage et qui sert différents modes de transport comme les navires, les camions, les
trains et les péniches. Nous supposons que le terminal affecte un cavalier à un type de tâche
pour une certaine durée pour simplifier la tâche des opérateurs. Cela a pour conséquence que
l’affectation des cavaliers ne peut être modifiée qu’à intervalles discrets. Les cavaliers sont
conduits par des opérateurs. Le terminal peut ainsi adapter sa capacité d’un jour à l’autre
par le nombre d’opérateurs embauchés. L’horizon du temps du problème d’affectation de
cavaliers est d’une journée de travail. Nous nous intéressons à deux questions : 1) Combien
de cavaliers faut-il pour le lendemain ? 2) Comment affecter ces cavaliers aux différents
modes de transport ? L’objectif est de réduire le retard de tous les modes de transport pour
augmenter la compétitivité du terminal.

L’affectation optimale dépend des conteneurs à (dé)charger pour chaque véhicule externe.
Les informations obtenues sur les arrivées et les volumes des navires, des trains et des péniches
sont assez fiables. Les arrivées et les volumes des camions peuvent être estimés, mais ne sont
pas connus avec certitude. Nous traitons ce problème à un niveau tactique et supposons
que l’ordonnancement de conteneurs sur les cavaliers est fait en temps réel par le système
opérationnel du terminal.

Nous divisons la journée en T périodes car les cavaliers ne peuvent être réaffectés qu’à
intervalles discrets. Nous utilisons le terme ‘tâche’ pour désigner toutes les opérations qui
doivent être exécutées pour chaque conteneur traité dans le terminal. Le terminal possède
des informations sur l’ensemble des véhicules arrivant I, la date d’arrivée ri et le nombre de
tâches par véhicule pi. Toutes les tâches doivent être exécutées avant la fin de la journée. La
capacité du terminal dépend du nombre de cavalier st par période t et de leur débit. Nous
définissons ce débit par un nombre moyen de tâches h qu’un cavalier peut exécuter dans une
période.

Les différents terminaux à conteneurs servent les différents modes de transport avec des
stratégies différentes. La stratégie choisie dépend du volume, du coût d’exploitation, du
niveau de connaissance et de la fiabilité des informations et de l’équipement du terminal.
Nous introduisons une notation α|β|γ pour décrire la stratégie utilisée pour un mode de
transport. α indique si un cavalier est affecté à exactement un véhicule ou s’il peut être
partagé entre tous les véhicules du même mode de transport. β décrit des spécifications
additionnelles pour un mode de transport comme la date d’arrivée, la date de départ, le
débit maximal. γ décrit les différentes manières de mesurer le retard, comme le temps passé
au terminal ou le nombre de tâches qui ne sont pas exécutées au départ du véhicule. La
figure A.1 expose cette problématique.

2.2 Littérature

Ce chapitre résume la littérature reliée au problème d’affectation de ressources. Peu d’articles
optimisent l’affectation de ressources dans les terminaux à conteneurs (Gambardella et al.;
1998, 2001; Vis et al.; 2005; Alessandri et al.; 2008; Kang et al.; 2008). Ces articles ont
pour but de minimiser les temps de service des navires, mais négligent le côté terrestre du
terminal. Notre approche est plus vaste car on considère aussi bien le côté maritime que le
côté terrestre du terminal.
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t = 1 t = 2 t = 3 t = 4 t = T - 2 t = T - 1 t = T...

Figure A.1: Problème d’affectation de ressources

Plusieurs articles s’adressent au problème opérationnel d’ordonnancement des conteneurs
sur les ressources internes disponibles (Kim and Kim; 1999; Böse et al.; 2000; Das and
Spasovic; 2003; Hartmann; 2004; Kim and Bae; 2004; Bish et al.; 2005; Briskorn et al.; 2006;
Froyland et al.; 2008; Balev et al.; 2009; Nguyen and Kim; 2009, 2010; Lee et al.; 2010;
Skinner et al.; 2013). Cette problématique est très différente de la nôtre. Premièrement,
ils se basent sur un nombre de ressources disponibles donné, tandis que nous essayons de
déterminer le nombre de ressources à affecter à chaque mode de transport. Deuxièmement,
ils se placent à un niveau opérationnel et supposent que l’on connait l’heure exacte à laquelle
chaque conteneur doit être chargé, alors que nous nous plaçons au niveau tactique où nous
avons pas ces informations détaillées. Souvent ces articles se focalisent sur le côté maritime
du terminal.

D’autres études combinent l’ordonnancement des tâches avec la planification de la main
d’œuvre (Legato and Monaco; 2003; Fancello et al.; 2011; Kim et al.; 2004) ou l’affectation
des emplacements de stockage (Kozan and Preston; 2006; Hadjiconstantinou and Ma; 2009;
Lee et al.; 2009; Wu et al.; 2013). D’autres articles, enfin, ordonnancent différents types de
véhicules internes simultanément (Meersmans and Wagelmans; 2001; Chen et al.; 2007; Lau
and Zhao; 2008; Zeng and Yang; 2009; Cao et al.; 2010; Chen, Langevin and Lu; 2013).

Chapitre 3 : Problème d’affectation de cavaliers

Ce chapitre représente le problème d’affectation de cavaliers comme un problème de flot et le
modèlise sous la forme d’un programme linéaire mixte. Nous présentons un modèle général
et des extensions pour adapter ce modèle à différentes stratégies de service. Nous discutons
aussi de la complexité des différentes stratégies.

3.1 Modèle de flot général

Nous représentons la problématique d’affectation de cavaliers comme un problème de flot. Le
flot représente les conteneurs à transporter et les capacités des arcs la capacité des cavaliers
affectés. Cette modélisation est inspirée par Gambardella et al. (2001). La figure A.2 illustre
cette formulation. Elle représente un terminal qui sert deux véhicules pendant une journée
de travail. Les nœuds ronds représentent les périodes de la journée. Les nœuds rectangu-
laires sont des sources de flot et représentent l’arrivée des véhicules avec leurs tâches pmi .
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Vehicle 2

Vehicle 1

Tâches à exécuter (pmi )

Wm
2,10Wm

2,9Wm
2,8Wm

2,7Wm
2,6Wm

2,5Wm
2,4

Zm
2,9Zm

2,8Zm
2,7Zm

2,6Zm
2,5Zm

2,4

Wm
1,6Wm

1,5Wm
1,4Wm

1,3Wm
1,2Wm

1,1

Zm
1,5Zm

1,4Zm
1,3Zm

1,2Zm
1,1

pm2

pm1

Tâches exécutées (Wm
i,t), limitées par le nombre de cavaliers affectés

Tâches retardées d’une période à la prochaine (Zm
i,t)

Figure A.2: Modèle de flot général

Chaque source est reliée à la période qui correspond à l’arrivé du véhicule. Les nœuds carrés
représentent les puits. Les flots Wm

i,t sur les arcs reliant les périodes avec les puits représen-
tent les tâches exécutées par véhicule et par période. Les capacités sur les arcs limitent le
nombre de tâches qui peuvent être exécutées en fonction du nombre de cavaliers affectés. Les
flots Zm

i,t sur les arcs reliant deux périodes représentent les tâches qui ne sont pas exécutées
et retardées d’une période. Il n’est pas possible de retarder des tâches au-delà du départ du
véhicule.

Nous modélisons le problème de flot comme un programme linéaire mixte. Nous utilisons
les paramètres et les variables suivants :

T Nombre de périodes de temps de la journée
M Nombre de mode de transports connectés au terminal
Im Nombre de véhicules du mode de transport m qui arrivent au terminal
t Index d’une période de temps, t = 1, . . . , T
m Index d’un mode de transport, m = 1, . . . ,M
i Index d’un véhicule du mode de transport m, i = 1, . . . , Im

rmi Période dans laquelle le véhicule i du mode de transport m arrive au terminal
dmi Période dans laquelle le véhicule i du mode de transport m part du terminal
st Nombre de cavaliers disponibles à la période t
hm Nombre moyen de tâches qu’un cavalier peut effectuer par période pour le mode

de transport m
Xm

i,t Nombre de cavaliers affectés au véhicule i du mode de transport m à la période t
Wm

i,t Nombre de tâches exécutées par le véhicule i du mode de transport m à la
période t

Zm
i,t Nombre de tâches du véhicule i du mode de transport m qui sont transférées à

la période t+ 1

Nous modélisons le modèle générique où chaque véhicule doit être servi dans sa fenêtre
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de temps. Ici, nous ne représentons que les contraintes les plus importantes.

Wm
i,t ≤ hm ·Xm

i,t ∀m = 1, . . . ,M, i = 1, . . . , Im, t = 1, . . . , T (3.1)

Zm
i,t = pmi −Wm

i,t ∀m = 1, . . . ,M, i = 1, . . . , Im, t = rmi (3.2)

Zm
i,t = Zm

i,t−1 −Wm
i,t ∀m = 1, . . . ,M, i = 1, . . . , Im, t = rmi + 1, . . . , T (3.3)

Zm
i,dmi

= 0, ∀m = 1, . . . ,M, i = 1, . . . , Im (3.4)

M
∑

m=1

Im
∑

i=1

Xm
i,t ≤ st ∀t = 1, . . . , T (3.5)

La contrainte (3.1) impose que le nombre de tâches exécutées par véhicule et par période
ne dépasse pas la capacité des cavaliers affectés. Les contraintes (3.2) et (3.3) sont les
contraintes de flot pour les tâches arrivées, exécutées et retardées. La contrainte (3.4) impose
que chaque véhicule est entièrement servi avant sa date de départ. La contrainte (3.5) limite
le nombre de cavaliers affectés par le nombre de cavaliers disponibles.

Grâce à la modularité du modèle nous pouvons simplement représenter différents ter-
minaux avec différentes stratégies de service. Nous créons un sous-modèle pour chaque
mode de transport qui représente ses caractéristiques. Pour ceci nous étendons le modèle
générique avec les éléments présentés dans la section 3.2. Les différents sous-modèles sont
ensuite reliés par une contrainte qui limite le nombre total de cavaliers affectés.

3.2 Extensions du modèle pour représenter différentes stratégies

Nous ajoutons des paramètres, variables et contraintes pour adapter le modèle générique à
différentes stratégies de service. Nous implémentons les cas ci-dessous. Nous indiquons aussi
quelle notation nous utilisons pour décrire chaque élément.

– Affectation de cavaliers (α)

– Les cavaliers sont affectés à un véhicule (α = ded)

– Les cavaliers sont affectés à un mode de transport et partagés parmi tous les
véhicules du même mode de transport (α = shar)

– Contraintes additionnelles (β)

– Les tâches ne peuvent pas être exécutées avant l’arrivée du véhicule (β = rv)

– Les tâches ne peuvent pas être exécutées après le départ du véhicule (β = dv)

– Le nombre maximal de tâches qui peuvent être exécutées par véhicule et par
période est limité (β = maxv)

– Le nombre maximal de tâches qui peuvent être exécutées par mode de transport
et par période est limité (β = maxm)

– Le nombre de cavaliers affectés ne peut pas être augmenté (β = non− incr)

– Mesures de retard (γ)
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– Minimiser le temps de service (γ =
∑

Cv)

– Minimiser le temps de service après la date de fin souhaitée (γ =
∑

Tv)

– Minimiser le nombre de tâches non-exécutées (γ =
∑

Uc)

– Servir le véhicule dans sa fenêtre de temps (γ = −)

– Minimiser le nombre d’équipes qui servent un véhicule (γ = Sv)

3.3 Analyse de sensibilité

Cette section présente une analyse de sensibilité. Dans un premier temps, nous déterminons
la meilleure implémentation du problème de flot comme programme linéaire mixte. Puis,
nous évaluons l’impact de différents paramètres. Nous nous apercevons que le nombre de
véhicules, le nombre de périodes, la largeur des fenêtres de temps et la stratégie appliquées
ont le plus d’impact sur le temps de calcul.

3.4 Analyse de complexité

Nous démontrons que notre problème d’affectation généralise des problèmes d’ordonnancement.
Ceci nous permet d’obtenir la complexité de différentes stratégies, qui peuvent être réduites,
pour la plupart, à un problème d’ordonnancement avec une complexité connu.

3.5 Formulation alternative

Nous présentons une formulation qui représente tous les véhicules du même mode de trans-
port de manière agrégée. Cette modélisation peut être utilisée seulement si les cavaliers sont
partagés parmi tous les véhicules du même mode de transport et ne peut donc être utilisée
que pour une partie des stratégies. Nous remplaçons les variables représentant un véhicule
(pmi , Xm

i,t, W
m
i,t et Zm

i,t) par des variables représentant un mode de transport avec tous ses
véhicules (pmt , Xm

t , Wm
t et Zm

t ). La figure A.3 représente le modèle agrégé pour un mode
de transport. Pour le modèle agrégé la taille du problème dépend seulement du nombre de
périodes et ne dépend plus du nombre de véhicules. Des expérimentations démontrent que
le modèle agrégé est plus performant que le modèle non-agrégé.

Tâches retardées d’une période à la prochaine (Zm
t )

Wm
10Wm

9Wm
8Wm

7Wm
6Wm

5Wm
4Wm

3Wm
2Wm

1

Zm
9Zm

8Zm
7Zm

6Zm
5Zm

4Zm
3Zm

2Zm
1

pm10pm9pm8pm7pm6pm5pm4pm3pm1 pm2

Tâches à exécuter (pmt )

Tâches exécutées (Wm
t ), limitées par le nombre de cavaliers affectés

Figure A.3: Modèle de flot agrégé

10/2013 EMSE-CMP Page 167



APPENDIX A. EXTENDED SUMMARY IN FRENCH

3.6 Perspectives

Cette section présente des perspectives pour continuer ce travail. Notre modèle pour l’affectation
des cavaliers inclut les caractéristiques les plus importantes. Il serait possible de le rendre
encore plus réaliste en rajoutant des détails comme les différents types de conteneurs ou les
accords syndicaux. Une autre possibilité serait de combiner notre modèle avec de la simu-
lation ou des systèmes de files d’attente pour modéliser la capacité des cavaliers en fonction
du nombre de cavalier affectés et de l’emplacement des véhicules externes et des conteneurs
dans le yard. Le modèle déterministe ne prend pas en compte tous les aléas qui apparaissent
dans des terminaux à conteneurs.

4. Etude de cas pour le Grand Port Maritime de Marseille

Nous effectuons une étude de cas pour un terminal du Grand Port Maritime de Marseille
(GPMM). Nous appliquons notre modèle d’optimisation sur des données réelles. Nous dé-
montrons via la simulation que l’affectation obtenue par le modèle d’optimisation se comporte
bien dans un contexte stochastique et que les retards sont estimés correctement.

4.1 La situation à Marseille

GPMM est un port généraliste qui est spécialement actif dans le domaine pétrolier. Il est l’un
des plus grands ports en Europe et le plus grand port en France. En 2012, il a manipulé 1 060
00 TEU. Le terminal étudié est un terminal multimodal qui sert des navires, des camions,
des trains et des péniches. Les navires doivent être servis dans leur fenêtre de temps, le débit
est limité par le débit des grues de quai. Les cavaliers sont affectés à un véhicule et le nombre
de cavaliers affectés ne peut pas être augmenté. (ded|rv, dv, non − incr,maxv|

∑

Cv). Les
barges doivent être servies le plus vite possible, le débit est limité par le débit des grues de
quai et les cavaliers sont affectés à un véhicule (ded|rv, dv,maxv|

∑

Cv). Les trains quittent
le terminal à une heure fixée même si toutes les tâches ne sont pas exécutées et les cavaliers
sont partagés parmi tous les trains (shar|rv, dv, |

∑

Uc). Les camions doivent être servis le
plus tôt possible mais au plus tard avant la fin de la journée. Les cavaliers sont partagés entre
tous les camions. (shar|rv, dv = T, |

∑

Cv). Nous présentons aussi les instances utilisées dans
la suite extraites de données obtenues du terminal.

4.2 Modèle d’optimisation

Nous combinons les éléments présentés dans le Chapitre 3 pour modéliser le terminal avec les
stratégies appliquées pour les navires, les camions, les trains et les péniches. Pour les navires,
les trains et les péniches chaque véhicule est représenté indépendamment. Les camions sont
représentés de manière agrégée.

Nous résolvons chaque instance avec différents nombres de cavaliers disponibles. Tous les
scénarios sont résolus très rapidement (en moins d’une seconde). La solution obtenue nous
indique comment affecter les cavaliers aux différents véhicules et les retards qui résultent de
cette affectation. La figure A.4 montre l’affectation et les retards associés pour une instance
avec 14 et 10 cavaliers disponibles. Pour déterminer le nombre de cavaliers nécessaires pour le
lendemain l’opérateur du terminal peut choisir le nombre minimum de cavaliers pour lequel
il obtient la qualité de service souhaitée.
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(a) 14 cavaliers : 1 tâche camion retardée,
barge servies dans 3 périodes, 0 tâches de train
non-exécutées
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(b) 10 cavaliers : 607 tâches camion retardées,
barge servies dans 5 périodes, 2 tâches de train
non-exécutées

Figure A.4: Allocation optimale et retards associés

4.3 Modèle de simulation

Nous décrivons le modèle de simulation utilisé pour représenter les aspects stochastiques
du terminal. Le modèle reproduit les stratégies appliquées pour les différents modes de
transport. De plus, il tient compte des interactions entre les différents véhicules, les cavaliers
et les grues de quai et rajoute de l’aléa sur l’arrivée et le volume des véhicules et sur le temps
de transport des conteneurs.

Pour les expérimentations nous adaptons le modèle de simulation sous Arena proposé par
Rodriguez Verjan and Dauzère-Pérès (2010). Le modèle de simulation prend l’affectation
des cavaliers déterminée par le modèle d’optimisation comme entrée. Nous évaluons cette
affectation pour différents niveaux de variabilité. Les résultats montrent que les retards
estimés par le modèle d’optimisation sont corrélés avec les retards obtenus par le modèle de
simulation.

Chapitre 5 : Combinaison avec le dimensionnement d’un système de
rendez-vous pour camions

Les terminaux à conteneurs utilisent parfois un système de rendez-vous pour réduire la
congestion au terminal. L’idée est d’étaler l’arrivée des camions sur la journée pour réduire
la congestion aux heures de pointe. Les systèmes de rendez-vous permettent aux opérateurs
du terminal de mieux prévoir la charge journalière et d’adapter les opérations. Les entreprises
de transport routier profitent de temps de service réduits (Sgouridis and Angelides; 2002;
Srour et al.; 2003; Morais and Lord; 2006; Giuliano and O’Brien; 2007; Maguire et al.; 2010).
Dans ce chapitre nous combinons l’affectation des cavaliers avec le dimensionnement d’un
système de rendez-vous pour camion. Nous étudions les impacts d’un système de rendez-vous
pour camions sur le retard global du terminal.

5.1 Introduction

Les systèmes de rendez-vous limitent le nombre de camions qui peuvent rentrer dans le ter-
minal par créneau horaire. Différentes manière d’implémenter ces systèmes existent (Morais
and Lord; 2006; Giuliano and O’Brien; 2007)). Nous nous concentrons sur le cas où la prise
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de rendez-vous est obligatoire pour entrer dans le terminal. Le rendez-vous doit être pris
pour un conteneur et pour un créneau. En retour, le terminal s’engage à servir chaque camion
dans le créneau réservé. Pour limiter l’impact sur les camions, les créneaux proposés doivent
être le plus proche possible des créneaux souhaités. Notre but est d’utiliser le système de
rendez-vous pour ainsi déplacer l’arrivée des camions dans des périodes moins chargées et
réduire le retard des camions, des trains, des péniches et des navires.

Peu de littérature existe sur le dimensionnement des systèmes de rendez-vous (Murty
et al.; 2005; Ioannou et al.; 2006; Huynh and Walton; 2008; Guan and Liu; 2009; Chen et al.;
2011; Chen, Govindan and Yang; 2013). Ces études supposent que la capacité affectée aux
camions est donnée et déterminent le nombre de camions à accepter pour cette capacité. Ils
négligent que les ressources internes sont partagées entre différents modes de transport.

5.2 Modèle linéaire

Nous adaptons le modèle agrégé du Chapitre 3 pour représenter le système de rendez-vous.
La figure A.5 représente le nouveau modèle. Les flots pmr représentent le nombre de tâches
qui souhaitent arriver à la période r. Les flots Zm

r,t représentent le nombre de tâches qui
souhaitent arriver à la période r, mais qui sont affectées à la période t. Les flots Wm

t

représentent le nombre de tâches à exécuter dans la période t et par conséquent le nombre
de rendez-vous à offrir pour la période t. Comme avant, Wm

t est limitée par la capacité des
cavaliers affectés.

Pour représenter le terminal complet nous combinons ce sous-problème avec les sous-
problèmes des autres modes de transport. Ceci nous permet de minimiser le retard global
du terminal.
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Tâches décalées d’une période à une autre (Zm
r,t)

Wm
10Wm

9Wm
8Wm

7Wm
6Wm

5Wm
4Wm

3Wm
2Wm

1

Zm
10,10

Zm
9,10Z

m
10,9Zm

7,8Zm
7,6

Zm
6,6

Zm
8,9 Zm

9,8

Zm
9,9Zm

8,8Zm
7,7

Zm
8,7Zm

6,7Zm
6,5

Zm
5,5

Zm
5,6Zm

3,4Zm
2,3

Zm
4,4Zm

3,3Zm
2,2Zm

1,1

Zm
4,5 Zm

5,4Zm
4,3Zm

3,2Zm
2,1Zm

1,2

pm10pm9pm8pm7pm6pm5pm4pm3pm2pm1

Tâches qui souhaitent arriver à la période (pmr )

Figure A.5: Modèle de flot pour le dimensionnement d’un système de rendez-vous pour
camions

5.3 Expérimentations numériques

Nous exécutons ce modèle avec une déviation maximale de 1 et de 2 périodes. Nous com-
parons les retards obtenus avec les résultats obtenus sans système de rendez-vous. Les ré-
sultats montrent que cette approche intégrée décale l’arrivée des camions vers des créneaux
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moins chargés. Ceci permet d’utiliser les cavaliers plus efficacement et de diminuer le retard
des camions, des trains et des péniches. Le système de rendez-vous pour camions peut alors
réduire le délai global au terminal.

Des expérimentations avec le système de simulation démontrent enfin que ces conclusions
restent valables dans un environnement stochastique.

Part II : Problème de repositionnement de conteneurs

La deuxième partie de la thèse traite le problème de repositionnement de conteneurs. Nous
utilisions les informations sur les conteneurs à enlever et leurs emplacements pour optimiser
le processus d’enlèvement. Les terminaux à conteneurs empilent les conteneurs pour mieux
utiliser la surface disponible. L’inconvénient est que seulement le conteneur du haut peut être
enlevé directement. Si un autre conteneur doit être enlevé, les conteneurs bloquants doivent
être repositionnés. Le but du problème de repositionnement de conteneurs est d’enlever
toutes les conteneurs d’une rangée dans l’ordre indiqué en minimisant les repositionnements
parasites. Nous nous intéressons à la version statique et à la version dynamique du problème.
Nous proposons différentes approches de type branch and price pour ce problème.

Chapitre 6 : Problème de repositionnement de conteneurs

Le problème de repositionnement de conteneurs existe dans la littérature scientifique sous le
nom de « container relocation problem (CRP) ». Ce chapitre présente la problématique et
résume la littérature associée.

6.1 Description du problème

Pour découpler les opérations maritimes et terrestres, les conteneurs entrants ne sont pas
immédiatement chargés sur un véhicule sortant, mais sont stockés dans le yard pendant
plusieurs jours. Pour mieux utiliser l’espace disponible, les terminaux empilent les con-
teneurs. Par conséquent, seul le conteneur en haut d’une pile est directement accessible. Si
un autre conteneur doit être enlevé, les conteneurs dessus doivent être repositionnés. Les
terminaux essayent d’éviter ces mouvements improductifs car ils nuisent à la performance
globale du terminal. Toutefois, les repositionnements ne peuvent pas être évités complète-
ment car peu d’informations sur les enlèvements futurs sont connues quand un conteneur
doit être stocké.

Le nombre de repositionnements croît avec la hauteur des piles de conteneurs et est un
problème plus important dans les terminaux qui utilisent des cavaliers dans le yard. La
figure A.6 représente un tel terminal et montre comment le yard est divisé en plusieurs
blocs, chaque bloc en plusieurs rangées, chaque rangée en plusieurs piles et chaque pile en
plusieurs niveaux. Grâce aux nouvelles technologies, le terminal sait exactement à quelle
position (bloc, rangée, pile, niveau) chaque conteneur est stocké et quelles positions sont
vides.

Nous étudions le problème de repositionnement de conteneurs tel qu’il est défini dans la
littérature académique. Le plan de chargement des navires et l’ordre de service des camions
sont connus et imposent l’ordre d’enlèvement des conteneurs.
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Figure A.6: Blocs, rangées, piles et niveaux
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Figure A.7: Problème de repositionnement de conteneurs

En règle générale, la configuration de la rangée ne correspond pas à l’ordre d’enlèvement et
des conteneurs doivent être repositionnés. La figure A.7 illustre la problématique. L’objectif
est d’enlever tous les conteneurs dans l’ordre donné avec le minimum de repositionnements.
Deux variantes du problème existent : tous les conteneurs peuvent être repositionnés ou
seulement les conteneurs au-dessus du conteneur cible. La définition du problème repose sur
des hypothèses A1 à A7 et inclut ou n’inclut pas l’hypothèse A8.

– A1: La rangée initiale et l’ordre d’enlèvement des conteneurs ou des groupes de con-
teneurs sont connus à l’avance.

– A2: Aucun conteneur n’arrive pendant le processus d’enlèvement

– A3: Seul le conteneur en haut d’une pile peut être enlèvé. Un conteneur ne peut être
repositionné qu’en haut d’une pile ou sur une pile vide.

– A4: Les conteneurs ne sont repositionnés que dans la même rangée car des reposition-
nements entre rangées sont trop lents.

– A5: La rangée est limitée par le nombre maximal de piles et de niveaux.

– A6: Tous les conteneurs dans la même rangée ont la même taille et peuvent être empilés
dans n’importe quel ordre.

– A7: La distance parcourue à l’intérieur d’une rangée (horizontalement et verticalement)
a peu d’impact sur le temps d’exécution.

– A8: Seulement les conteneurs dits bloquants, situés au-dessus du conteneur cible, peu-
vent être repositionnés.
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Comme la plupart des études, nous abordons ce problème avec des contraintes de priorité
sur des conteneurs individuels et nous incluons l’hypothèse A8.

MIP BB other

6.2 Littérature

Le problème de repositionnement de conteneurs est NP-difficile (Caserta et al.; 2012). Peu
d’approches exactes existent, toutes basées sur des programmes linéaires mixtes (Lee and
Hsu; 2007; Caserta et al.; 2012; Petering and Hussein; 2013; Tang et al.; 2012). D’autres
études utilisent des méthodes heuristiques pour résoudre le problème. Ces approches sont
souvent de type branch and bound heuristique (Kim and Hong; 2006; Wu and Ting; 2010;
Zhang et al.; 2010; Forster and Bortfeldt; 2012; Rei and Pedroso; 2012; Ünlüyurt and Aydin;
2012; Zhu et al.; 2012). Mais d’autres approches existent : basée sur la recherche locale,
comme la recherche tabou, ou à base de programmation dynamique (Caserta et al.; 2009;
Caserta and Voß; 2009; Wu et al.; 2009; Caserta, Voß and Sniedovich; 2011).

6.3 Bornes sur le nombre de relocations

Dans la littérature, existent déjà une borne supérieure et une borne inférieure sur le nombre
de repositionnement nécessaires pour enlever tous les conteneurs. La borne supérieure est
obtenue grâce à une heuristique gloutonne et la borne inférieure à l’aide de l’état initial de
la rangée. Nous utilisons ces deux bornes pour introduire une nouvelle borne sur le nombre
de relocations maximales par enlèvement et une condition d’optimalité.

6.4 Instances

Cette section présente les instances introduites par Caserta, Voß and Sniedovich (2011)
et discute de leurs difficulté. Ces instances sont fréquemment utilisées pour comparer les
différentes approches de résolution et nous allons évaluer la qualité de nos approches sur ces
instances.

Chapitre 7 : Programmes binaires

Ce chapitre présente un programme binaire existant mais incorrect. Nous allons corriger
et améliorer ce programme. En particulier, nous rajoutons une procédure de prétraitement
pour fixer plusieurs variables et des coupes. Nous présentons des résultats expérimentaux
pour évaluer la qualité du prétraitement et des coupes.

7.1 Modèle de Caserta et al.

Caserta et al. (2012) introduisent des variables de configuration et des variables de mouve-
ments :

bijnt =











1 si le conteneur n se trouve à la position (i, j) (pile i, niveau j)

au début de la période t,

0 sinon;

xijklnt =











1 si le conteneur n est repositionné de la position (i, j) à la position (k, l)

pendant la période t,

0 sinon;
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yijnt =

{

1 si le conteneur n est enlevé de la position (i, j) pendant la période t

0 sinon.

Ils utilisent ces variables pour formuler le modèle binaire. Ce modèle minimise le nombre
de relocations et impose les contraintes physiques et la continuité dans le temps. Mais la
contrainte qui impose l’ordre LIFO est trop restrictive et les repositionnements ne sont pas
limités aux conteneurs en dessus du conteneur à enlever.

7.2 Améliorations du modèle

Nous formulons des contraintes qui imposent l’ordre LIFO et limitent les conteneurs qui peu-
vent être repositionnés correctement. De plus, nous enlevons des variables et des contraintes
superflues. Nous proposons le modèle présenté ci-dessous.

W
∑

i=1

H
∑

j=2

W
∑

k=1

H
∑

l=1

T−1
∑

t=1

N
∑

n=t+1

xijklnt

s.t.

N
∑

n=t

bijnt ≤ 1

∀i = 1, . . . ,W, j = 1, . . . H, t = 1, . . . , T − 1

(7.16)

N
∑

n=t

bijnt ≥
N
∑

n=t

bij+1nt

∀i = 1, . . . ,W, j = 1, . . . H − 1, t = 1, . . . , T − 1

(7.17)

bijnt+1 = bijnt +
W
∑

k=1

H
∑

l=1

xklijnt −
W
∑

k=1

H
∑

l=1

xijklnt

∀i = 1, . . . ,W, j = 2, . . . H, t = 1, . . . , T − 2, n = t+ 1, . . . , N

(7.18)

bijnt+1 = bijnt − yijtt

∀i = 1, . . . ,W, j = 1, . . . H, t = 1, . . . , T − 2, n = t
(7.19)

W
∑

i=1

H
∑

j=1

yijtt = 1

∀t = 1, . . . , T − 1

(7.20)

M ·

(

1−
N
∑

n=t+1

xijklnt

)

≥
N
∑

n=t+1

H
∑

j′=j+1

H
∑

l′=l+1

xij′kl′nt

∀i = 1, . . . ,W, j = 2, . . . H − 1, k = 1, . . . ,W, l = 1, . . . H − 1,

t = 1, . . . , T − 1

(7.21)
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M ·
H
∑

j=1

yijtt ≥
H
∑

j=2

W
∑

k=1

H
∑

l=1

N
∑

n=t+1

xijklnt

∀i = 1, . . . ,W, t = 1, . . . , T − 1

(7.22)

M · yijtt +

j
∑

j′=2

W
∑

k=1

H
∑

l=1

N
∑

n=t+1

xij′klnt ≤M

∀i = 1, . . . ,W, j = 3, . . . H, t = 1, . . . , T − 1

(7.23)

La fonction objectif minimise le nombre de repositionnements. Les contraintes (7.16) et
(7.17) imposent que chaque position est occupée par au plus un conteneur et qu’il n’y a pas
conteneur flottant. Les contraintes (7.18) et (7.19) garantissent la continuité de la configura-
tion dans le temps par les repositionnements et les enlèvements exécutés. La contrainte (7.20)
impose que le conteneur t est enlevé à la période t. La contrainte (7.21) impose l’ordre LIFO.
Les contraintes (7.22) et (7.23) limitent les conteneurs qui peuvent être repositionnés.

Nous proposons un prétraitement basé sur la configuration initiale, sur le fait que seule-
ment les conteneurs bloquants peuvent être repositionnés et sur le nombre de conteneurs
dans la rangée à chaque période. Ce prétraitement fixe des variables bijnt et xijklnt à 0
ou 1. Nous proposons aussi des coupes basées sur les bornes supérieures sur le nombre de
repositionnement.

7.3 Comparaison des modèles

Malheureusement, nous ne pouvons pas comparer la performance de notre modèle aux perfor-
mances d’autres modèles existants : soit ils traitent une problématique légèrement différente
soit ils appliquent leur modèle sur d’autres instances. A défaut, nous comparons trois vari-
antes de notre modèle binaire : le modèle binaire, le modèle binaire avec prétraitement et le
modèle binaire avec prétraitement et coupes.

Les expérimentations montrent que le prétraitement améliore la performance du mod-
èle considérablement. Les temps de résolutions diminuent et plus d’instances peuvent être
résolues. En plus la relaxation linéaire du modèle avec prétraitement est beaucoup plus
serrée que la relaxation linéaire du modèle sans prétraitement est et plus serrée que la borne
inférieure présentée ci-dessus. Les coupes sont trop lâches et n’ont aucun effet ni sur la
résolution du modèle binaire ni sur la solution de la relaxation linéaire.

Chapitre 8 : Approche de type branch and price

Ce chapitre présente notre approche de résolution de type branch and price. Nous présentons
la décomposition du modèle binaire en un problème maître et un sous-problème. Puis nous
proposons deux variantes d’un sous-problème énumératif et une procédure de branchement.
Des expérimentations numériques évaluent la qualité de cette approche.

8.1 Génération de colonnes

Nous décidons de garder les contraintes physiques dans le modèle maître et des contraintes
sur la faisabilité des colonnes dans le sous-problème.
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Problème maître : Sous-problème :

- au plus un conteneur par position - au plus un conteneur par position
- pas de conteneur flottant - pas de conteneur flottant
- enlèvement du conteneur t à la période t - enlèvement du conteneur t à la période t
- continuité dans le temps - l’ordre LIFO est respecté
- minimiser le nombre de relocations - seulement les conteneurs bloquants sont

repositionnés

Avec cette décomposition, une colonne représente une série de mouvements qui enlève
le conteneur t à la période t et qui repositionne tous les conteneurs bloquants. La figure
A.8 montre comment une colonne se compose d’un enlèvement et de repositionnements et
comment elle modifie la configuration lorsqu’elle est appliquée.

8

3

4

1

1

2 3 4 5

2

3

2

1

3

4

5

6

7

8

9

10

11

12

14

13

Stack

Tier Tier

Stack

13

14

12

11

10

9

7

6

5

4

2

3

2

5432

1

1

4
Variable θs1

x4,3,2,3,3,1 = 1

x4,4,1,4,8,1 = 1

y4,2,1,1 = 1

t = 1 t = 2

Figure A.8: La manière dont la colonne θs1 modifie la configuration (si appliquée)

Le problème maître est composé de versions adaptées des contraintes (7.16) à (7.20). A
partir du problème maître dual nous déterminons le coût réduit d’une colonne qui est défini
par

W
∑

i=1

H
∑

j=2

W
∑

k=1

H
∑

l=1

N
∑

n=t+1

xs
ijklnt · (1 + γijnt − γklnt) +

W
∑

i=1

H
∑

j=1

ysijtt · δijt − µt (8.17)

où γijnt ∈ R représente le bénéfice d’enlever le conteneur bloquant n de la position (i, j)
à la période t, γklnt ∈ R le bénéfice de positionner le conteneur bloquant n dans la position
(k, l) à la période t, δijt le bénéfice d’enlever le conteneur t de la position (i, j) à la période
t et µt le bénéfice de la période t.

Nous formulons un sous-problème binaire qui détermine pour chaque période t la colonne
avec le coût réduit minimum tout en respectant toutes les contraintes sur la faisabilité de la
colonne. De plus, nous proposons une nouvelle borne supérieure sur le nombre de relocations
par période qui est basé sur la valeur des variables duales.

8.2 Sous-problème énumératif

Nous proposons un sous-problème qui énumère toutes les colonnes réalisables et rajoute
celles avec un coût réduit négatif au problème maître. Nous utilisons différents mécanismes
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pour réduire le nombre de colonnes à énumérer. Nous utilisons les bornes sur le nombre
de relocations pour réduire le nombre de colonnes à générer. En plus, nous gardons trace
des emplacements possibles pour chaque conteneur à chaque période. Nous ne générons pas
toutes les colonnes, mais seulement celles qui peuvent être obtenues à partir des emplace-
ments possibles.

Nous proposons une variante de cette approche où nous ne résolvons pas directement
le problème de la période 1 à la période T . Au lieu de cela, nous itérons sur toutes les
périodes : pour chaque période t nous résolvons le problème pour enlever les conteneurs 1 à
t avec un minimum de repositionnements. Ceci nous permet de resserrer la borne supérieure
et d’introduire une nouvelle condition d’optimalité.

8.3 Branch and price

Dans une solution fractionnaire un conteneur peut être placé dans plusieurs positions dans
des piles différentes où dans la même pile. Nous proposons de brancher sur le conteneur avec
la valeur de bijnt la plus proche de 0.5. Si le conteneur est placé dans différentes piles nous
créons deux nœuds qui chacun interdisent de placer ce conteneur dans une partie des piles.
Si le conteneur est placé dans la même pile nous créons deux nœuds qui chacun interdisent
de placer le conteneur dans une partie des niveaux de cette pile.

8.4 Résultats expérimentaux

Nous évaluons la performance du branch and price (B&P) et de la génération de colonnes
avec le sous-problème binaire (sBIP), avec le sous-problème énumératif (sEnum) et avec le
sous-problème énumératif dans une approche itérative (sIter). Nous imposons une limite de
temps de 60 minutes.

sBIP n’est pas très performant car trop de temps (< 80%) est utilisé pour mettre à jour
les valeurs des variables duales dans le sous-problème et peu de temps reste pour résoudre
le problème. sEnum et sIter résolvent plus d’instances mais n’arrivent pas à résoudre les
grandes instances car le nombre de variables à énumérer est beaucoup trop important. B&P
obtient quelques solutions entières, mais n’est pas très efficace car les nœuds ne sont pas
résolus rapidement.

Chapitre 9 : Approche de type branch and price heuristique

Ce chapitre présente notre approche de résolution de type branch and price heuristique.
Nous utilisons le même problème maître que dans le chapitre précédent et détaillons un
sous-problème heuristique et la stratégie de branchement. L’objective de cette approche
est d’obtenir des bons résultats entiers plutôt que la solution fractionnaire optimale. Des
expérimentations numériques évaluent la qualité de cette approche.

9.1 Sous-problème heuristique

Le sous-problème heuristique fonctionne en deux étapes : d’abord il détermine les conteneurs
bloquants à enlever, puis il détermine où repositionner ces conteneurs. Nous utilisons des
bornes sur le nombre de relocations et les emplacements possibles pour ne pas générer trop
de colonnes qui ne peuvent jamais être dans la solution entière optimale.
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Pour chaque période t, nous itérons sur toutes les position (i, j) où le conteneur à enlever t
peut être placé. Pour chaque position nous déterminons les conteneurs bloquants à enlever –
ceci est répété pour différents nombre de repositionnements. Cette décision est basée sur les
emplacements possibles et sur les valeurs des variables duales. L’objectif est de déterminer
les enlèvements des conteneurs bloquants qui sont le plus profitables à l’égard du coût réduit
de la colonne. Nous représentons cette problématique comme un problème de flot à cout
minimum et le résolvons par un programme linéaire.

Ensuite, nous déterminons où repositionner les conteneurs bloquants. Ceci est fait en
fonction de la solution du problème maître primal, des valeurs des variables duales et des
règles de repositionnement heuristiques et des contraintes de réalisabilité de la colonne. La
solution obtenue par le sous-problème heuristique n’est pas forcement optimale, mais donne
des bons résultats.

9.2 Branch and Price heuristique

Nous intégrons l’approche de génération de colonnes heuristique dans une approche de branch
and price heuristique pour obtenir des solutions entières. L’idée est de réappliquer une
heuristique gloutonne fréquemment pour obtenir des nouvelles solutions entières. Cette
heuristique gloutonne est exécutée sur les configurations obtenues de la solution primale du
problème maître et des colonnes avec un coût réduit négatif obtenues du sous-problème.

L’heuristique gloutonne ne peut être appliquée sur une période t que si la solution primale
du problème maître est entière pour les périodes 1 à t− 1. Nous branchons sur la première
période non-entière t′ et obtenons des nœuds avec des solutions entières jusqu’à la période
t′ + 1. Nous utilisons les bornes inférieures et supérieures sur le nombre de relocations
pour déterminer l’intérêt d’un nœud donné. Pour accélérer la résolution nous enlevons des
colonnes du problème maître si leur nombre dépasse un certain seuil.

9.3 Résultat expérimentales

Nous comparons différentes variantes (différentes valeurs pour plusieurs paramètres) de notre
branch and price entre elles et avec d’autres méthodes de résolution existantes. Notre
meilleure variante est plus performante que certaines approches mais ils existent des ap-
proches encore plus performantes. Les résultats montrent que surtout pour les grandes
instances beaucoup de temps (< 90%) est nécessaire pour résoudre le problème maître. Par
conséquent, le sous-problème et l’heuristique gloutonne sont exécutés très rarement et peu
de solutions entières sont explorées. Nous sommes convaincus que notre approche obtiendra
des meilleurs résultats lorsque le problème maître pourra être résolu plus rapidement.

Chapitre 10 : Version dynamique du problème de repositionnement
de conteneurs

Dans ce chapitre, nous nous intéressons à la version dynamique du problème. Dans ce cas,
l’ordre d’enlèvement des conteneurs n’est pas connu dès le début, mais révélé dans le temps.
Nous présentons le problème et un indicateur pour décrire la qualité d’une configuration.
Nous décrivons différentes stratégies de repositionnement et les comparons entre elles.
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10.1 Description du problème et état de l’art

Les terminaux à conteneurs ont peu d’informations sur l’heure et l’ordre exact des arrivées
de camions. ll n’est pas inhabituel qu’un terminal obtienne cette information uniquement
lorsque les camions se présentent à l’entrée du terminal.

Nous supposons que les camions sont servis avec une politique FIFO. Dans ce cas, les
temps de service dépendent principalement du nombre de repositionnements. Le terminal
connait donc les prochains conteneurs à enlever mais n’a pas d’information sur les enlève-
ments suivants. La version dynamique du problème de repositionnement s’appuie sur les
hypothèses A2 à A10.

– A2 –A8 : tel que présentées dans le chapitre 6

– A9: L’ordre d’enlèvement des conteneurs est dévoilé au fils du temps

– A10: Les camions sont sevis dans l’ordre FIFO.

10.2 Indicateur de qualité

Nous supposons que nous n’avons aucune information sur l’ordre des enlèvements. Dans ce
cas, chaque conteneur peut être le prochain à être enlevé. Nous introduisons l’espérance du
nombre de repositionnements (EVR) comme indicateur de qualité. Nous démontrons que
l’EVR est minimale pour les configurations équilibrées où la différence entre la pile la plus
haute et la plus basse est minimale.

10.3 Stratégies de repositionnement

Nous présentons différentes stratégies de repositionnement en cas de connaissance partielle
sur les prochains D conteneurs á enlever.

- S1 : repositionner au hasard ;

- S2 : repositionner vers la pile la moins haute (ce qui minimise l’EVR de la configuration
obtenue) ;

- S3 : minimiser le nombre de relocations pour enlever les prochains D conteneurs avec mise
à jour en cas de nouvelles informations ;

- S4 : minimiser le nombre de relocations pour enlever les prochains D conteneurs sans mise
à jour ;

- S5 : En plus des prochains D conteneurs à enlever, les D′ conteneurs à enlever ensuite
(mais pas leur ordre exact) sont supposés connus. Minimiser le nombre de relocations
pour enlever les prochains D conteneurs et minimiser le nombre de conteneurs au-dessus
des conteneurs D′

- S6 : Minimiser le nombre de relocations pour enlever les prochains D conteneurs et min-
imiser l’EVR de la nouvelle configuration

- S7 : Minimiser le nombre de relocations pour enlever les prochains D conteneurs et ré-
compenser une pile vide dans la nouvelle configuration

- S7 : Les prochains D conteneurs peuvent être servis dans n’importe quel ordre : minimiser
le nombre de relocations pour enlever les prochains D conteneurs
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10.4 Résultats expérimentaux

Dans ce chapitre nous comparons les différentes stratégies entre elles et avec la solution
optimale du problème statique si l’ordre d’enlèvement complet est connu dès le début. Les
stratégies proposées obtiennent des meilleurs résultats que la stratégie heuristique, mais
nécessitent plus de relocations que dans le cas statique. Surtout, les stratégies qui équilibrent
la taille des piles obtiennent des bons résultats. Les temps de calcul sont assez courts pour
pouvoir appliquer ces stratégies à un terminal.

Conclusion et perspectives

Les nouvelles technologies (échange de données, RFID et géolocalisation) surveillent et gèrent
l’équipement et les flux d’informations. Les terminaux à conteneurs utilisent ces technologies
pour échanger des données avec leurs partenaires, pour localiser les conteneurs et leurs
équipements dans le terminal et pour automatiser des tâches. Cette thèse a démontré, à
l’aide de deux exemples, comment ces informations peuvent être utilisées pour optimiser
les opérations du terminal. Dans la première partie de cette thèse, nous avons utilisé les
informations sur les dates d’arrivée et de départ annoncées et sur les volumes annoncés
pour optimiser l’allocation des cavaliers. Dans la deuxième partie, nous avons utilisé les
informations sur l’ordre d’enlèvement et l’emplacement des conteneurs afin d’améliorer le
processus de déstockage. Ce chapitre résume les travaux exécutés et expose des perspectives
pour continuer ce travail.

La première partie de cette thèse a abordé le problème d’affectation de cavaliers. L’objectif
est d’allouer les cavaliers aux différents modes de transport (par exemple, camions, trains,
barges et navires) de manière à minimiser le délai global du terminal. Cette problématique
n’a pas été abordée dans la littérature précédemment. Les quatre principales contributions
de cette thèse pour le problème d’allocation de cavalier sont les suivantes. Tout d’abord,
nous avons proposé une notation pour décrire les différentes stratégies utilisées pour servir
les différents modes de transport aux différents terminaux. Nous avons également déterminé
la complexité de certaines stratégies de service. Deuxièmement, nous avons représenté le
problème d’allocation de cavalier comme un problème de flot : les conteneurs à déplacer
sont modélisés comme des flots et les cavaliers affectés comme capacités sur les arcs. Nous
avons modélisé ce problème de flot comme un programme linéaire mixte en nombres en-
tiers. Nous avons proposé une formulation générique et montré que le modèle générique
peut facilement être adapté aux différentes stratégies de service. Troisièmement, nous avons
effectué une étude de cas pour un terminal au Grand Port Maritime de Marseille. Nous avons
montré par simulation que les résultats obtenus par le problème d’optimisation déterministe
restent valable dans un environnement incertain. Quatrièmement, nous avons combiné le
problème d’affectation de cavaliers avec le dimensionnement d’un système de rendez-vous
pour camions. L’idée est d’utiliser le système de rendez-vous pour dévier les arrivées des
camions vers les périodes creuses. Les expériences, menées avec un modèle d’optimisation
déterministe adapté et un modèle de simulation, ont montré que cette approche combinée
permet de réduire le délai global du terminal.

Pour poursuivre ce travail, le modèle d’optimisation peut être étendu pour représen-
ter la situation du terminal plus en détail. Plusieurs types de conteneurs pourront être
différenciés et représentés avec leurs caractéristiques spécifiques. En outre, la capacité de
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manutention peut être représentée avec plus de détails, par exemple en incluant la conges-
tion et l’emplacement des conteneurs dans le yard. Ceci permettrait aussi d’obtenir des
informations sur les interactions entre l’affectation de cavaliers et l’affectation de la place de
stockage. A cet effet, le modèle d’optimisation pourrait être combiné avec de la simulation
ou des modèles de file d’attente. Il serait également intéressant d’inclure les aspects stochas-
tiques dans le modèle d’optimisation ou de combiner le problème d’allocation de cavaliers
avec la gestion des ressources humaines.

La deuxième partie de cette thèse a abordé le problème de repositionnement de con-
teneurs. L’objectif est d’enlever les conteneurs d’une rangée dans un ordre donné avec un
nombre minimal de repositionnements parasites. Comme la plupart des études menées, nous
avons considéré le cas où seulement les conteneurs au-dessus du conteneur à enlever peu-
vent être repositionnés. Les quatre principales contributions de cette thèse pour le problème
de repositionnement de conteneurs sont les suivantes. Tout d’abord, nous avons amélioré
un programme binaire existant. Ensuite, nous avons introduit une étape de prétraitement
- qui améliore les performances du programme binaire considérablement - et deux bornes
supérieures sur le nombre de repositionnements. Deuxièmement, nous avons présenté un al-
gorithme de génération de colonnes pour ce problème. Nous avons formulé un sous-problème
binaire et deux variantes d’un sous-problème énumératif. Nous avons intégré la génération de
colonnes dans une démarche de type branch and price. Le branch and price résout des petites
instances, mais n’obtient pas des résultats satisfaisants pour les grandes instances. Troisième-
ment, nous avons proposé un branch and price heuristique dont l’objectif est d’obtenir une
bonne solution entière plutôt que la solution fractionnaire optimale. Cette approche utilise un
sous-problème heuristique pour générer des nouvelles colonnes - basé sur les variables duales
et des règles de repositionnement gloutonnes - et réapplique une heuristique pour obtenir des
nouvelles solutions entières à plusieurs reprises. Le branch and price heuristique obtient des
bons résultats pour certaines grandes instances, mais peut sans doute être amélioré. Enfin,
nous avons abordé la version dynamique du problème de repositionnement de conteneurs où
la séquence d’enlèvement est révélée au fil du temps. Nous avons introduit un critère pour
évaluer la qualité d’une rangée et évalué différentes stratégies de repositionnement.

Ce travail peut être continué dans plusieurs directions. Pour une meilleure compréhension
du problème, des règles de dominance pour les repositionnements pourront être déterminées.
Ces règles pourront ensuite être utilisées pour obtenir des heuristiques plus performantes. Il
serait intéressant de comparer la performance du modèle binaire utilisé ici avec des modèles
linéaires existants. Une autre piste est de trouver des coupes pour le modèle binaire et le
problème maître pour les rendre plus efficaces. Pour le branch and price exact, un sous-
problème plus performant doit être trouvé. Différentes stratégies de branchement pourront
ensuite être testées. Pour le branch and price heuristique, le meilleur réglage des paramètres
doit être déterminé. En plus, le temps passé à résoudre le problème maître doit être réduit.
La qualité de la solution globale peut être améliorée en améliorant l’heuristique utilisée.
Pour la version dynamique du problème, une analyse plus théorique devra être effectuée pour
déterminer les pires performances. Il est également possible d’évaluer différentes variantes du
problème, par exemple permettre que toutes les conteneurs (et pas uniquement les conteneurs
bloquants) puissent être repositionnés ou inclure les tâches de stockage. Pour la version
dynamique, différents scénarios par rapport à la disponibilité et la fiabilité des informations
pourront être analysés.
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Abstract:

Container terminals use intelligent freight technologies (e.g., EDI, RFID and GPS) to
exchange data with their partners, to locate containers and equipment within the terminal,
and to automate tasks. This thesis illustrates, via two examples, how this data may be used
to optimize operations at the terminal.

The first part uses information on announced volumes to allocate internal handling equip-
ment. The objective is to minimize overall delays at the terminal. The problem is represented
as a network flow problem and implemented as a linear mixed integer programming model.
A case study for a terminal at the Grand Port Maritime de Marseille is carried out. We also
show that combining the allocation problem with the dimensioning of a truck appointment
system may reduce overall delays at the terminal.

The second part uses information on announced container retrievals and container posi-
tions to improve retrieval operations. The objective is to retrieve containers from a bay in
a given sequence with a minimum number of parasite relocations. We improve an existing
binary programming model and introduce an exact branch and price approach - with a bi-
nary subproblem and two variants of an enumerative subproblem - and a heuristic branch
and price approach - with a heuristic subproblem. The exact approach solves only small
instances; the heuristic approach performs well on several instances, but should be improved
further. We also deal with a dynamic version of the problem where the retrieval order
becomes revealed over time and evaluate different relocation strategies for this case.
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Résumé:

Les terminaux à conteneurs utilisent les nouvelles technologies (EDI, RFID et GPS)
pour échanger des données avec leurs partenaires, pour localiser les conteneurs et leurs
équipements dans le terminal, et pour automatiser des tâches. Dans cette thèse, nous mon-
trons comment ces informations peuvent être utilisées dans la gestion des opérations.

La première partie utilise les informations sur les volumes annoncés pour affecter des
ressources internes dans le but de minimiser le retard global au terminal. Nous représentons
cette problématique à l’aide d’un problème de flot que nous implémentons comme programme
linéaire mixte. Une étude de cas est réalisée pour un terminal du Grand Port Maritime
de Marseille. En outre, nous combinons le problème d’affectation de ressources avec le
dimensionnement d’un système de rendez-vous. Ceci permet de minimiser le retard global.

La deuxième partie utilise les informations sur les conteneurs à retirer et leurs emplace-
ments pour optimiser le déstockage. Le but est de retirer tous les conteneurs d’une rangée
en minimisant le nombre de repositionnements parasites. Nous améliorons un modèle bi-
naire, proposons une approche exacte de type branch and price - avec un sous-problème
binaire et deux variantes d’un sous-problème énumératif - et en dérivons une approche
heuristique - avec un sous-problème heuristique. L’approche exacte ne résout que les pe-
tites instances ; l’approche heuristique obtient des résultats satisfaisants mais devra être
améliorée. Nous nous intéressons aussi à la version dynamique du problème où les informa-
tions sur les conteneurs à retirer arrivent petit à petit et comparons différentes stratégies de
repositionnement.


