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Abstract

Injection of transient faults can be used as a way to attack embedded systems. On embedded proces-

sors such as microcontrollers, several studies showed that such a transient fault injection with glitches or

electromagnetic pulses could corrupt either the data loads from the memory or the assembly instructions

executed by the circuit. Some countermeasure schemes which rely on temporal redundancy have been

proposed to handle this issue. Among them, several schemes add this redundancy at assembly instruction

level. In this paper, we perform a practical evaluation for two of those countermeasure schemes by using

a pulsed electromagnetic fault injection process on a 32-bit microcontroller. We provide some necessary

conditions for an efficient implementation of those countermeasure schemes in practice. We also evaluate

their efficiency and highlight their limitations. To the best of our knowledge, no experimental evaluation

of the security of such instruction-level countermeasure schemes has been published yet.

1 Introduction

Physical attacks were introduced in the late 1990s as a new way to break cryptosystems by exploiting
weaknesses in their implementation. Among them, fault attacks were introduced by Boneh et al. in 1997
(Boneh, DeMillo, and Lipton 1997). Those attacks consist in applying a stress to the circuit in order
to induce transient faults which could create an attack path (Barenghi, Breveglieri, Koren, and Naccache
2012). Such transient faults can be induced in a large set of embedded circuits by using many physical
means which include circuit underpowering (Bhasin et al. 2009), clock glitches (Balasch, Gierlichs, and
Verbauwhede 2011), voltage glitches (Zussa et al. 2013), changes in the temperature (Skorobogatov 2009)
or laser shots (Trichina and Korkikyan 2010). More recently, two other fault injection techniques based
on using electromagnetic waves have been proposed, either by using a harmonic injection signal (Poucheret
et al. 2011) or by using electromagnetic glitches (Dehbaoui et al. 2012). These physical fault injection means
enable to perform higher-level attack schemes such as Differential Fault Analysis (DFA) or safe-error attacks
(Karaklajic, Schmidt, and Verbauwhede 2013).

This work was done while Amine Dehbaoui was with École Nationale Supérieure des Mines de Saint-Étienne (ENSM.SE),
13541 Gardanne, France.

This article has been presented at the IEEE International Symposium on Hardware-Oriented Security and Trust (HOST
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Those higher-level attack schemes all rely on an attacker’s fault model, which is an abstraction of the
set of faults an attacker can perform (Barenghi, Breveglieri, Koren, and Naccache 2012). Using such a fault
model is necessary to design both software and hardware countermeasures. Defining such an abstracted
model requires a good understanding of the effects of the fault injection means. As many kinds of faults can
be obtained even with a single fault injection technique, the practical efficiency of a countermeasure highly
depends on the accuracy of the considered fault model. Thus, some experiments are necessary both to define
realistic fault models and to guarantee the practical efficiency of a countermeasure.

In this paper, we experimentally evaluate the robustness of two software countermeasure schemes against
fault injection on embedded programs. These two countermeasures have slightly different purposes and
could be combined together. Both of them are designed at assembly code level and rely on providing some
replacement sequences to strengthen some sensitive instructions. The first one, proposed in previous works
(Moro, Heydemann, et al. 2014), aims at ensuring a fault tolerant execution. It covers almost all the
instructions of the considered instruction set and has been formally proven resistant against an instruction
skip fault model. The second one was proposed by Barenghi et al. (Barenghi, Breveglieri, Koren, Pelosi,
et al. 2010). It uses an instruction duplication approach to perform a fault detection. It has been designed
using a more generic fault model but covers a smaller set of instructions. The evaluation experiments that are
conducted in this paper will enable us to determine some necessary conditions for an efficient implementation
of these countermeasures and to highlight their possible limitations.

The rest of this paper is organized as follows. Section 2 provides an overview of some existing software
countermeasure schemes and of the considered injection means for the experiments. Section 3 introduces the
experimental platform and environment. Section 4 describes the two studied countermeasures and provides
a practical evaluation of their robustness on simple assembly codes. Finally, Section 5 details some results
obtained for the two countermeasures on some more complex codes from a FreeRTOS implementation.

2 Related works

This section reviews software countermeasures for embedded systems in 2.1 and motivates the use of an
electromagnetic fault injection technique for the experiments in 2.2.

2.1 Software countermeasures

On embedded systems, software-only countermeasure bring some flexibility and avoid any modification on
the underlying hardware. Against fault attacks, common countermeasure techniques directly come from
software-implemented fault tolerance (SWIFT) techniques (Reis et al. 2005). Such countermeasure schemes
include temporal redundancy, parity checking or checksum-based error detection (Barenghi, Breveglieri,
Koren, and Naccache 2012). For cryptographic implementations, those SWIFT principles have mostly been
applied at a function-level or algorithm-level (Oboril, Sagar, and Tahoori 2013). Otherwise, some algorithm-
specific countermeasures (Joye 2012), some applicative countermeasures to protect Java Card applets (Sere,
Iguchi-Cartigny, and Lanet 2011) or some combined software-hardware countermeasure schemes (Arora et al.
2005) have also been designed.

Those countermeasures are defined with respect to an attacker’s model. Such a model provides a theoret-
ical set of faults an attacker could produce. Since performing practical experiments on software countermea-
sures may require some advanced fault injection means and can be very time-consuming, fault models are
also used to perform fault injection simulations (Theissing et al. 2013) or formal proofs (Moro, Heydemann,
et al. 2014). Those simulations help to provide stronger guarantees about the efficiency of the tested coun-
termeasures. However, certification processes include practical experiments (“Joint Interpretation Library
Application of Attack Potential to Smartcards” 2009). Thus, the strongest guarantee can only be brought
by performing practical experiments on real devices. To the best of our knowledge, no practical evaluation
of the efficiency of some generic assembly-level countermeasures has been proposed yet.

2.2 Electromagnetic fault injection technique

Pulsed electromagnetic fault injection has been introduced in the last decade and has turned out to be
an effective way to inject transient faults in a circuit’s computation. Recent works, such as (Dehbaoui et
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al. 2012) or (Moro, Dehbaoui, et al. 2013) tend to show that pulsed electromagnetic fault injection could
enable to induce faults that are very similar to the faults obtained with clock glitches (Balasch, Gierlichs,
and Verbauwhede 2011), voltage glitches (Zussa et al. 2013) or even laser shots on the logic part of a
microcontroller (Trichina and Korkikyan 2010). Thus, we think that this electromagnetic fault injection
technique should still be representative enough to get a good evaluation of the efficiency of the tested
countermeasures.

3 Experimental setup

Generator 

control 

Debug via Keil ULINKpro 

Pulse 

Trigger signal 

Pulse generator Motorized X Y Z stage Control computer 

Motorized stage control 

Figure 1: Electromagnetic fault injection bench

3.1 Pulsed electromagnetic fault injection

Conductors such as the rails of a power distribution network are one of the primary electromagnetic in-
terferences risk factors for a circuit. They also act as antennas for the radiated electromagnetic pulse flux
generated by a coil. This magnetic flux then induces an electromotive force in the power distribution net-
work that leads to a violation of a circuit’s timing constraints (Poucheret et al. 2011). In (Omarouayache
et al. 2013), Omarouayache et al. studied magnetic probes built on the basis of small wire loops for the
purpose of near-field injection. Their investigation have lead to some useful guidelines to design an electro-
magnetic antenna. They show that the antenna must be designed as wide-band components to transfer the
electromagnetic power with the best efficiency. It was also shown that few loops must be used to optimize
the field intensity, and the introduction of a point-sharpened ferrite in the middle of the loop concentrates
efficiently the field for near-field operation. Such a magnetic probe enables to induce voltage drops in the
target circuit. Those voltage drops then lead to violations of the timing constraints and to faults in the
target circuit (Dehbaoui et al. 2012).

3.2 Target circuit

The chosen target is an up-to-date 32-bit microcontroller designed in a CMOS 130 nm technology. It is
based on the ARM Cortex-M3 processor (Yiu 2009). Its operating frequency is set to 56 MHz without any
cache memory. It is also important to mention that no prefetch buffer is activated. Thus, the full execution
of some instruction can take several cycles. Cortex-M3 processors use a Harvard architecture and run the
ARM Thumb-2 instruction set1, which contains both 16-bit and 32-bit instructions. The target circuit
embeds some basic security mechanisms against some low-cost fault injection techniques such as clock and
voltage glitches. Some interrupt vectors can handle several hardware faults and can be used for a basic fault
detection.

3.3 Electromagnetic fault injection bench

Figure 1 shows an architectural view of the electromagnetic fault injection platform. It is based on a high
speed voltage pulse generator and uses a coil with few turns (diameter of 500 µm) as injection antenna.

1See ARM Architecture Reference Manual - Thumb-2 Supplement, 2005
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The pulse generator is used to deliver voltage pulses (from −210 V to 210 V) to the magnetic coil. It has
a constant rise and fall transition time of 2 ns. For our experiments, the pulses’ width is set to 10 ns. The
target circuit is mounted on a high-accuracy X Y Z motorized stage. The position of the injection antenna is
the same for all the experiments of this paper, it has been found by a trial-and-reset approach. This bench
also includes some standard control elements such as a PC, an oscilloscope and a Keil ULINKpro debug
system. The computer sends pulse injection parameters to the pulse generator. It also controls the target
board by using the Keil µVision UVSOCK library2. Since the microcontroller is restarted before injecting
a fault, every fault injection attempt requires about 1 s. This fault injection bench and the influence of the
different experimental parameters have been presented in more details in previous works (Moro, Dehbaoui,
et al. 2013).

4 Experimental evaluation of the countermeasures

The following section first introduces the faults that can be obtained with our experimental setup in 4.1
and the approach we use for the evaluation in 4.2. Then, it provides an experimental evaluation of the two
studied countermeasures on a very simple assembly code in 4.3 and 4.4.

4.1 Preliminaries about the fault model

The fault injection technique we use enables to induce violations of the timing constraints of an integrated
circuit (Dehbaoui et al. 2012). For a microcontroller, bus transfers from the Flash memory are the operations
that requires the longest time in a clock cycle (Moro, Dehbaoui, et al. 2013). Thus, the bus transfers from the
Flash memory can easily be corrupted by using delay faults. The Flash memory contains both instructions
and data. Thereby, two pipeline stages may be hit by such a technique: the fetch stage (for every instruction)
and the decode stage. In the fetch stage, the circuit fetches 32 bits of data from the instruction memory at
every clock cycle. Nevertheless, the Thumb-2 instruction set contains both 16-bit and 32-bit instructions.
Thus, two instructions at a time might be corrupted. Moreover, load instructions also fetch a piece of data
in the decode phase. Thus, this piece of data can be corrupted too.
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Figure 2: Fault injection results for a ldr r0,=0xCAFECAFE instruction

To highlight these two trends, we performed a fault injection experiment on a single 16-bit ldr instruction.
In this example, the target instruction is a ldr r0,[pc,#40] PC-relative load instruction that has been
generated by the armasm assembler from the macro ldr r0,=0xCAFECAFE. This loaded value has been chosen
because it is a very specific value that cannot been found anywhere else in the memory or cannot be the

2Keil UVSOCK: http://www.keil.com/appnotes/docs/apnt 198.asp
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output of almost all the possible instruction replacements. Moreover, some of the hardware exception
handlers enable to access the address of the instruction that triggered the exception. We use this piece of
information to define the time intervals that will be swept in our experiments. For this experiment, we
performed a fault injection for 9 voltage values (from −210 V to −170 V) and over a 200 ns time interval.
Another analysis we performed with positive voltages led to the same patterns for this target instruction.
Such a 200 ns time interval is very long in comparison to the 17.8 ns clock period. This can be explained
both by the fact that we need to cover the three pipeline stages of the instruction and by the fact that several
clock cycles are necessary for the memory fetches. This time interval has been swept by steps of 200 ps. For
every injection time, the fault injection process has been performed two times. The fault injection results are
presented on Fig. 2. This graph shows the Hamming weight of the output values in r0 when no exception
has been triggered depending on the pulse voltage and the pulse injection time. The Hamming weight of
the 0xCAFECAFE expected value is 22. On this figure, we can clearly distinguish two groups of output faults,
located around two injection times: those around around 100 ns and those around 200 ns. Their distribution
of faulty values is very different. The first one corresponds to the fetch stage. Since the instruction opcode
is corrupted, very few instruction corruptions lead to a valid new instruction. Most of them generate an
invalid instruction that triggers an exception. Among the instruction fetch corruptions that led to a fault in
r0, some instructions have also been transformed into branch instructions. The second group corresponds to
the decode phase. Since the loaded word is corrupted, we can observe a much bigger diversity in the faulty
outputs for this injection time. One has to note that such kind of results are not specific to electromagnetic
glitches and have been obtained for other fault injection means (Balasch, Gierlichs, and Verbauwhede 2011;
Trichina and Korkikyan 2010).

4.2 Evaluation approach

We need to define a relevant metric to evaluate the efficiency of the countermeasures. Since the countermea-
sure sequences add some instructions, the time to execute a full countermeasure sequence becomes longer
than the time to execute the initial instruction. Thus, the number of vulnerable points, i.e. the injection
times for which a fault injection attempt is successful, may also increase. Comparing the percentage of faulty
outputs could appear to be a solution to compare two data sets with different numbers of measurements.
Nevertheless, we assume that the most meaningful metric for such a comparison is the number of faults that
have been obtained on the destination register. The countermeasure is really effective if it can overcome
the fact that some new vulnerable points are added and if it can decrease this number of vulnerable points.
Thus, comparing the number of faulty outputs is probably the most relevant metric for an attacker since it
indicates the number of potential vulnerabilities on an embedded code.

Moreover, it is important to mention that we analyzed several metrics such as the global number of faults
on any register or the number of faults that match an instruction skip for every experiment. It happened very
frequently that several metrics show exactly the same pattern. For clarity purposes on the curves presented
in this paper, we chose the metrics we assume to be the most significant for each experiment when the other
relevant metrics showed the same trend.

4.3 Fault tolerance countermeasure

This countermeasure aims at providing a fault-tolerant replacement sequence for most of the instruction of
an instruction set (Moro, Heydemann, et al. 2014). Such a countermeasure has been designed to be tolerant
to any single instruction skip and does not provide any protection to the data flow. An example of the
use of this countermeasure (from Moro, Heydemann, et al. 2014) is given in Listing 1. In this example, the
replacement sequence mimics the effect of a bl instruction by putting the return pointer into the link register
lr and branching to the destination function. Even if no fault is injected, the subroutine is only called once,
since the return pointer is set after the two b instructions.

Listing 1 : Fault tolerance countermeasure for a bl function instruction

1 adr r1 , r e t u r n l a b e l
2 adr r1 , r e t u r n l a b e l
3 add l r , r1 , #1 ; Thumb mode requires the

4 add l r , r1 , #1 ; last bit of LR to be set
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5 b f unc t i on
6 b f unc t i on
7 r e t u r n l a b e l

In Listing 1, the two adr and the two b instructions are encoded with their 16-bit encoding by default. In
order to force the armasm assembler to use a 32-bit encoding, one can use the .w suffix after the instruction
mnemonic (adr.w) or use the registers r8 to r14. Indeed, since the two add instructions use the lr (r14)
register, they are necessarily encoded with a 32-bit size.

Thus, we performed some fault injection experiments on four codes: a bl instruction without counter-
measure (100 ns time interval by steps of 200 ps), a bl.w instruction with forced 32-bit encoding without
countermeasure (100 ns), the replacement sequence from Listing 1 (400 ns) and this replacement sequence
with forced 32-bit encoding (400 ns). Several values were used for the pulse voltage, from −210 V to −170 V
and from 120 V to 150 V by steps of 5 V. The target circuit crashes for voltages over 150 V, and no faults
were obtained for pulse voltages between −160 V and 120 V. In this experiment, the subroutine that is called
only modifies r0. Thus, we analyze the number of faults in r0 at the end of the experiment to evaluate the
countermeasure. The faults on any register curves correspond to an output in which at least one register
contains a value different from the expected one.
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Figure 3: Fault injection results for the fault tolerance countermeasure

The fault injection results are shown on Fig. 3. First, we can observe that the curves related to the
number of faults in r0 and the number of faults on at least one register follow the same patterns, which tends
to prove the relevance of choosing the number of faulty outputs in r0 as a relevant metric. Then, we can also
observe that applying the countermeasure without forced 32-bit encoding does not seem efficient. Indeed, this
countermeasure has not been designed to be resistant to two consecutive instruction corruptions. Because
of the memory alignment in the experiment, in the replacement sequence the first two adr instructions and
later the last two b instructions are loaded in a single fetch stage. Thus, it seems that such double corruption
happened. Moreover, we can also observe that no faulty output has been obtained for pulses with a negative
voltage on a single 32-bit bl.w instruction. Nevertheless, such an instruction could still be faulted by using
pulses with a positive voltage. An explanation for such result can be found in the way instructions are
encoded. The 16-bit subset of the instruction set is very compact (most of the 16-bit values correspond to
one instruction) while the 32-bit subset is very sparse: very few bit flips can change a 16-bit instruction into
another instruction, but this assertion is not true for a 32-bit encoding. Finally, for the experiment with a
fault tolerance countermeasure and a forced 32-bit encoding, some faults on other registers that are due to
instruction fetch corruptions and very few faults on r0 have still be obtained. To sum up, this countermeasure
appears to be very effective for both positive and negative glitches. Applying the countermeasure scheme
with a forced 32-bit encoding is a necessary condition to guarantee its efficiency.

4.4 Fault detection countermeasure

This countermeasure aims at detecting any single fault, including instruction skips, some cases of instruction
replacements and faults on the data flow. It is based on duplicating the execution of an instruction and
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storing its results in another extra register (Barenghi, Breveglieri, Koren, Pelosi, et al. 2010). Then, a
comparison is done to detect any difference between the two destination registers. If an error is detected, the
program branches to an error handler subroutine. This countermeasure can directly be applied to several
ALU instructions. Nevertheless, it is not yet applicable to some more special instructions such as branch
instructions or instructions that use the flags. As an example, the countermeasure for a ldr instruction
(from Barenghi, Breveglieri, Koren, Pelosi, et al. 2010) is given in Listing 2. In this code example, a value
is loaded from the Flash memory. The address of this value is relative to the program counter.

Listing 2 : Fault detection countermeasure for a ldr instruction

1 ldr r0 , [ pc , #40 ] ; initial load instruction

2 ldr r1 , [ pc , #38 ] ; duplicated load instruction

3 cmp r0 , r1 ; comparison between r0 and r1

4 bne e r r o r ; if r0 != r1 , raise an error

We performed some fault injection experiments on four codes: a single ldr instruction that loads
0xCAFECAFE (150 ns time interval by steps of 200 ps), a single ldr.w instruction with a forced 32-bit encoding
(150 ns), the replacement sequence presented in Listing 2 (300 ns) and the same replacement sequence with
a forced 32-bit encoding for every instruction (500 ns).
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Figure 4: Fault injection results for the fault detection countermeasure

The fault injection results are presented in Fig. 4. The detected faults curves show the number of calls to
the error subroutine. From a black box approach, we can observe that applying the countermeasure without
forced 32-bit encoding creates more vulnerable injection times than the initial single ldr instruction and
does not bring any security for negative glitches. Nevertheless, this countermeasure seems to work very well
for positive glitches. Finally, the countermeasure scheme appears to be very effective with a 32-bit encoding
of the instructions, it can handle both types of faults presented in 4.1, either on the data flow or the control
flow.

5 Evaluation of the countermeasures on a FreeRTOS implemen-

tation

5.1 FreeRTOS and target implementation

This section gives details about some experimental results that have been obtained on a FreeRTOS-MPU
implementation. FreeRTOS is a portable open-source real-time operating system (RTOS) for embedded
devices. It it written in C and has been designed to be very simple to provide a convenient set of tools
to design real-time applications. In the following experiments, the FreeRTOS-MPU implementation we use
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has been built with the Keil MDK-ARM compiler. FreeRTOS is a multitasking operating system. It uses a
scheduler to decide which task should be executing. At every interrupt from the system timer, this scheduler
gives processing time to the task with the highest priority. FreeRTOS-MPU is a special port of FreeRTOS
that uses the Memory Protection Unit (MPU) and the hardware privilege levels of the Cortex-M3 processor.
It is able to create tasks in either privileged or unprivileged mode.

We chose to use a FreeRTOS implementation to show the practical interest such countermeasures could
have for real-world complex projects that cannot be directly designed in assembly language. Indeed, these
countermeasures could directly be applied to a compiled binary to reinforce an embedded system’s resistance
to fault attacks. A use case for the fault tolerance countermeasure is shown in 5.2, another one for the fault
detection countermeasure is provided in 5.3.

5.2 Fault tolerance countermeasure

At system initialization, the tasks are created and the processor runs in privileged mode. Then, before
starting the first task, the prvRestoreContextOfFirstTask function is called. This function uses several
types of instructions and sets the execution context to run the first task. It also switches the processor
to unprivileged mode if the first task is an unprivileged task. If the systems runs no privileged task, the
processor never switches back to privileged mode since the scheduler also runs in unprivileged mode. In
particular, this function is theoretically vulnerable to a fault attack: an instruction skip attack can skip the
msr3 instruction that switches to unprivileged mode. The most sensitive part of this function is shown on
Listing 3.

Listing 3 : End of the prvRestoreContextOfFirstTask function

1 msr cont ro l , r3 ; switches to unprivileged mode

2 msr psp , r0 ; initializes the stack pointer

3 mov r0 , #0
4 msr basepr i , r0 ; base priority mask register

5 ldr l r , =0 x f f f f f f f d
6 bx l r ; returns to Thread mode

We performed some fault injection experiments on the whole function, either without countermeasure
(2 µs time interval) or with the fault tolerance countermeasure and a forced 32-bit encoding applied to
every instruction (5 µs). The results are presented on Fig. 5. They show a very mixed efficiency for
the countermeasure on this code, with a good efficiency only for positive glitches. Such a result might be
explained by the fact that this countermeasure has been designed for an instruction skip fault model. For
some parts of the tested code, this fault model may be too simplified and may be an incorrect abstraction
for the injected faults. Indeed, the instruction skip fault model has been observed for different experimental
configurations on several targets (Dehbaoui et al. 2012; Barenghi, Breveglieri, Koren, and Naccache 2012).
Nevertheless, some recent research papers have shown that instruction skips could be a specific case of
replacements in the instruction binary code (Balasch, Gierlichs, and Verbauwhede 2011; Moro, Dehbaoui,
et al. 2013). The instruction skip fault model can probably be a good abstraction on simple codes but
visibly lacks of relevance for more complex codes. Thus, defining a more accurate fault model seems to be a
prerequisite for any future improvement of this countermeasure.

5.3 Fault detection countermeasure

Every task has its own level of priority. A constant named configMAX PRIORITIES is used to set the
maximal level of priority that tasks can take. If the system tries to create a task with a higher level
of priority, the task is created with the priority level contained in configMAX PRIORITIES. Moreover, the
xTaskCreateRestricted function takes as input a structure which contains the task parameters and uses
the content of this structure to call the xTaskGenericCreate function. In such a structure, the uxPriority
integer is used to define the task’s priority. Since for the tasks that are created at the system’s initialization
those configuration structures are generally stored in the Flash memory, the uxPriority integer is generally
loaded with a ldr instruction. Thus, a fault injection attempt may corrupt this ldr instruction and result
into a priority elevation for a specific task. The target code is presented in Listing 4.

3msr moves the contents of a general-purpose register into a special register
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Figure 5: Fault injection results on the prvRestoreContextOfFirstTask function of a FreeRTOS imple-
mentation

Listing 4 : Last instructions before the call to xTaskGenericCreate

1 ldr r0 , [ r0 , #0] ; loads uxPriority in r0

2 str r0 , [ sp , #0] ; puts uxPriority on the stack

3 movs r3 , #0 ; null pointer (parameters)

4 movs r2 , #128 ; stack depth for the task

5 movs r1 , #0 ; empty string (task ’s name)

6 ldr r0 , =add r e s s t a s k f un c t i o n
7 bl xTaskGenericCreate

We performed some fault injection experiments on the 14 assembly instructions (which include 3 ldr

instructions) that set the input arguments for the function, either without countermeasure (1 µs time interval)
or with the fault detection countermeasure and a forced 32-bit encoding applied only on the ldr instructions
(2 µs) or with the fault detection countermeasure and a forced 32-bit encoding on all the instructions (4 µs).
The results are presented on Fig. 6. They show an average efficiency when only applied to ldr instructions.
The remaining faulty outputs are due to the corruption of other unprotected instructions. Indeed, the
countermeasure is very effective when applied to every instruction: less than 20 faulty outputs have been
obtained for every tested voltage.

6 Conclusion

In this paper, we have provided a practical study of two assembly-level software countermeasure against
fault injection attacks. Even if those countermeasures are theoretically secure, it turns out that the level
of security they add could be nullified if their implementation on a target platform is not performed in the
right way. On this target platform with a variable-size instruction set, we need to make sure that no more
than one instruction at a time is loaded at every clock cycle. This evaluation has also been performed on
more complex codes from a FreeRTOS implementation.

The fault tolerance countermeasure has been very effective to protect an isolated subroutine call instruc-
tion. Thus, it seems such a sensitive instruction can be significantly reinforced against fault attacks. Yet,
on a complex code, its results have been very mixed. Since this countermeasure has been formally proven
resistant to instruction skips, its main limitation appears to be due to its considered fault model, which
is probably too simplistic and does not provide a good enough coverage of the induced faults. A deeper
understanding of the faults that can be produced in practice is necessary to define a more accurate fault
model and then improve this countermeasure.

The fault detection countermeasure has been designed to protect a smaller set of instructions. The
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Figure 6: Fault injection results on the instructions before the call to the xTaskGenericCreate function of
a FreeRTOS implementation

countermeasure has been very effective on the considered test cases. On a more complex code which only
contains instructions for which a fault detection approach can be used, the countermeasure greatly increases
the security level. However, its main drawback appears to be its limitation to a restricted set of instructions.
Since the experimental results have shown a very good efficiency, this countermeasure needs to be extended
to a larger set of instructions.

A possible extension of this work could evaluate the impact of such assembly-level countermeasures
on the side-channel leakages of the circuit and study whether they can be combined with other software
countermeasures against leakages.
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