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Abstract

The Multi Trip Vehicle Routing Problem with Time Windows and Release Dates is a variant of
the Multi Trip Vehicle Routing Problem where a time windows is associated with each customer and
a release date is associated with each merchandise to be delivered at a certain client. The release date
represents the moment the merchandise becomes available at the depot for final delivery.

The problem is relevant in city logistics context, where delivery systems based on city distribution
centers (CDC) are studied. Trucks arrive at the CDC during the whole working day to deliver goods
that are transferred to eco-friendly vehicles in charge of accomplish final deliveries to customers.

We propose a population-based algorithm for the problem based on giant tour representation of
the chromosomes as well as a split procedure to obtain solutions from individuals.

Keywords: Multi trip; release dates; genetic algorithm; split.

1 Introduction
The well known Vehicle Routing Problem (VRP) is anNP-hard combinatorial optimization problem where
a set of geographically scattered customers has to be served by a fleet of vehicles minimizing routing costs
and respecting capacity constraints on vehicles. The VRP represents a simplified problem that is usually
far from the reality of freight distribution. To better represent real world problems, different aspects
need to be taken into account leading to more complex problems, usually called rich (or multi-attribute)
problems.

In this paper, we introduce a new variant of the VRP, the Multi Trip Vehicle Routing Problem with
Time Windows and Release Dates. Our interest for this problem originates from mutualized distribution
in cities, where external goods continuously arrive in a City Distribution Center (CDC) from where the
last-mile delivery is operated

In this context, vehicle distribution from the CDC should be optimized on a daily basis. As vehicles
have preferably small capacities and the fleet size should be minimized, vehicles will typically perform
several trips along the day. This introduces the multi trip aspect.

Customers usually ask to be served within a certain time interval. Meeting these intervals is vital for
the carrier: delays mean loosing reliability and trustworthiness and often means paying a penalty. Then,
time windows should be considered and associated with each customer.

Finally, merchandise can be delivered to the CDC all day long. This means that they are not necessarily
available at the CDC at the beginning of the planning horizon. Vehicle routes must then be designed
such that no vehicle leaves the CDC before the goods it has to transport in its trip have arrived. The
concept of release date is associated with each merchandise, indicating the time at which the merchandise
is available at the CDC.
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These attributes together lead to the Multi Trip Vehicle Routing Problem with Time Windows and
Release Dates (MTVRPTW-R). It is noteworthy that the problem is static (or off-line) even if the mer-
chandise continuously arrives to the CDC during the day. In fact, the release dates are supposed to be
known before the working day starts.

Online variants can consider requests that become known at time intervals differently long before the
respective release date. This aspect raises the issue of the value of the information. These variants, as
well as stochastic variants, where the actual availability of the merchandise might differ from the release
date, are left for future researches. To the best of our knowledge, this is the first time release dates are
considered in a routing problem. Discussions with researchers from several software companies revealed
that this issue, coupled with multiple trips and time windows, is actually very relevant in practice and
models a problem that companies have to deal with (Grunert [9] and Kleff [16]).

The MTVRPTW-R implicitly models the dependence between different levels in multi-level distribu-
tion systems. The particular case of two-level distribution systems (called as well two-echelon or two-tier
distribution systems, Hemmelmayr et al. [11], Crainic [8]) has recently largely been investigated by schol-
ars. In these systems, final delivery trips depend on the time and on the CDC where vehicles operating in
the first level unload goods. Information sharing and synchronization between the two levels of distribu-
tion are however assumed. On the contrary, the MTVRPTW-R models a situation where the first level of
distribution cannot be controlled. The purpose of this paper is to contribute filling this gap introducing
a new routing problem that takes into account this aspect as well as proposing an efficient procedure to
solve it.

The paper is organized as follows. In Section 2 the problem is formally defined and characterized.
Section 3 reviews related research. Section 4 describes a heuristic solution. Instance sets and results are
presented in Section 5, while Section 6 concludes the paper.

2 Problem definition and notation
This section defines the problem (Section 2.1) and introduces the notation used in the rest of the paper
(Section 2.2). Moreover, relations with the VRP with pickup and delivery are presented in Section 2.3.
Finally, a characterization of problems with release dates is proposed in Section 2.4.

2.1 Problem definition

The MTVRPTW-R can be defined on a complete undirected graph G = (V,E), where V = {0, . . . , N}
is the set of vertices and E = {(i, j)|i, j ∈ V, i < j} the set of edges. Vertex 0 represents the depot,
where a fleet of M identical vehicles with capacity Q is based. Vertices 1, . . . , N represent the customers.
With each customer is associated a demand Qi that needs to be delivered during a time window (TW)
indicated by [Ei, Li]. Service at customer i takes Si and must start during the TW. Service time S0 at
the depot is usually called loading time. Arriving at customer location before Ei is allowed. Since the
service cannot start earlier than Ei, the driver must wait. On the other side, late arrival at customer
location is forbidden. Moreover, the quantity Qi of product requested by customer i is available at the
depot not earlier than Ri. Ri is called release date. For brevity, we will say Ri is associated with customer
i, instead of Ri is associated with the quantity Qi requested by customer i. It is possible to travel from i
to j incurring in a travel time Tij and covering a distance Dij, i, j = 0, . . . , N .

It is noteworthy that the release dates introduced here do not have the same implication as those
considered in scheduling problems (called as well release or ready times, Błażewicz [4]). In that case, the
release date is the earliest time at which job can be processed on a machine (Pinedo [25]). A vehicle needs
to wait until all goods it has to carry are available at the depot, i.e., it cannot start the trip before the
maximal release date associated with the customers it has to serve. On the other hand, a machine can
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start processing available jobs without waiting for all to be ready.
A time horizon TH is given and establishes the duration of the working day. It can be viewed as a TW

associated with the depot. Thus, it is assumed that [E0, L0] = [0, TH ], Q0 = 0. Operations cannot start
before E0 and all vehicles must be back to the depot at time L0.

The MTVRPTW-R calls for the determination of a set of trips and an assignment of each trip to a
vehicle, such that the total travel distance is minimized and the following conditions are satisfied:

(a) each trip starts and ends at the depot;

(b) trips do not start earlier than E0 = 0 and finish later than L0 = TH ;

(c) no trips assigned to the same vehicle overlap;

(d) operations of each trip start not earlier than the greater Ri associated with customers assigned to the
trip itself;

(e) each customer is visited by exactly one trip;

(f) service at customer i starts in the associated range [Ei, Li];

(g) the sum of the demands of the customers served by any trip does not exceed Q;

It is supposed that each customer i can be served by a return trip, i.e, Ri + T0i ≤ Li, max{Ei, Ri +
T0i}+ Si + Ti0 ≤ TH and Qi ≤ Q (otherwise no feasible solution would exist).

2.2 Notation

The notation used in the rest of the paper is introduced here. The symbol σ will always indicate a trip.
The capital Σ will indicate the set of trips assigned to a vehicle. It will be called journey in the following.
A journey is formed by different trips. The symbol ⊕ is used to indicate the concatenation of paths
(partial trips) or trips. For example (v1, . . . , vn) ⊕ (w1, . . . , wm) is the concatenation of two paths (that
results in a trip if v1 and wm are the depot). σ1 ⊕ σ2 means that trip σ1 is performed right before σ2 by
the same vehicle.

The time a vehicle is available at the depot to perform a given trip σ, is indicated as T σ. It is noteworthy
that the vehicle cannot start trip σ before max{T σ,maxv∈σ Rv}. Here and in the next sections, the symbol
“∈” will be used to describe “belonging”. For example σ ∈ Σ means trip σ belongs to journey Σ, v ∈ σ
means customer v belongs to (i.e., it is served by) trip σ, and so on.

The service of a customer i will be called feasible if the vehicle arrives at its location before Li, infeasible
otherwise. A trip σ is called feasible if service at each customer in σ is feasible, infeasible otherwise. A
journey is called feasible if it is composed by feasible trips, infeasible otherwise.

2.3 Relationship with the VRPPDTW

In the VRP with pickup and delivery (VRPPD) requests i = 1, . . . , N need to be picked up at defined
locations PICKi before delivery takes place at location DELi. Precedence constraints impose pickups to
be performed before deliveries. The VRPPD with time windows (VRPPDTW) asks pickups and deliveries
to take place during a TW. The MTVRPTW-R can be reduced to an extension of the VRPPDTW where
multiple trips are allowed. Given an instance of the MTVRPTW-R, N requests are defined such that
PICKi is the depot for every request and DELi is the location of customer i. The pickup TW associated
with request i is set to [Ri, TH ], the delivery TW is set to [Ei, Li]. Travelling from the depot to a
pickup location and between pickup locations does not require time, i.e., T0PICKi

= 0, TPICKi0 = 0 and
TPICKiPICKj

= 0. On the other hand TPICKiDELj
= T0j and TDELiDELj

= Tij. Distances are managed
similarly.
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2.4 Problem characterization

Larsen [17] and Larsen et al. [18] introduce some parameters to characterize problems in the context
of the Dynamic VRP (DVRP). Even if there is no exact correspondence between the DVRP and the
MTVRPTW-R, these problems share similarities. In the DVRP, a request becomes known at a certain
time called disclosure time (Pillac et al. [24]), while in the MTVRPTW-R, merchandise becomes available
at a certain moment that we call release date. The main difference is that all the release dates are known
at the beginning of the working day, that makes the MTVRPTW-R a static problem. On the other side,
requests in the DVRP context become known during operations.

We introduce the rigidity of a system (that correspond to the degree of dynamism for the DVRP) as

r =
1

N

N∑
i=1

(
1− Li −Ri

TH

)
. (1)

Since Ri ≤ Li, r ∈ [0, 1]. It represents how averagely close are the Ri to the corresponding Li. In
particular, r = 0 when Ri = 0 and Li = TH for all customers i. On the other side r = 1 when Ri = Li for
all customers i. A considerable amount of release dates Ri close to the corresponding Li thus makes the
plan more rigid than having the release dates Ri far in time from Li.

It can be noticed that, when Ri = 0 for all customers i, the rigidity r can be strictly positive since it
depends on the relationship between Li and TH . We introduce another parameter that takes into account
only the relationship between Ri and Li. We define the instance tightness as

tigh =
1

N

N∑
i=1

Ri

Li
. (2)

The parameter tigh equals zero when Ri = 0 for all customers i and equals one when Ri = Li for all
customers i. Practically, r and tigh are strictly less than 1: all Ri = Li would make the problem infeasible
as long as travel times between the depot and the customers are not null.

3 Literature Review
To the best of our knowledge, there is no routing problem considering release dates. On the other side, the
Multi Trip VRP with Time Windows (MTVRPTW) is an extension of the well-known Vehicle Routing
Problem with Time Windows (VRPTW) where customers must be served during a time interval called
time window (Bräysy and Gendreau [5, 6]) and the Multi Trip VRP, that allows vehicles to perform several
trips during the working day (Cattaruzza et al. [7], Olivera and Vera [23], Taillard et al. [32]).

The MTVRP is a NP-hard problem (Olivera and Viera [23]). This makes the MTVRPTW a NP-
hard problem (the MTVRP can be reduced to the MTVRPTW associating a TW equal to [0, TH ] with
each customer). Finally, the MTVRPTW-R is NP-hard since the MTVRPTW trivially reduces to the
MTVRPTW-R setting all the release dates to zero.

Despite its practical interest, the literature on the MTVRPTW is pretty scarce and most of the
existing papers propose exact methods. Azi et al. [1] propose an exact algorithm for solving the single
vehicle MTVRPTW. The solution approach exploits an elementary shortest path algorithm with resource
constraints. In the first phase all non dominated paths are calculated. Then the shortest path algorithm is
applied to a modified graph. Each node represents a non-dominated trip and two nodes are connected by
an arc when it is possible to serve the two trips consecutively and they do not serve common customers.
Solomon’s instances are used with different values of time horizon. 16 instances out of 54 with 100
customers are solved to optimality.
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Azi et al. [2] address the MTVRPTW where trips are constrained by a limited duration and service
at all customers is not mandatory. A column generation approach embedded within a branch-and-price
algorithm is proposed. A set packing formulation is given for the master problem and each column repre-
sents a working day. Since each pricing problem is an elementary shortest path with resource constraints,
a similar approach to the one proposed in Azi et al. [1] is applied. As in Azi et al. [1], Solomon’s instances
are considered. Due to the limitations of the algorithm, the authors focus on instances formed by the
first 25 or 40 customers of each Solomon’s instance. The algorithm can also solve few instances of size
50. Hernandez et al. [13] use a similar approach. A set covering formulation is given for the problem and
each column represents a trip instead of a working day. With this method applied on the same instances
proposed in Azi et al. [2] optimal solutions are found for a majority of instances with size up to 50. Macedo
et al. [19] propose a minimum flow model where variable represent feasible trips. Optimal solutions are
found for a majority of instances with size up to 50 in 2 hours of computation time. In all the previous
works, the full set of feasible trips is generated. This is practicable due to the presence of time windows
and trip duration constraint that limit the cardinality of the set.

Hernandez et al. [12] propose the only exact method on the MTVRPTW. A branch and price algorithm
is proposed and instances up to 50 customers and 4 vehicles can be solved.

Battarra et al. [3] study an extension of the MTVRPTW where products are clustered in different
commodities that cannot be transported in the same vehicle. They first generate a set of feasible trips
considering each commodity independently. Then, these trips are assigned to vehicles in order to obtain
a solution.

4 Method
This section describes the hybrid genetic algorithm ACAF we developed for the MTVRPTW-R. In genetic
algorithms (GA), a set of chromosomes forms a population that evolves across generations until termina-
tion criteria are met. New individuals (children) are generated from those in the current population, called
parents, by crossover and mutation operators. GAs turned out to be highly efficient heuristic methods to
face different problems, mainly because children generation allows to explore new zones (children differ
from parents) that are promising (children keep good parents’ characteristics). The papers of Prins [26],
Vidal et al. [33] and Cattaruzza et al. [7] are three examples of efficient GA (respectively for the VRP;
the multi depot VRP and the periodic VRP; and for the multi trip VRP) in the VRP field.

The principles of genetic procedure were first formalized by Holland [14]. The interested reader is
referred to Reeves [28], Moscato and Cotta [20] and Neri and Cotta [22] for an overview of population
based procedures.

4.1 Algorithm outline

This section outlines our ACAF for the MTVRPTW-R. Initially, a population Π of π chromosomes is
generated. Chromosomes are sequences of client nodes without trip delimiters. Each chromosome is eval-
uated with an adaptation of the Split procedure developed by Prins [26], that we call AdSplit (Section 4.4).
AdSplit obtains a MTVRPTW-R solution ξ from a chromosome Ψ. The fitness of chromosome Ψ is then
defined as the cost of the solution ξ.

All individuals are improved by means of a local search (LS) procedure called as well education phase
(Section 4.3). At each iteration two chromosomes ΨP1 and ΨP2 are selected using the classical binary
tournament procedure. Two children ΨC1 and ΨC2 are obtained crossing parents with the order crossover
procedure and one (ΨC) is randomly selected between them. ΨC undergoes AdSplit for evaluation and LS
for education. It is then inserted in Π.

After µ children are inserted in Π, π chromosomes are selected based on their fitness (representing
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their quality) and diversification contribution to the population itself, while the other µ are eliminated
(survivor procedure, Section 4.5). A sketch of the method is given in Algorithm 1.

Algorithm 1 ACAF outline
1: Initialize population
2: while Termination criteria are not met do
3: Select parent chromosomes ΨP1 and ΨP2

4: Generate a child ΨC

5: Educate ΨC

6: Insert ΨC in the population
7: if Dimension of the population exceeds a given size then
8: Select survivors
9: end if

10: end while

4.2 Solution representation and search space

A chromosome is a sequence (permutation) Ψ = (Ψ1, . . . ,ΨN) of the N client nodes, without trip delim-
iters. Ψ can be viewed as a TSP solution that has to be turned into a feasible MTVRPTW-R solution by
splitting the chromosome (inserting trip delimiters and assigning trips to vehicles). Ψ is usually called a
giant tour. From a giant tour Ψ, different MTVRPTW-R solutions can be constructed depending on the
way Ψ is split.

During the search phase, overload and TW violations are allowed and penalized in the fitness function.
Two penalization factors are needed: θ for TW violation and λ for load infeasibility.

A procedure AdSplit (explained in Section 4.4) is used to get a MTVRPTW-R solution ξ from Ψ. The
following notation is introduced: DΣ(ξ) and TWΣ(ξ) are respectively the traveled distance and the TW
violation of journey Σ in solution ξ. Lσ(ξ) is the load of trip σ. The fitness F (Ψ) of the chromosome Ψ
is the cost c(ξ) of the solution ξ found by AdSplit and it is defined as

F (Ψ) = c(ξ) =
M∑

Σ=1

DΣ(ξ) + θ
M∑

Σ=1

TWΣ(ξ) + λ
M∑

Σ=1

∑
σ∈Σ

max{0, Lσ(ξ)−Q}. (3)

When confusion cannot arise, solution ξ will be omitted in the notation. The chromosome Ψ is called
feasible (infeasible) if AdSplit obtains, from Ψ, a feasible (infeasible) solution ξ.

In practice a chromosome is split in order to obtain a solution and then it possibly undergoes LS
for improvement. It would then be natural to continue describing the solution method with the AdSplit
procedure. However, AdSplit takes advantages of aspects in the LS. Thus, we will start presenting the
latter.

4.3 Local search

This section presents the local search (LS) procedure embedded in ACAF . First, an efficient scheme to
manage TW violations is presented (Section 4.3.1) based on Vidal et al. [34] work. In Section 4.3.2 peculiar
characteristics of our problem are introduced, and Section 4.3.3 describes the general LS procedure.

4.3.1 Local Search for VRP with TW

LS in presence of TW becomes more complicated than in the classic VRP. Feasibility checks and routing
cost variations cannot be straightforwardly calculated in constant time. Savelsbergh [29] proposes a scheme
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to check feasibility and to calculate cost variation for series of k-opt moves. Nagata et al. [21] propose
a new scheme to evaluate TW violations. Roughly speaking, when a vehicle arrives late at the customer
location, it is allowed to drive back in time in order to meet the TW and a penalization proportional to the
TW violation is introduced in the objective function. They also propose formulas to evaluate in constant
time inter-route moves as relocation, exchange and 2-opt (inter-route 2-opt is usually called 2-opt∗). 1.

Vidal et al. [34] generalize this scheme for a large class of routing problems with TW. Each move is
seen as a concatenation of paths. In particular, given a path ρ, the quantities T (ρ), TW (ρ), E(ρ), L(ρ),
D(ρ) and Q(ρ) are introduced. T (ρ) and TW (ρ) are respectively the minimum duration and the minimum
penalization (called as well time warp) of ρ. E(ρ) and L(ρ) are the earliest and the latest date service can
start at the first customer of ρ (that can be the depot) allowing minimum duration and TW violation.
D(ρ) is the travelled distance while Q(ρ) is the cumulative demand of served customer. We will call these
quantities features. For a path made by a single customer i, features are initialized as follows: T (i) = Si,
TW (i) = 0, E(i) = Ei, L(i) = Li, D(i) = 0, Q(i) = Qi. Given two paths ρ1 and ρ2, the following relations
hold (see Vidal et al. [34] for formal proofs):

T (ρ1 ⊕ ρ2) = T (ρ2) + T (ρ1) + Tv1n1
,v21

+ ∆WT ; (4)

TW (ρ1 ⊕ ρ2) = TW (ρ1) + TW (ρ2) + ∆TW ; (5)
E(ρ1 ⊕ ρ2) = max {E(ρ2)−∆, E(ρ1)} −∆WT ; (6)
L(ρ1 ⊕ ρ2) = min {L(ρ2)−∆, L(ρ1)}+ ∆TW ; (7)

D(ρ1 ⊕ ρ2) = D(ρ1) +D(ρ2); (8)
Q(ρ1 ⊕ ρ2) = Q(ρ1) +Q(ρ2); (9)

where

∆ = T (ρ1)− TW (ρ1) + Tv1n1
,v21

;

∆WT = max {E(ρ2)−∆− L(ρ1), 0} ;

∆TW = max {E(ρ1) + ∆− L(ρ2), 0} .

Equations (4)–(9) allow evaluating classical LS moves in constant time. For example, relocate customer
vi from trip σ1 = (0, v1, . . . , vi−1, vi, vi+1, . . . , vn1 , 0) to trip σ2 = (0, w1, . . . , wj, wj+1, . . . , wn2 , 0) between
customers wj and wj+1 can be evaluated applying Equations (4)–(9) to (0, v1, . . . , vi−1)⊕ (vi+1, . . . , vn1 , 0)
and (0, w1, . . . , wj)⊕ (vi)⊕ (wj+1, . . . , wn2 , 0).

Features defined in Equations (4)–(9) need to be available for all the paths and their reverse present
in the current solution. Reverse paths come into play, for example, in the evaluation of 2-opt moves.
Moreover, these quantities need to be updated each time a move is implemented. Straightforward update
takes O(N2), but it can be done in O(N8/7) using speed up techniques proposed by Irnich [15].

We use this approach (except for the little modification introduced by the release dates, Section 4.3.2)
to evaluate local variations due to a move. By local we mean a cost variation that occurs in the trips
affected by the move itself. It is noteworthy that this variation can affect successive trips in the same
journey (Section 4.3.2).

4.3.2 Local search: introduction of release dates and application to the multi trip case

The MTVRPTW-R has two more attributes to consider compared to the VRPTW: vehicles can perform
several trips, and merchandise can be non-available at the depot at the beginning of the horizon.

1The formula proposed for inter-route relocations provides incorrect results in particular cases and it has been corrected
by Schneider et al. [30].
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We introduce a new feature R(ρ) as the greatest release date of customers served in ρ. We define
R(i) = Ri and Equation (10) holds

R(ρ1 ⊕ ρ2) = max {R(ρ1), R(ρ2)} . (10)

Then, given two paths ρ1 and ρ2, the quantity R(ρ1 ⊕ ρ2) can be calculated in constant time from values
R(ρ1) and R(ρ2).

It is observed that in VRP it is always possible to start a new trip σ at time t, with E(σ) ≤ t ≤ L(σ),
because all the vehicles are available at the depot at t = 0 and are assigned to only one trip. Then, the
minimum travelling duration time T (σ) and the minimum TW violation TW (σ) can always be obtained.
On the other side, this cannot be possible when vehicles are allowed to perform more than one trip or in
the presence of release dates. In the first case it can be L(σ) < T σ because of previous trips, in the second
case, it can be that L(σ) < R(σ) (that means trip σ is infeasible). We, then, need to calculate T (σ) and
TW (σ) based on the effective time t a vehicle leaves the depot to perform σ. To do that, we can use the
following relations proved by Vidal et al. [34] that provide the value of these quantities as functions of the
starting time t:

T (ρ)(t) = T (ρ) + max {0, E(ρ)− t} ; (11)
TW (ρ)(t) = TW (ρ) + max {0, t− L(ρ)} . (12)

Finally, the time T σi a vehicle is available at the depot to perform trip σi can be recursively calculated as
follows

T σ1 = 0; (13)
T σi+1 = T (σi)(max{R(σi), T

σi})− TW (σi)(max{R(σi), T
σi}). (14)

The Figure 1 introduces an example (data are given in tables, travel times and distances coincide)
that illustrates a consequence of using Nagata et al. [21] penalization scheme for TW violations in the
multi-trip context. In particular Figure 1 depicts a journey formed by four trips: σ1 = (v0, v5, v3, v0),
σ1 = (v0, v1, v0), σ3 = (v0, v4, v0) and σ4 = (v0, v2, v0) where v0 represents the depot. It can be noticed
that 115 = T σ4 < T σ3 = 125 and 95 = T σ5 < T σ4 . This means that the vehicle can be available at the
depot to perform trip σi+1 before the time it was available to perform trip σi. Indeed, it travelled back in
time and it is the consequence of a deep use of the time warp, i.e., a deep time window violation.

One needs also to observe that the effect of a move on trip σi ∈ Σ can modify T σi+1 , that in turn can
modify T (σi+1) and TW (σi+1). Hence, the effect of the move on trip σi can be propagated to the following
trips.

When loading times at the depot are constant and not trip-dependent, evaluation of the TW violation
can be done in constant time, considering a journey as a unique segment with multiple visit at the depot.
Conversely, the calculation requires O(Σmax), where Σmax indicates the maximum number of trips among
all journeys.

4.3.3 Local search: general scheme and penalty adaptation

We consider the move 2-opt and the move exρ that exchanges two segments ρ1 and ρ2 of successive
customers, where ρ1 and ρ2 are respectively subsequences of trips σ1 and σ2. Let v1 and v2 be two
customers. In particular, it can be observed that if:

• ρ1 = v1 and ρ2 = ∅, exρ is the classical relocate;

• ρ1 = v1 and ρ2 = v2, exρ is the classical exchange (or swap);
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v0

0 100 200

v4

v0

v1

v0

v3

v5

v0

v0

v2

Si Qi Ei Li Ri

v0 20 0 0 200 0
v1 5 20 100 120 60
v2 5 20 50 75 0
v3 5 20 50 75 0
v4 5 20 50 100 60
v5 5 20 50 100 0

Distance matrix
v0 v1 v2 v3 v4 v5

v0 0 5 15 20 10 15
v1 5 0 20 20 15 15
v2 15 20 0 40 20 30
v3 20 20 40 0 30 10
v4 10 15 20 30 0 20
v5 15 15 30 10 20 0

Figure 1: The last two trips arrive at the depot before they have left it

• ρ1 = (v1, . . . , 0) and ρ2 = (v2, . . . , 0), or ρ1 = (0, . . . , v1) and ρ2 = (0, . . . , v2), and σ1 6= σ2, exρ is
the classical 2-opt∗;

• ρ1 = σ1 and ρ2 = ∅, exρ relocates a full trip;

• ρ1 = σ1 and ρ2 = σ2, exρ exchanges trips.

The last two moves, take into account the multi-trip aspect. Relocations and swaps of trips are inter-
vehicle (resp. intra-vehicle) moves if σ1 and σ2 belong to a different (resp. the same) journey. No limitation
on the segment size is considered. Different neighbour structures considering a maximum segment size
could speed up the search against a payback due to the possible lower quality of the obtained solutions.

Initially, a neighbourhood defined by one of the listed move is randomly chosen and deeply explored.
The best improving move is then executed, if it exists. In this case, another neighbourhood is randomly
chosen. The LS terminates when all the neighborhoods are fully explored without finding any improving
move.

When the population reaches the dimension of π + µ, the values of each penalty factor P = θ, λ is
adjusted as follows:

P =

{
1.25× P if ζP > ζ+

ref ;

max{1, 0.85× P} if ζP < ζ−ref ,

where ζP is the percentage of infeasible chromosomes over the last µ individuals generated with respect
to time window violation (P = θ) or capacity violation (P = λ), while ζ+

ref and ζ−ref are reference values.

4.4 A Split algorithm for the multi trip problem with TW and release dates

The split procedure, indicated with AdSplit, is an adaptation of the procedure proposed by Prins [26]. It
turns a permutation of the N customers into a solution for the MTVRPTW-R. It works on an acyclic
graph H whose nodes represent customers, and arcs represent trips. The graph construction is illustrated
in Section 4.4.1, while Section 4.4.2 presents the AdSplit procedure.
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4.4.1 Auxiliary graph construction

The auxiliary graph H = (V
′
, A
′
) is defined with N + 1 nodes indexed from 0 to N . Node i represents

customer Ψi in the chromosome Ψ = (Ψ1, . . . ,ΨN). Arc (i, j), i < j, represents trip σji+1 serving customers
from Ψi+1 to Ψj in this order, i.e., σji+1 = (0,Ψi+1, . . . ,Ψj, 0). Cost cij of arc (i, j) is given by the following
equation

cij = D(σji+1) + θTW (σji+1) + λmax{0, Q(σji+1)−Q},
that is the sum of the travelled distance in trip σji+1 plus the penalized TW and capacity violations.
Figure 2 depicts graph H for the example in Figure 1, where Ψ = (1, 2, 3, 4, 5). Cost of arc (0, 1) is

45

2 3 4 510
10 30 40 20 30

60

245

355

470

140

360

205
325

115

Figure 2: The auxiliary graph for chromosome Ψ = (1, 2, 3, 4, 5), data as in Figure 1, Q = 60 and θ = λ = 2

twice the travelling distance needed to go from the depot to customer 1, i.e., 10. Cost of arc (0,2) is the
travelling distance needed to reach customer 1 from the depot, then visit customer 2 and to conclude the
trip at the depot, i.e., 40. The penalization 50 · θ is added since the vehicle arrives at customer 2 at 125
and its time window closes at 75. Then, for θ = 2, arc (0, 2) costs 140. Other costs are computed similarly.

It is noteworthy that the arc cost does not take into account the position of the trip in the journey,
but it is the (penalized) cost of the trip when it is performed at t = 0. Therefore, the (contingent) TW
violation due to later departure is not taken into account.

4.4.2 Assignment of trips to vehicles

In the MTVRPTW-R context in particular and in the MTVRP context in general, more than one trip
can be assigned to the same vehicle. TW penalization deeply depends on the time trips leave the depot
and this aspect cannot be considered by the constant costs associated with arcs on H.

Due to the correspondence between arcs and trips in H and to simplify the presentation, in this section
we will indifferently refer to arc or trip. Consequently, the assignment of arcs to a vehicle, will mean that
the trips represented by these arcs are assigned to this vehicle.

Each path that goes from node 0 to node N , represents a set of trips, that need to be assigned to
vehicles to form a solution. Arcs are assigned to a vehicle in the order they appear in the path. For each
arc, M assignments (one for each vehicle) are possible. In each case, the trip is positioned after the trips
already assigned to the vehicle. Hence, the order of trips in vehicles meets the order in Ψ.

The aim of the AdSplit procedure is to find the path whose optimal assignment of trips to vehicles
results in the best solution. It can be shown that the problem solved with the AdSplit procedure in
NP-hard.

Let us consider the problem SPLIT that consists in finding the optimal solution for an auxiliary
graph H (constructed as explained in Section 4.4.1) defined by an instance I of the MTVRPTW-R and a
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permutation Ψ of customers in I. The objective of SPLIT is to find the optimal solution ξΨ associated
with Ψ on graph H. In what follows we analyze the complexity of the SPLIT problem.

Proposition 1. The problem SPLIT is NP-Hard.

Proof. We perform a reduction from the Bin Packing Problem (BPP). The decision version of the BPP
is defined given MBPP bins of size QBPP and NBPP objects of size QBPP

i , i = 1, . . . , NBPP . We need to
answer the question: can the NBPP objects be inserted in the MBPP available bins respecting capacity
constraints?

The key idea of the reduction is to define an instance of the SPLIT problem such that each arc (i, j)
corresponds to the selection of objects {i+ 1, . . . , j} of the BPP.

Given an instance IBPP of the BPP, an instance of the MTVRPTW-R problem is defined with the
following parameters: N = NBPP , Tij = QBPP

j for all i, j = 1, . . . , N , and T0i = QBPP
i , Ti0 = 0,

[Ei, Li] =
[
0, QBPP

]
, Ri = 0, for all i = 1, . . . , N and Q = +∞. We call ISPLIT the instance of the

decision version of problem SPLIT obtained when applying AdSplit to the chromosome (1, . . . , N) for
this instance.

The graph H associated with the ISPLIT instance is constructed such that the cost on each arc (i, j)
is given by cij =

∑j
k=i+1Qk for all i, j = 0, . . . , N , i < j. We can notice that all paths from 0 to N in this

graph have the same cost (
∑N

k=1Qk). From the definition of ISPLIT , it is obvious that the instance IBPP
can be polynomially transformed into an ISPLIT instance.

We show that the answer for instance IBPP is positive if and only if there exists a feasible solution of
the SPLIT problem that uses at most MBPP vehicles.

If IBPP is a positive instance, then there exists an assignment of objects to bins such that the number
of used bins is lower than or equal to MBPP . Considering the path in H that corresponds to all the arcs
(i − 1, i), i = 1, . . . , N and assigning trips (0, i, 0) to the kth vehicle if the ith object is into the kth bin,
constructs a feasible solution for ISPLIT .

On the other side let suppose that ISPLIT is a positive instance. There exists a path ρ from 0 to N
and an assignment of arcs to the MBPP vehicles such that the sum of the duration of the trips assigned to
a vehicle does not exceed the time limit QBPP . A solution for the IBPP instance is constructed assigning
object i to bin k if customer i is assigned to the kth vehicle in ρ. The number of used bins is lower than
or equal to MBPP and their capacities are satisfied, which concludes the proof.

We propose a labelling procedure that selects arcs on H and assigns them to vehicles, in order to
obtain the solution with minimum cost with respect to Equation (3).

Labels are associated with nodes in the graph. Each label associated with node i represents a partial
path that goes from node 0 to node i inH and, then, a partial solution that serves all customers Ψ1, . . . ,Ψi.
Trips of this partial solution are represented by the arcs in the corresponding partial path.

Each label L has M + 3 fields. Each field j, with j = 1, . . . ,M records the availability time Tj(L) of
vehicle j, namely, the time the vehicle is available at the depot for starting the next service trip. Availability
times are stored in decreasing order to better take advantage of the dominance rules introduced in the
following. The (M + 1)th field memorizes the total load infeasibility, and the (M + 2)th the predecessor
node. The last field stores the cost c(L) of the partial solution represented by L. When extending a label,
M new labels are constructed, one for each possible allocation of the new trip to a vehicle. Extending
a label Li associated with node i through arc (i, j) means assigning trip (0,Ψi+1, . . . ,Ψj, 0) to a certain
vehicle. Identical labels associated with the same node are discarded.

Graph H is implicitly generated. Arc and solution costs are computed using relations introduced in
Section 4.3. In particular, the cost of an arc (i, . . . , j+1) is calculated concatenating path (0,Ψi+1, . . . ,Ψj)
with path (Ψj+1, 0), while label costs are updated using Relations (11)–(14) since vehicle availability times
are stored in labels.
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1 2 3 4 5
cost label p dom cost label p dom cost label p dom cost label p dom cost label p dom
10 (110,000) 0 no 40 (110, 70) 1 no 125 (110, 100) 1 no 190 (115, 110) 2 no 265 (120, 110) 2 no

140 (95, 0) 0 no 180 (95, 75) 2 no 210 (115, 95) 3 no 285 (120, 95) 3 no
230 (100, 70) 2 yes 250 (115, 75) 3 yes 300 (120, 115) 4 yes
275 (100, 0) 0 no 250 (115, 100) 3 yes 300 (120, 100) 3 yes

270 (115, 70) 2 yes 325 (120, 75) 3 yes
295 (105, 100) 3 yes 345 (120, 70) 2 yes
340 (115, 0) 2 no 370 (115, 70) 4 yes
360 (105, 100) 3 yes 395 (120, 105) 4 yes

415 (120, 0) 2 no

Table 1: Labels generated by AdSplit

The label L with minimum cost c(L) associated with node N is selected and the related solution is
constructed (going backwardly through the graph).

To speed up the procedure, dominated labels, accordingly with the following dominance rule, are
discarded.

Dominance Rule 1 (Strong). Let L1 and L2 be two labels associated with the same node i. L1 strongly
dominates L2 if and only if

c(L1) + θ
M∑
j=1

δj(L1,L2) ≤ c(L2); (15)

δj(L1,L2) = max{0, Tj(L1)− Tj(L2)}.

Roughly speaking, δj(L1,L2) represents the maximal additional penalization that can be introduce in
the partial solution represented by L1 compared to the one represented by L2. If Inequality (15) holds,
L2 cannot be extended in a better way than L1, and it is eliminated.

Table 1 shows all the labels generated by AdSplit when applied on the graph H depicted in Figure 2.
The number of vehicles M is set to 2. Column dom indicates if the respective label is dominated in the
sense of Dominance Rule 1. Only 3 labels associated with node 5 are non-dominated.

Label (120, 110) with cost c = 265 associated with node 5 corresponds to the solution made up of three
trips: (0, 1, 0) assigned to one vehicle and trips (0, 2, 0) and (0, 3, 4, 5, 0) performed by the other vehicle
(in this order). Travelled distance is 125, while late arrival at customers 3, 4 and 5 introduces a total TW
violation of 70 · θ.

Preliminary tests showed that a huge number of labels needs to be treated, which does not appear to
be viable in the heuristic context (see Section 5.3 for details). For this reason a heuristic version of the
Dominance Rule 1 is introduced as follows:

Dominance Rule 2 (Weak). Label L1 weakly dominates L2 if and only if

c(L1) + θ

M∑
j=1

δj(L1,L2) ≤ γc(L2), (16)

c(L1) ≤ c(L2). (17)

where γ ≥ 1.
For γ = 1, the weak dominance rule is equivalent to the strong version. When γ > 1, Inequality (16)

is easier to be satisfied and a bigger number of labels can be eliminated. Condition (17) is added because
when γ > 1 label L2 can be dominated by label L1 even if c(L2) < c(L1). Using the weak relation one
expects the solution to be obtained quicker. On the other side the best decomposition of the chromosome
can be missed.

The value of γ is dynamically adapted during the process according to the number of labels associated
with each node. Precisely the following scheme is adopted:

γ =

{
γ + |Li|

1000Lthreshold
if |Li| > Lthreshold

γ − Lthreshold
1000|Li| if |Li| < Lthreshold

(18)
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where |Li| is the number of labels associated with node i and Lthreshold is a threshold parameter that
indicates the number of labels that should be kept associated with each node. If after Relation (18) is
applied, γ is lower than 1, it is set back to 1.

It is worth noting that the smaller Lthreshold is, the quicker AdSplit is. On the other side, the bigger
Lthreshold is, the better the quality of the solution obtained is.

4.5 Survivor strategy

When the population Π contains π + µ chromosomes, the survivor procedure is launched. It selects µ
chromosomes based on their quality and their diversification contribution to the population as suggested
by Vidal et al. [34, 33]. Diversity contribution f(Ψ) is set as the average distance between a selected chro-
mosome Ψ and its nc closest neighbours in Π (forming set Nc). Distance D(Ψ,Ψ1) between chromosomes
Ψ and Ψ1 is measured by the broken pair distance that is the number of pairs of adjacent customers in Ψ
that are broken in Ψ1 (Prins [27]). Formally we have:

f(Ψ) =
1

nc

∑
Ψ1∈Nc

D(Ψ,Ψ1), (19)

A biased fitness bF (·) is calculated for each chromosome as follows:

bF (Ψ) = rF (Ψ) + (1− ne
|Π|

)rf (Ψ); (20)

where rF (Ψ) and rf (Ψ) are the ranks of chromosome Ψ calculated based on fitness F and function f defined
in Equation (19) respectively, and ne is a parameter that ensures elitism properties during selection (see
Vidal et al. [33] for a formal proof).

5 Computation results
In this section we present the results obtained with our procedure ACAF . We start introducing a set
of instances (Section 5.1) for benchmark purposes: due to the novelty of the problem, no instances are
available in the literature. In Sections 5.2 we present the values of the parameters involved in the ACAF ,
determined using a meta-tuning procedure. Results obtained on the new set of instances are presented in
Section 5.4, while in Section 5.5 results obtained by ACAF on instances proposed by Hernandez et al. [12]
for the MTVRPTW are given. ACAF is coded in C++ and compiled with Visual Studio 2010. All the
experiments are run on a Intel Xeon W3550 3.07GHz with a RAM of 12 Gb.

5.1 Instances for the MTVRPTW-R

In this section we describe how we generate a set of instances for the MTVRPTW-R. We use the instances
introduced by Solomon [31] for the VRPTW as base instances and adapt them to the MTVRPTW-R case.
In Solomon [31] six groups of instances are generated, named R1, C1, RC1, R2, C2, RC2. Groups R1 and
R2 have customers randomly located in a region, while they are clustered in groups C1 and C2. RC1 and
RC2 instances contain a mix of randomly located and clustered customers. The time horizon is shorter
in instances of groups C1, R1, RC1 than in instances of C2, R2, RC2. There are 56 instances in total.

Depot location as well as customer locations, demands, time windows and service times are set as in
the original Solomon’s instances. Release dates are calculated in three steps, based on the Algorithm 2
explained in the following, and given a rigidity parameter r.

In the first step (lines 1–7 of Algorithm 2) release dates R(2) are calculated based on Equation (21)
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Algorithm 2 Instances creation
1: for all i = 1, . . . , N do
2: if Li + TH(r − 1) ≥ 0 then
3: Ri = bLi + TH(r − 1)c
4: else
5: Ri = 0
6: end if
7: end for
8: for all i = 1, . . . , N do
9: if Ri + T0i > Li then

10: Ri = 0
11: end if
12: end for
13: Initialize Λ with customers with strictly positive release date and ranked with respect to non-decreasing

release dates: u < v ⇒ Ru ≤ Rv

14: Γ = ∅; LΓ − TΓ =∞; RΓ = 0
15: while Λ 6= ∅ do
16: Get v∗ first customer in Λ
17: Λ = Λ \ {v∗}
18: if Γ = ∅ then
19: Γ = {v∗}; LΓ − TΓ = κLv∗ − T0v∗ ; RΓ = Rv∗

20: else
21: LΓ − TΓ = min{κLv∗ − T0v∗ , LΓ − TΓ}
22: if Rv∗ ≤ LΓ − TΓ then
23: Γ = Γ ∪ v∗; RΓ = Rv∗

24: else
25: λ = Λ ∪ {v∗}
26: for all v ∈ Γ do
27: Rv = RΓ

28: end for
29: Γ = ∅
30: end if
31: end if
32: end while
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r = 1− Li −R(2)
i

TH
. (21)

Equation (21) (instead of Equation (1)) allows to univocally determine the value of R(2)
i once r is given.

This is done in order to make instance replication easier. Inverting Equation (21) we obtain

R
(2)
i = Li + TH(r − 1);

from which follows that
R

(2)
i ≥ 0⇔ Li + TH(r − 1) ≥ 0⇔ r ≥ 1− Li

TH
.

Then, when r < 1 − Li

TH
, R(2)

i is negative. We fix the release date to zero in this case. Moreover, the
decimal parts are truncated in order to work with integer values. Thus, the following scheme is adopted

R
(2)
i =

{
bLi + TH(r − 1)c if 1− Li

TH
≤ r;

0 otherwise.

In the second step (lines 8–12 of Algorithm 2), we guarantee that each customer can be served by a
round trip, then R(1)

i is calculated as follows

R
(1)
i =

{
R

(2)
i if R(2)

i + T0i ≤ Li,

0 otherwise.

In the third step (lines 13–32 of Algorithm 2) the final release date values Ri, i = 1, . . . , N are
determined. Customers are clustered with respect to the release dates with the purpose to represent
different truck arrivals at the depot. All the customers that belong to the same cluster Γ will be associated
with the same release date RΓ.

A list Λ is initialized with all the customers ordered by non-decreasing values of R(1), i.e., such that
i < j implies R(1)

i ≤ R
(1)
j . Clusters Γ are constructed starting with a single customer v1 and successively

adding the following customers in Λ. A customer v2 is added if and only if each customer v ∈ Γ can be
served by a round trip even if the merchandise is available at the depot at time R(1)

v2 (≥ R
(1)
v ), namely, if

and only if
R

(1)

v2 + T0v ≤ Lv ∀v ∈ Γ. (22)

The final release date Rv of each customer v in Γ is set to R(1)

v2 . When the next customer v2 to be inserted
in Γ does not satisfy Relation (22), a new cluster is initialized and the procedure restarted.

In order to create different classes of instances, a parameter κ ≤ 1 is introduced in Equation (22).
Hence, it becomes

R
(1)

v2 + T0v ≤ κLv ∀v ∈ Γ.

Different values of κ produce instances with different rigidity. In particular the higher is κ, the higher is
the rigidity r.

The first step release dates R(2)
i , i = 1, . . . , N are determined setting r = 0.5. Then, for each Solomon

instance, three instances are created using Algorithm 2 with values κ = 0.25, 0.5, 0.75. A fourth instance
has all the release dates equal to zero and will be referred by κ = 0 for simplicity. There are in total 224
new instances.

Finally, vehicle’s capacities are half of the original values, while the number of vehicles M is set in
order to have feasible or quasi-feasible solution for the κ = 0.75 instance group. Since we force some
release dates to be zero and we use different values of κ, the final rigidity of instances differs from 0.5.
Values of the number of vehicles, actual rigidity r and tightness tigh are reported in Table 2.
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κ = 0 κ = 0.25 κ = 0.5 κ = 0.75
M tigh r tigh r tigh r tigh r

C101 12 0 0.606 0.085 0.664 0.129 0.690 0.161 0.709
C102 10 0 0.493 0.164 0.629 0.201 0.651 0.225 0.666
C103 11 0 0.350 0.261 0.576 0.290 0.595 0.311 0.609
C104 13 0 0.227 0.350 0.540 0.361 0.548 0.380 0.561
C105 11 0 0.579 0.098 0.647 0.152 0.678 0.190 0.702
C106 11 0 0.563 0.105 0.638 0.152 0.667 0.203 0.697
C107 11 0 0.553 0.102 0.627 0.151 0.656 0.206 0.689
C108 10 0 0.522 0.116 0.607 0.158 0.632 0.225 0.674
C109 10 0 0.467 0.139 0.573 0.192 0.605 0.257 0.644
R101 22 0 0.537 0.093 0.605 0.099 0.609 0.135 0.632
R102 19 0 0.424 0.179 0.571 0.185 0.574 0.222 0.601
R103 18 0 0.332 0.258 0.548 0.261 0.550 0.311 0.589
R104 17 0 0.241 0.332 0.522 0.334 0.523 0.387 0.566
R105 17 0 0.492 0.111 0.575 0.122 0.582 0.181 0.619
R106 15 0 0.391 0.192 0.548 0.201 0.553 0.260 0.594
R107 16 0 0.311 0.266 0.533 0.272 0.536 0.346 0.590
R108 16 0 0.231 0.335 0.514 0.336 0.515 0.382 0.550
R109 15 0 0.427 0.137 0.531 0.147 0.537 0.212 0.577
R110 15 0 0.362 0.204 0.517 0.223 0.527 0.299 0.575
R111 15 0 0.328 0.241 0.521 0.249 0.526 0.320 0.575
R112 18 0 0.283 0.289 0.500 0.314 0.515 0.469 0.618

RC101 19 0 0.492 0.104 0.569 0.120 0.577 0.175 0.611
RC102 17 0 0.406 0.179 0.546 0.187 0.551 0.244 0.587
RC103 18 0 0.332 0.249 0.532 0.257 0.537 0.325 0.584
RC104 19 0 0.256 0.317 0.514 0.317 0.515 0.391 0.570
RC105 18 0 0.430 0.153 0.542 0.167 0.550 0.220 0.584
RC106 16 0 0.427 0.141 0.531 0.156 0.540 0.227 0.584
RC107 18 0 0.365 0.202 0.514 0.212 0.520 0.280 0.563
RC108 18 0 0.302 0.268 0.501 0.280 0.508 0.380 0.571
C201 3 0 0.519 0.151 0.634 0.199 0.664 0.258 0.702
C202 4 0 0.393 0.239 0.600 0.274 0.623 0.318 0.651
C203 5 0 0.277 0.318 0.570 0.339 0.584 0.364 0.601
C204 5 0 0.147 0.405 0.530 0.416 0.538 0.431 0.548
C205 3 0 0.495 0.159 0.619 0.210 0.652 0.262 0.685
C206 3 0 0.469 0.175 0.607 0.225 0.639 0.287 0.679
C207 3 0 0.452 0.185 0.603 0.233 0.634 0.283 0.666
C208 3 0 0.445 0.183 0.592 0.237 0.626 0.290 0.660
R201 4 0 0.493 0.133 0.600 0.162 0.617 0.215 0.651
R202 2 0 0.365 0.222 0.567 0.247 0.581 0.284 0.606
R203 3 0 0.252 0.312 0.546 0.328 0.555 0.355 0.575
R204 3 0 0.141 0.395 0.519 0.397 0.521 0.420 0.540
R205 3 0 0.430 0.177 0.571 0.236 0.607 0.297 0.645
R206 3 0 0.318 0.262 0.548 0.313 0.578 0.365 0.612
R207 3 0 0.222 0.337 0.533 0.368 0.551 0.405 0.578
R208 3 0 0.126 0.409 0.514 0.410 0.514 0.456 0.548
R209 3 0 0.370 0.211 0.537 0.283 0.580 0.380 0.640
R210 3 0 0.334 0.250 0.540 0.310 0.578 0.381 0.623
R211 4 0 0.303 0.276 0.517 0.390 0.582 0.541 0.673

RC201 4 0 0.488 0.142 0.600 0.183 0.624 0.240 0.660
RC202 5 0 0.366 0.232 0.569 0.264 0.588 0.314 0.621
RC203 3 0 0.257 0.320 0.549 0.344 0.563 0.385 0.594
RC204 4 0 0.147 0.393 0.519 0.394 0.519 0.440 0.554
RC205 4 0 0.426 0.176 0.566 0.254 0.610 0.334 0.658
RC206 3 0 0.424 0.172 0.562 0.227 0.594 0.293 0.638
RC207 4 0 0.362 0.212 0.531 0.282 0.571 0.388 0.638
RC208 4 0 0.291 0.276 0.508 0.379 0.568 0.537 0.666

Table 2: Instance details
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5.2 Tuning

The procedure makes use of some parameters that need to be set to values chosen into sensible ranges.
After conducting preliminary tests we decided to fix the values of ζ+

ref and ζ
−
ref to 0.35 and 0.25 respectively,

while θ and λ are initially set respectively to 20 and 2.
In order to determine the values of the remaining parameters, we run the Evolutionary Strategy with

Covariance Matrix Adaptation proposed by Hansen and Ostermeier [10] on a limited set of instances. In
particular ACAF is run on C108, R104, RC106, RC208, obtained with κ = 0.75, and we obtained the
values reported in Table 3.

Parameter Range Final value
π Dimension of population [1, 100] 20
µ Children generated at each generation [1, 100] 30
ne Proportion of elite individuals ne = ne × Π (Eq. 19) [0.1, 1] 0.20
nc Proportion of close individuals nc = nc × Π (Eq. 20) [0.1, 1] 0.35

Table 3: Parameter Tuning

5.3 Setting of Lthreshold

The value of Lthreshold is important to achieve the best compromise between solution quality and computa-
tional efficiency. To find a suitable value, we evaluate the impact of Lthreshold on a set of 100 chromosomes.
In order to avoid completely random chromosomes, we proceed as follows. A chromosome is randomly
generated for instances C101 and C201 of group κ = 0. AdSplit first evaluates them with Lthreshold = 10,
then they are improved by LS. The resulting chromosomes are re-evaluated by AdSplit with different
values of Lthreshold. Average results obtained on the 100 evaluations are reported in Table 4. The value of

C101 κ = 0 C201 κ = 0
Lthreshold time (ms) cost time gap (%) cost gap (%) time (ms) cost time gap (%) cost gap (%)

500 292111 2561.17 - - 119933 2089.89 - -
50 5446 2564.93 -98.14 0.15 2797 2089.93 -97.67 ≈ 0
45 4299 2565.04 -98.53 0.15 2413 2089.93 -97.99 ≈ 0
40 3134 2565.32 -98.93 0.16 2080 2089.93 -98.27 ≈ 0
35 2273 2565.42 -99.22 0.17 1698 2089.93 -98.58 ≈ 0
30 1550 2565.82 -99.47 0.18 1377 2089.93 -98.85 ≈ 0
25 1013 2594.49 -99.65 1.30 1035 2089.93 -99.14 ≈ 0
20 631 2656.85 -99.78 3.74 657 2089.93 -99.45 ≈ 0
15 346 2713.37 -99.88 5.94 370 2089.93 -99.69 ≈ 0
10 164 2788.42 -99.94 8.87 178 2089.93 -99.85 ≈ 0
5 62 3185.31 -99.98 24.37 67 2089.93 -99.94 ≈ 0
1 14 8619.91 -100.00 236.56 11 2242.80 -99.99 7.32

Table 4: Setting Lthreshold

Lthreshold is indicated in the first column of the table. A maximum of 500 labels is considered for Lthreshold.
In this case, computational times are huge implying also that splitting chromosomes using the Strong
Dominance Rule 1 is not time efficient. The Weak Dominance Rule 2 allows a quick evaluation preserving
solution quality even with a few labels kept associated with each node. Symbol ≈ 0 means the value
is approximately zero. Results show that for instance C201 a small cost deterioration is achieved when
the value of Lthreshold is very small. This can be explained by the fact that C201 is characterized by a
low number of vehicles, that reduces the possible assignment of trips. Finally, it has been decided to set
Lthreshold= 15.
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5.4 Results on MTVRPTW-R instances

ACAF is run 5 times over the 224 instances. Each run is stopped after 5 minutes of computation time.
Complete results are reported in Tables 5–6, each table being divided in two parts, exhibiting results for
instances with κ = 0, 0.25, 0.5, 0.75. Column instance contains the name of the original Solomon instance.
Columns best report the distance (dist) and the number of trips (#trips) of the best solution found on the
5 runs. Columns average report average distances and trips on the five found solutions. Column #feas
indicates the number of runs the procedure found a feasible solution. A dash means no feasible solution
has been found for the respective instance. It can be noticed that the best solution can be formed by a
number of trips higher than the average.

Result analysis is reported on Table 7 and in Figure 3. Table 7 reports average results per group of
instances. Columns best report average distance and number of trips of the corresponding best solution
found by the procedure, while columns average report the average of the average values on instances of
the same group. Column % feas indicates the percentage of feasible solutions found on the total number
of runs (that is 5 times the instances forming a specified group).
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Figure 3: Result analysis

Procedure ACAF always finds a feasible solution for instances with κ = 0 (Table 5 and 7). This
validates the generation scheme presented in Section 5.1.

Rigidity and tightness of instances averagely describe the difficulty of solving an instance: considering
results grouped by type of instances and value of κ, it can be noticed (Figures 3a–3c, Table 7) that when
the tightness and rigidity grow, the travelled distance and the number of trips per vehicle grow, while
the number of feasible solutions found by the algorithm decreases. On the other side, there is no evident
punctual correlation between rigidity and tightness, and the results obtained on a specific instance: for
example instance R103 with κ = 0.25 has higher tightness and rigidity than instance RC102 (see Table 2),
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κ = 0 κ = 0.25
instance best average #feas best average #feasdist #trips dist #trips dist #trips dist #trips

C101 1529.66 20 1568.27 20.8 5 1565.24 21 1585.29 21.0 5
C102 1675.75 22 1715.14 21.8 5 1759.23 22 1778.12 22.4 5
C103 1452.69 19 1524.98 19.6 5 1748.96 22 1810.23 22.6 5
C104 1384.78 19 1407.10 19.2 5 1774.75 22 1834.28 22.6 5
C105 1550.02 21 1709.18 22.2 5 1552.38 21 1601.48 21.4 5
C106 1592.13 20 1624.38 21.4 5 1594.68 21 1621.70 21.6 5
C107 1513.19 20 1527.41 20.0 5 1511.36 20 1536.45 20.0 5
C108 1545.94 21 1659.66 21.6 5 1518.79 20 1548.04 20.2 5
C109 1496.65 21 1538.70 20.2 5 1536.90 21 1547.45 20.4 5
R101 1671.77 22 1678.46 20.6 5 2102.53 32 2160.65 31.4 5
R102 1498.23 18 1502.58 18.0 5 2133.22 31 2146.89 32.5 2
R103 1288.44 16 1298.49 16.0 5 1924.76 27 1990.82 29.0 5
R104 1177.88 15 1190.59 15.0 5 1632.43 24 1711.13 25.6 5
R105 1421.19 16 1433.05 16.4 5 1848.76 25 1913.50 26.6 5
R106 1361.02 16 1365.95 16.2 5 1882.07 27 1959.79 28.4 5
R107 1235.15 16 1245.09 16.0 5 1830.08 26 1861.37 27.2 5
R108 1187.36 15 1193.28 15.0 5 1565.98 22 1622.82 23.0 5
R109 1307.25 17 1316.19 16.4 5 1750.73 25 1835.34 26.0 5
R110 1246.99 15 1253.13 15.0 5 1741.20 25 1779.37 26.6 5
R111 1236.23 17 1244.99 16.2 5 1803.39 26 1833.50 26.4 5
R112 1182.72 15 1191.47 15.6 5 1323.48 17 1329.28 17.0 5

RC101 1805.40 19 1828.30 19.0 5 2304.70 26 2398.29 28.6 5
RC102 1746.02 18 1759.63 18.2 5 - - - - 0
RC103 1637.38 18 1641.92 18.0 5 2161.58 25 2319.11 28.0 5
RC104 1582.81 18 1583.46 18.0 5 1884.44 22 1963.69 22.8 5
RC105 1752.66 19 1759.14 18.4 5 2291.55 28 2367.93 29.0 2
RC106 1750.52 19 1764.37 18.8 5 2249.39 29 2266.68 28.0 3
RC107 1615.05 18 1618.37 18.0 5 1911.32 21 1980.79 22.8 5
RC108 1581.78 18 1587.03 18.0 5 1706.06 20 1737.62 19.4 5
C201 777.48 6 777.48 6.0 5 781.76 7 781.76 7.0 5
C202 718.69 6 724.85 6.0 5 913.97 7 914.23 7.0 5
C203 700.20 6 711.06 6.0 5 949.71 8 949.71 8.0 5
C204 695.12 6 698.17 6.0 5 966.98 7 977.18 7.2 5
C205 767.55 7 770.21 6.8 5 755.45 7 755.45 7.0 5
C206 747.14 6 750.42 6.0 5 796.57 7 797.31 7.0 5
C207 746.62 6 748.66 6.0 5 786.64 7 788.08 7.0 5
C208 741.58 6 742.09 6.0 5 820.57 8 828.71 7.8 5
R201 1272.47 4 1287.21 4.2 5 1403.33 8 1444.78 9.0 5
R202 1272.72 4 1278.20 4.2 5 1400.45 6 1452.05 6.6 5
R203 966.35 5 976.30 4.2 5 1140.24 6 1162.86 6.0 5
R204 779.22 3 787.31 3.6 5 1018.57 5 1027.23 5.8 5
R205 1074.75 5 1089.24 4.6 5 1141.30 8 1163.15 7.2 5
R206 944.58 4 962.93 4.2 5 1018.97 6 1034.26 6.0 5
R207 849.64 4 862.07 4.0 5 981.61 6 993.27 6.0 5
R208 735.49 4 738.52 3.8 5 905.53 4 912.03 4.6 5
R209 944.06 3 961.83 3.6 5 1050.79 6 1127.31 6.8 5
R210 985.66 4 1001.98 4.2 5 1149.92 7 1178.50 7.0 5
R211 772.99 5 779.80 4.2 5 891.09 6 900.95 6.6 5

RC201 1424.18 5 1459.26 5.2 5 1637.82 9 1690.93 9.8 5
RC202 1171.86 4 1196.66 4.4 5 1423.40 8 1508.23 9.4 5
RC203 1108.21 4 1150.94 5.0 5 1441.46 6 1485.27 8.2 5
RC204 806.44 4 809.59 4.2 5 1076.24 7 1082.30 6.8 5
RC205 1321.64 4 1354.18 4.6 5 1543.24 11 1585.42 10.4 5
RC206 1325.01 5 1385.87 5.4 5 1493.13 9 1554.81 9.8 5
RC207 1042.03 4 1050.24 4.6 5 1185.78 8 1228.64 8.2 5
RC208 803.59 4 818.23 4.0 5 1001.06 6 1060.34 7.0 5

Table 5: Results on new instances, κ = 0 and κ = 0.25
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κ = 0.5 κ = 0.75
instance best average #feas best average #feasdist #trips dist #trips dist #trips dist #trips

C101 1579.19 22 1584.99 21.8 5 1591.91 22 1611.34 22.2 5
C102 1746.59 22 1774.92 22.4 5 1766.15 22 1793.42 22.2 5
C103 1842.84 24 1889.73 23.6 5 1900.10 23 1920.27 24.5 4
C104 1773.04 21 1814.93 21.8 5 1805.55 20 1890.63 21.8 5
C105 1603.96 22 1637.48 22.0 4 1600.94 21 1633.32 21.4 5
C106 1587.25 22 1605.18 21.8 5 1663.38 22 1695.00 21.8 5
C107 1518.75 20 1529.53 20.0 5 1538.41 20 1547.13 20.0 5
C108 1556.50 20 1662.16 21.4 5 1546.53 20 1569.45 20.2 5
C109 1506.85 20 1541.79 20.0 5 1512.26 20 1521.20 20.2 5
R101 2135.93 32 2236.49 33.0 5 2372.83 35 2372.83 35.0 1
R102 2102.70 31 2120.94 32.0 2 - - - - 0
R103 1879.98 27 1959.64 28.6 5 - - - - 0
R104 1637.50 22 1680.34 23.8 5 - - - - 0
R105 1964.79 27 1987.37 28.6 5 2046.53 31 2135.91 32.0 2
R106 1900.14 28 1964.97 28.6 5 2043.12 30 2043.12 30.0 1
R107 1853.74 27 1888.95 27.6 5 - - - - 0
R108 1562.17 22 1618.08 23.2 5 - - - - 0
R109 1730.47 24 1819.57 26.0 5 1898.65 28 1898.65 28.0 1
R110 1682.08 24 1756.21 25.8 5 - - - - 0
R111 1784.27 26 1884.33 27.6 5 - - - - 0
R112 1320.07 17 1332.57 17.4 5 1540.39 23 1612.44 24.8 4

RC101 2484.09 30 2484.09 30.0 1 - - - - 0
RC102 - - - - 0 - - - - 0
RC103 2194.26 25 2270.77 26.8 5 - - - - 0
RC104 1896.29 22 1930.99 22.6 5 2175.03 27 2214.98 27.3 4
RC105 - - - - 0 - - - - 0
RC106 - - - - 0 - - - - 0
RC107 1918.73 21 2024.90 24.0 5 2249.07 28 2290.20 28.6 5
RC108 1718.04 19 1728.73 19.4 5 1985.12 24 2014.37 25.5 2
C201 788.37 7 788.37 7.0 5 815.58 6 815.58 6.0 5
C202 913.66 7 914.14 7.0 5 913.66 7 915.58 7.0 5
C203 952.09 8 962.94 8.0 5 952.46 8 952.47 8.0 5
C204 967.23 7 975.28 7.0 5 976.79 7 982.89 7.0 5
C205 762.06 7 762.06 7.0 5 778.45 6 778.45 6.0 5
C206 796.57 7 797.32 7.0 5 813.52 6 813.52 6.0 5
C207 784.22 7 789.49 7.0 5 805.76 6 806.23 6.2 5
C208 817.35 8 824.63 8.0 5 833.46 8 841.61 7.6 5
R201 1443.84 10 1464.64 8.6 5 1430.19 9 1455.41 8.6 5
R202 1425.40 9 1452.19 8.3 4 1452.75 9 1481.26 8.3 3
R203 1214.24 7 1242.41 7.6 5 1255.53 8 1287.27 8.6 5
R204 990.54 6 1022.97 5.8 5 987.98 6 1028.77 6.0 5
R205 1183.48 8 1256.04 9.2 5 1242.05 9 1266.00 9.0 5
R206 1069.98 7 1113.78 8.2 5 1111.86 8 1160.79 8.2 5
R207 1004.76 6 1032.92 6.8 5 1034.82 7 1054.83 6.8 5
R208 905.90 4 920.82 4.6 5 910.47 5 944.81 5.6 5
R209 1188.91 9 1237.35 9.6 5 1320.07 9 1327.13 9.3 3
R210 1228.73 9 1288.66 8.4 5 1268.23 8 1338.17 9.2 5
R211 902.45 6 910.85 6.6 5 1074.15 8 1114.96 7.8 5

RC201 1677.63 10 1784.00 11.8 5 1796.39 10 1874.02 11.4 5
RC202 1427.31 10 1522.27 10.6 5 1539.80 13 1599.26 12.2 5
RC203 1464.58 8 1480.79 8.8 4 1488.91 9 1493.40 9.0 2
RC204 1084.93 7 1086.09 7.0 5 1103.65 7 1123.24 7.2 5
RC205 1695.25 11 1734.99 11.4 5 1777.28 12 1808.49 11.4 5
RC206 1445.43 9 1575.79 9.0 5 1493.88 9 1594.45 9.2 5
RC207 1163.13 8 1328.49 9.6 5 1449.89 11 1502.53 10.6 5
RC208 1107.69 8 1122.44 7.6 5 1297.58 9 1304.99 8.5 2

Table 6: Results on new instances, κ = 0.5 and κ = 0.75
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Instance Group
best average % feas tight rigiditydist #trips dist #trips

κ = 0
C1 1526.76 20.33 1586.09 20.76 100 0.00 0.48
R1 1317.85 16.50 1326.11 16.37 100 0.00 0.36
RC1 1683.95 18.38 1692.78 18.30 100 0.00 0.38
C2 736.80 6.13 740.37 6.10 100 0.00 0.40
R2 963.45 4.09 975.04 4.07 100 0.00 0.30
RC2 1125.37 4.25 1153.12 4.68 100 0.00 0.35

κ = 0.25
C1 1618.03 21.11 1651.45 21.36 100 0.16 0.61
R1 1794.89 25.58 1845.37 26.64 95.0 0.22 0.54
RC1 2072.72 24.43 2147.73 25.51 75.0 0.20 0.53
C2 846.45 7.25 849.05 7.25 100 0.23 0.59
R2 1100.16 6.18 1126.94 6.51 100 0.27 0.54
RC2 1350.27 8.00 1399.49 8.70 100 0.21 0.53

κ = 0.5
C1 1635.00 21.44 1671.19 21.64 97.8 0.20 0.64
R1 1796.15 25.58 1854.12 26.85 95.0 0.23 0.55
RC1 2042.28 23.40 2087.90 24.56 52.5 0.21 0.54
C2 847.69 7.25 851.78 7.25 100 0.27 0.62
R2 1141.66 7.36 1176.60 7.60 98.2 0.31 0.57
RC2 1383.24 8.88 1454.36 9.47 97.5 0.28 0.58

κ = 0.75
C1 1658.36 21.11 1686.86 21.59 97.8 0.24 0.66
R1 1980.30 29.40 2012.59 29.95 15.0 0.29 0.59
RC1 2136.41 26.33 2173.18 27.12 27.5 0.28 0.58
C2 861.21 6.75 863.29 6.73 100 0.31 0.65
R2 1189.83 7.82 1223.58 7.95 92.7 0.37 0.61
RC2 1493.42 10.00 1537.55 9.94 85.0 0.34 0.62

Table 7: Statistics on new instances
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but 5 feasible solutions out of 5 runs are found for the former, while none for the latter.
Robustness of procedure ACAF is proved by the small differences between best values and average

values reported in Tables 5–6 and in Table 7.

5.5 Comparison with Hernandez et al. [12]

To evaluate the performance of ACAF we run the procedure on instances generated by Hernandez et al. [12]
for the MTVRP with TW. These instances are generated from Solomons’s instances in groups C2, R2,
RC2, considering the first 25 customers and M fixed to 2, and the first 50 customers and M = 4. Vehicle
capacity is fixed to 100, loading time at the depot is trip dependent and in particular it is 0.2 times the
sum of service times at customers in the trip. Travel times are the Euclidean distances rounded to the first
decimal. Limitation into the number of customers is due to the exact nature of the algorithm proposed
by Hernandez et al. [12]. Due to the heuristic nature of our algorithm, we consider as well the instances
with all the 100 customers. Following the instance generation system of Hernandez et al. [12], we double
the number of available vehicles used for instances with 50 customers. Then, 8 vehicles are available to
serve the 100 customers.

Instances in groups C1, R1 and RC1 are not considered by Hernandez et al. [12] due to short time
horizon that, in their opinion, would not allow vehicles to perform different trips.
ACAF is run five times on each instance and it is stopped after 1 minute on instances with 25 customers

and after 5 minutes on instances with 50 customers and with 100 customers. Results are reported in
Tables 8–10.

The first column reports the instance name, columns HRN report the optimal value (column opt)
found by Hernandez et al. [12]. A blank indicates they could not find the optimal solution. In some cases
their algorithm provides a feasible solution which value is indicated in column feas.

Columns best report the travelled distance (dist) and the number of trips (# trips) that characterize
the best solution found by ACAF in the five runs. Columns average indicate average values over the five
runs. Bold numbers indicate the best known solution has been improved by ACAF (we omitted the bold
font when no solution value was available). Finally, column # opt reports the number of runs ACAF finds
the optimal solution on the five runs. A dash is reported when the optimal value is not available.

It can be observed that on small instances ACAF finds the optimal solution on all the five runs on 23
out of 25 instances. It fails in finding the optimal on only 2 runs in total, one for instance C201 and one for
instance RC206. The average gap from the optimal value is respectively 0.079% and 0.003%. Moreover, a
new best solution is obtained for instance RC204. On instances with 50 customers, our procedure fails in
finding the optimal solution only for instance RC202, while in the other four cases the optimal solution is
retrieved 14 times out of 20 runs. 8 instances on the 9 with a feasible known solution are improved, while
in the remaining case a same cost solution is got. The average percentage gap from the optimal value is
0.03%. Feasible solutions are found for all the instances, included those with the all 100 customers.

6 Conclusions and perspectives
In this paper we introduced a new problem, the Multi Trip Vehicle Routing Problem with Time Windows
and Release Dates. It raises in city logistics context, where trucks deliver goods to city distribution centers
(CDC) before they are delivered to final customers by eco-friendly vans. Optimization of van trips depends
on the truck delivery plan to the CDC. Trucks arrive during the whole day, continuously bringing goods
into the distribution system. Arrival of trucks to CDC is modelled associating a release date with each
merchandise. It represents the moment the merchandise itself becomes available for final delivery.

We introduced a new set of instances on which we run the memetic algorithm we developed. Moreover,
we run the algorithm on instances for the Multi Trip Vehicle Routing Problem with Time Windows for
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Instance HRN best average #optopt feas dist # trips dist # trips
C201 380.8 380.8 3 381.10 5.4 4
C202 368.6 368.6 5 368.60 5.0 5
C203 361.7 361.7 5 361.70 5.0 5
C204 358.8 358.8 5 358.80 5.0 5
C205 377.2 377.2 5 377.20 5.0 5
C206 367.2 367.2 5 367.20 5.0 5
C207 359.1 359.1 5 359.10 5.0 5
C208 360.9 360.9 5 360.90 5.0 5
R201 554.6 554.6 4 554.60 4.0 5
R202 485.0 485.0 4 485.00 4.0 5
R203 444.2 444.2 4 444.20 4.0 5
R204 407.5 407.5 4 407.50 4.0 5
R205 448.4 448.4 4 448.40 4.0 5
R206 413.9 413.9 4 413.90 4.0 5
R207 400.1 400.1 4 400.10 4.0 5
R208 394.3 394.3 4 394.30 4.0 5
R209 418.3 418.3 4 418.30 4.0 5
R210 448.3 448.3 4 448.30 4.0 5
R211 400.1 400.1 4 400.10 4.0 5
RC201 660.0 660.0 6 660.00 6.0 5
RC202 596.8 596.8 6 596.80 6.0 5
RC203 530.1 530.1 6 530.10 6.0 5
RC204 520.3 518.0 6 518.00 6.0 -
RC205 605.3 605.3 6 605.30 6.0 5
RC206 575.1 575.1 6 575.12 6.0 4
RC207 528.2 528.2 6 528.20 6.0 5
RC208 506.4 506.4 6 506.40 6.0 -

Table 8: Results on Hernandez et al. [12] instances with N = 25 and M = 2
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Instance HRN best average #optopt feas dist # trips dist # trips
C201 717.9 714.2 10 714.20 10.0 -
C202 701.9 700.1 9 700.38 9.0 -
C203 688.0 9 689.34 9.0 -
C204 685.1 9 685.10 9.0 -
C205 706.6 700.0 9 703.52 9.8 -
C206 694.6 9 696.92 9.2 -
C207 689.7 9 690.38 9.0 -
C208 688.6 9 688.60 9.0 -
R201 909.8 909.8 9 917.08 9.0 1
R202 816.0 816.0 8 816.00 8.0 5
R203 742.4 8 743.40 8.0 -
R204 702.3 8 704.38 8.0 -
R205 807.3 807.3 8 808.74 8.0 3
R206 767.6 758.2 8 760.96 8.0 -
R207 715.7 8 715.70 8.0 -
R208 699.6 8 700.60 8.0 -
R209 749.6 746.0 8 746.00 8.0 -
R210 777.2 8 779.22 8.0 -
R211 717.4 8 722.02 8.0 -
RC201 1096.6 1096.6 10 1096.60 10.0 5
RC202 1001.6 1038.6 10 1038.60 10.0 0
RC203 945.8 941.2 10 941.20 10.0 -
RC204 915.9 915.9 10 915.90 10.0 -
RC205 1065.4 1058.7 10 1058.70 10.0 -
RC206 1027.4 11 1032.12 10.8 -
RC207 944.8 941.7 10 941.70 10.0 -
RC208 916.8 10 916.80 10.0 -

Table 9: Results on Hernandez et al. [12] instances with N = 50 and M = 4

24



Instance best average
dist # trips dist # trips

C201 1488.9 19 1500.22 19.2
C202 1479.3 19 1486.94 19.0
C203 1467.3 19 1471.20 19.0
C204 1453.6 19 1455.46 19.0
C205 1477.1 19 1483.04 19.0
C206 1464.7 19 1473.38 19.0
C207 1464.2 19 1470.36 19.0
C208 1459.4 19 1465.86 19.0
R201 1449.7 16 1464.32 15.8
R202 1343.3 16 1352.70 15.8
R203 1222.2 15 1232.50 15.4
R204 1165.6 15 1172.54 15.0
R205 1292.2 15 1315.08 15.6
R206 1239.9 15 1249.76 15.4
R207 1194.3 15 1200.76 15.0
R208 1159.8 15 1164.56 15.0
R209 1234.5 16 1248.42 15.4
R210 1247.5 15 1253.24 15.6
R211 1170.5 15 1182.38 15.0
RC201 1843.6 18 1862.40 18.8
RC202 1733.9 18 1740.34 18.2
RC203 1618.6 18 1624.24 18.2
RC204 1579.1 18 1581.36 18.0
RC205 1759.8 18 1776.68 18.0
RC206 1731.1 18 1747.24 18.0
RC207 1656.7 18 1662.96 18.0
RC208 1580.9 18 1585.44 18.0

Table 10: Results on instances with N = 100 and M = 8 created as in Hernandez et al. [12]
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performance evaluation purposes. Results show the efficiency of our procedure.
An efficient labelling procedure is proposed to turn permutation of customers into solution that is an

adaptation of the procedure proposed by Prins [26] for the VRP. It is designed for the MTVRPTW-R
case, but it can be used in the MTVRPTW context as well.

Associating a release date with each merchandise implicitly suppose the arrival of each truck to the
depot is known in advance, at least before the operational planning is computed. Communication and
organization between carriers and the management center is needed. Future studies could introduce some
dynamism in the problem, considering part of the goods or the whole merchandise to arrive at the depot
with no advanced notice. Optimization procedure needs to react to these events, reorganizing the planning
quickly and efficiently.
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