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ABSTRACT 

It is well-known that degree two finite field extensions can be equipped with a 

Hermitian-like structure similar to the extension of the complex field over the reals. In 

this contribution, using this structure, we develop a modular character theory and the 

appropriate Fourier transform for some particular kind of finite Abelian groups. 

Moreover we introduce the notion of bent functions for finite field valued functions 

rather than usual complex-valued functions, and we study several of their properties. 

 

Keywords: Hermitian-like structure, modular character theory, Fourier transform, 

Abelian groups. 

 

1. INTRODUCTION 

The most simple Hermitian structure is obtained from the degree two 

field extension of the complex numbers over the real numbers. It has many 

applications and in particular provides the usual theory of characters for finite 

Abelian groups and the existence of an associated Fourier transform.  Given a 

degree two extension GF(𝑝2𝑛) of GF(𝑝𝑛), the Galois field with 𝑝𝑛 elements 

where 𝑝 is a prime number, we can also define a “conjugate” and thus a 

Hermitian structure on GF(𝑝2𝑛) in a way similar to the relation ℂ/ℝ. In 
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particular this makes possible the definition of a unit circle 𝒮(GF(𝑝2𝑛)) 
which is a cyclic group of order 𝑝𝑛 + 1, subgroup of the multiplicative group 

GF(𝑝2𝑛)∗ of invertible elements. The analogy with ℂ/ℝ is extended in this 

paper by the definition of GF(𝑝2𝑛)-valued characters of finite Abelian groups 

𝐺 as group homomorphisms from 𝐺 to 𝒮(GF(𝑝2𝑛)). But 𝒮(GF(𝑝2𝑛)) does 

obviously not contain a copy of each cyclic group. Nevertheless if 𝑑 divides 

𝑝𝑛 + 1, then the cyclic group ℤ𝑑 of modulo 𝑑 integers embeds as a subgroup 

of this particular unit circle. It forces our modular theory of characters to be 

applied only to direct products of cyclic groups whose order divides 𝑝𝑛 + 1. 

In addition we prove that these modular characters form an orthogonal basis 

(by respect to the Hermitian-like structure GF(𝑝2𝑛) over GF(𝑝𝑛)). The 

definition of an appropriate notion of Fourier transform for GF(𝑝2𝑛)-valued 

functions, rather than ℂ-valued ones, defined on 𝐺, is then possible as their 

decompositions in the dual basis of characters. In this contribution we largely 

investigate several properties of this modular version of the Fourier transform 

similar to classical ones. As an illustration of our theory of modular 

characters one introduces and studies the corresponding cryptographic notion 

of bent functions in this setting.   

 

2. CHARACTER THEORY: THE CLASSICAL APPROACH 

In this paper 𝐺 always denotes a finite Abelian group (in additive 

representation), 0𝐺 is its identity element. Moreover for all groups 𝐻, 𝐻∗ is 

the set obtained from 𝐻 by removing its identity. As usual ℕ∗ = ℕ\{ 0 }. 
 

The characters are the group homomorphisms from a finite Abelian 

group 𝐺 to the unit circle 𝒮(ℂ) of the complex field. The set of all such 

characters of 𝐺 together with point-wise multiplication is denoted by 𝐺 and 

called the  dual group of 𝐺. A classical result claims that 𝐺 and its dual are 

isomorphic (essentially because 𝒮(ℂ) contains an isomorphic copy of all 

cyclic groups). The image in 𝐺 of 𝛼 ∈ 𝐺 by such an isomorphism is denoted 

by 𝜒𝛼. The complex vector space ℂ𝐺 of complex-valued functions defined on 

𝐺 can be equipped with an inner product defined for 𝑓, 𝑔 ∈ ℂ𝐺 by 

 

〈𝑓, 𝑔〉 = ∑ 

𝑥∈𝐺

𝑓(𝑥)𝑔(𝑥) (1) 

 

where 𝑧 denotes the complex conjugate of 𝑧 ∈ ℂ. With respect to this 

Hermitian structure, 𝐺 is an orthogonal basis,  i.e. 

 

 



Harmonic analysis and a bentness‒like notion in certain finite Abelian groups over some finite fields 

 

 Malaysian Journal of Mathematical Sciences 3 

 

                          〈𝜒𝛼 , 𝜒𝛽〉 = {
0  if   𝛼 = 𝛽,
|𝐺|  if   𝛼 = 𝛽

                             (2) 

 

for 𝛼, 𝛽 ∈ 𝐺2. We observe that in particular (replacing 𝛽 by 0𝐺), 

 

 
∑  𝑥∈𝐺 𝜒𝛼(𝑥) = {

0  if  𝛼 = 0𝐺 ,
|𝐺|  if  𝛼 = 0𝐺 .

  
(3) 

 

Definition 1. Let 𝐺 be a finite Abelian group and 𝑓: 𝐺 → ℂ. The Fourier 

transform of 𝑓 is defined as  

 

 𝑓: 𝐺 → ℂ

𝛼 ↦ ∑  𝑥∈𝐺 𝑓(𝑥)𝜒𝛼(𝑥)  .
  

(4) 

 

The Fourier transform of a function 𝑓 is its decomposition in the basis 𝐺. 

This transform is invertible and one has an  inversion formula for 𝑓, 

 

 
𝑓(𝑥) =

1

|𝐺|
∑  

𝛼∈𝐺

𝑓(𝛼)𝜒𝛼(𝑥) 
(5) 

 

for each 𝑥 ∈ 𝐺. More precisely the Fourier transform is an algebra 

isomorphism from (ℂ𝐺 ,∗) to (ℂ𝐺 , . ) where the symbol “.” denotes the point-

wise multiplication of functions, and ∗ is the convolution product defined by 

 

 𝑓 ∗ 𝑔: 𝐺 → ℂ

𝛼 ↦ ∑  𝑥∈𝐺 𝑓(𝑥)𝑔(−𝑥 + 𝛼)
  

(6) 

 

Since the Fourier transform is an isomorphism between the two algebras, the  

trivialization of the convolution product holds for each (𝑓, 𝑔) ∈ (ℂ𝐺)2 and 

each 𝛼 ∈ 𝐺, i.e., 

                     (𝑓 ∗ 𝑔)̂ (𝛼) = 𝑓(𝛼)𝑔(𝛼)  .                             (7) 

 

Proposition 1. Let G be a finite Abelian group and 𝑓, 𝑔 ∈ ℂ𝐺. We have  

 

 
∑ 

𝑥∈𝐺

𝑓(𝑥)𝑔(𝑥) =
1

|𝐺|
∑  

𝛼∈𝐺

𝑓(𝛼)𝑔(𝛼)     (Plancherel  formula),  
(8) 
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∑ 

𝑥∈𝐺

|𝑓(𝑥)|2 =
1

|𝐺|
∑  

𝛼∈𝐺

|𝑓(𝛼)|2     (Parseval  equation)  
(9) 

 

where |𝑧| is the complex modulus of 𝑧 ∈ ℂ.   

 

3. HERMITIAN STRUCTURE OVER FINITE FIELDS 

In this section are recalled some results about an Hermitian structure 

in some kinds of finite fields. This section is directly inspired from Dobbertin 

et al., 2006 and is generalized to any characteristic p. 

 

Let p be a given prime number and q an even power of  𝑝,  i.e., there 

is 𝑛 ∈ ℕ∗ such that 𝑞 = 𝑝2𝑛, and in particular q is a square.  

 

Assumption 1. From now on the parameters 𝑝, 𝑛, 𝑞 are fixed as introduced 

above.  

 

By GF(𝑞) is meant the finite field of characteristic 𝑝 with 𝑞 elements and by 

construction GF(√𝑞) is a subfield of GF(𝑞). The field GF(𝑞), as an 

extension of degree 2 of GF(√𝑞), is also a vector space of dimension 2 over 

GF(√𝑞). This situation is similar to the one of ℂ and ℝ. As GF(𝑞) plays the 

role of ℂ, the Hermitian structure should be provided for it. Again according 

to the analogy ℂ/ℝ, we then need to determine a corresponding conjugate. In 

order to do this we use the Frobenius automorphism Frob of GF(𝑞)  
 

                        
Frob: GF(𝑞) → GF(𝑞)

𝑥 ↦ 𝑥𝑝
                                 (10) 

 

and one of its powers,   

                         
Frob𝑘: GF(𝑞) → GF(𝑞)

𝑥 ↦ 𝑥𝑝
𝑘
  .

                           (11) 

 

In particular Frob1 = Frob.   
 

Definition 2. The conjugate of 𝑥 ∈ GF(𝑞)  over GF(√𝑞) is denoted by 𝑥 and 

defined as  

                        𝑥 = Frob𝑛(𝑥) = 𝑥
𝑝𝑛 = 𝑥√𝑞  .                          (12) 
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In particular, for every 𝑛 ∈ ℤ, 𝑛1 = 𝑛1. The field extension GF(𝑞)/GF(√𝑞) 

has amazing similarities with the extension ℂ over the real numbers in 

particular regarding the conjugate.   

 

Proposition 2. Let 𝑥1, 𝑥2 ∈ GF(𝑞)2, then  

  

𝑥1 + 𝑥2 = 𝑥1 + 𝑥2, −𝑥1 = −𝑥1,   𝑥1𝑥2 = 𝑥1  𝑥2,  𝑥1 = 𝑥1. 
 
Proof. The three first equalities come from the fact that Frob𝑛 is a field 

homomorphism of GF(𝑞). The last point holds since for each 𝑥 ∈ GF(𝑞), 
𝑥𝑞 = 𝑥. QED 
 

The relative norm with respect to GF(q)/GF(√q) is defined as 

 

                                         norm(𝑥) = 𝑥𝑥                                                     (13) 

 

for 𝑥 ∈ GF(𝑞), and it maps GF(𝑞) to GF(√𝑞). We observe that norm(𝑥) ∈

GF(√𝑞) because norm(𝑥)√𝑞 = (𝑥𝑥)√𝑞 = 𝑥√𝑞𝑥𝑞 = 𝑥√𝑞𝑥 = 𝑥1+√𝑞 =

norm(𝑥) and norm(𝑥) = 0 if, and only if, 𝑥 = 0. The unit circle of GF(𝑞) is 

defined as the set  
 

                    𝒮(GF(𝑞)) = { 𝑥 ∈ GF(𝑞): 𝑥𝑥 = 1 }              (14) 
 

of all elements having relative norm 1. By construction 𝒮(GF(𝑞)) is the 

group of (√𝑞 + 1)-th roots of unity, and therefore it is a (multiplicative) 

cyclic group of order √𝑞 + 1 since GF(𝑞)∗ is cyclic and √𝑞 + 1 divides 

𝑞 − 1. In what follows, 𝒮(GF(𝑞)) will play exactly the same role as 𝒮(ℂ) in 

the classical theory of characters. 

 

4. CHARACTERS OVER A FINITE FIELD 

Because 𝒮(GF(𝑞)) is a cyclic group of order √𝑞 + 1, for each 

nonzero integer d that divides √𝑞 + 1, there is a unique (cyclic) subgroup of 

𝒮(GF(𝑞)) of order 𝑑, and this is the unique kind of subgroups. As a character 

theory is essentially used to faithfully represent an abstract group as an 

isomorphic group of functions, a copy of such group must be contained in the 

corresponding unit circle. Then our character theory in GF(𝑞) will only apply 

on groups for which all their factors in a representation as a product direct 

group of cyclic subgroups have orders that divide √𝑞 + 1.  
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Assumption 2. From now on 𝑑 always denotes an element of ℕ∗ that divides 

√𝑞 + 1.  

 

Definition 3. (and proposition) The (cyclic) subgroup of 𝒮(GF(𝑞)) of order 

𝑑 is denoted by 𝒮𝑑(GF(𝑞)). In particular, 𝒮(GF(𝑞)) = 𝒮√𝑞+1(GF(𝑞)). If 𝑢 

is a generator of 𝒮(GF(𝑞)) then 𝑢
√𝑞+1

𝑑  is a generator of 𝒮𝑑(GF(𝑞)).  
  

A  character of a finite Abelian group 𝐺 with respect to GF(𝑞) (or simply a  

character) is a group homomorphism from 𝐺 to 𝒮(GF(𝑞)). Since a character 

𝜒 is 𝒮(GF(𝑞))-valued, 𝜒(−𝑥) = (𝜒(𝑥))−1 = 𝜒(𝑥), norm(𝜒(𝑥)) = 1 and 

𝜒(0𝐺) = 1 for each 𝑥 ∈ 𝐺. By analogy with the traditional version, we 

denote by 𝐺 the set of all characters of 𝐺 that, as in the ordinary setting, we 

call its dual. With the point-wise multiplication, 𝐺 turns to be a finite Abelian 

group. Thus the multiplication is defined as  

 

                  ∀𝜒, 𝜒′ ∈ 𝐺, 𝜒𝜒′: 𝑥 ↦ 𝜒(𝑥)𝜒′(𝑥).                                 (15) 

 

As already mentioned in the Introduction, we focus on a very special 

kind of finite Abelian groups: the additive group of modulo d integers ℤd 

which is identified with the subset {0,… , 𝑑 − 1} of ℤ. 

   

Theorem 1. The groups ℤ𝑑 and ℤ�̂� are isomorphic.   

 

Proof. The parameter 𝑑 has been chosen so that it divides √𝑞 + 1. Then 

there is a unique (cyclic) subgroup 𝒮𝑑(GF(𝑞)) of 𝒮(GF(𝑞)) of order 𝑑. Let 

𝑢𝑑 be a generator of this group. Then the elements of ℤ�̂� have the form, for 

𝑗 ∈ ℤ𝑑,  
 

                                  𝜒𝑗: {
ℤ𝑑 → 𝒮𝑑(GF(𝑞))

𝑘 ↦ (𝑢𝑑
𝑗
)𝑘 = 𝑢𝑑

𝑗𝑘
.
                                      (16) 

 

Actually the characters are 𝒮𝑑(GF(𝑞))-valued since for each 𝑥 ∈ ℤ𝑑 

and each character 𝜒, 𝜒(𝑥) ∈ 𝒮(GF(𝑞)) by definition, and satisfies 1 =
𝜒(0) = 𝜒(𝑑𝑥) = (𝜒(𝑥))𝑑 and then 𝜒(𝑥) is a 𝑑-th root of the unity. Then to 

determine a character 𝜒 ∈ ℤ�̂�, we need to compute the value of 𝜒(𝑘) =
𝜒(𝑘1) for 𝑘 ∈ {0,… , 𝑑 − 1}, which gives 

 

                                    𝜒(𝑘) = 𝑢𝑑
𝑗𝑘
.                                                 (17) 
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In this equality, we have denoted 𝜒(1) by 𝑢𝑑
𝑗
 for 𝑗 ∈ {0,… , 𝑑 − 1} 

since 𝜒(1) is a d-th root of the unity in 𝒮(GF(𝑞)). Then the character 𝜒 

belongs to { 𝜒0, … , 𝜒𝑑−1 }. Conversely, we observe that for 𝑗 ∈ {1,… , 𝑑 − 1}, 
the maps 𝜒𝑗 are group homomorphisms from ℤ𝑑 to 𝒮(GF(𝑞)) so they are 

elements of ℤ�̂�. Let us define the following function.  

 

                             
Ψ: ℤ𝑑 → ℤ�̂�

𝑗 ↦ 𝜒𝑗   .
                                            (18) 

 

We have already seen that it is onto. Moreover, it is also one-to-one (it 

is sufficient to evaluate 𝜒𝑗 = 𝛹(𝑗) at 1) and it is obviously a group 

homomorphism. It is then an isomorphism, so that ℤ�̂� is isomorphic to ℤ𝑑. 

QED 

 

Proposition 3. ℤ𝑑1 × ℤ𝑑2 and (ℤ𝑑1 × ℤ𝑑2)
̂  are isomorphic.   

 

Proof. The proof is easy since it is sufficient to remark that (ℤ𝑑1 × ℤ𝑑2)
̂  and 

ℤ𝑑1
̂ × ℤ𝑑2

̂  are isomorphic. We recall that 𝑑1 and 𝑑2 are both assumed to 

divide √𝑞 + 1, thus ℤ𝑑1
̂  and ℤ𝑑2

̂  exist and are isomorphic to ℤ𝑑1 and ℤ𝑑2 

respectively. Let 𝑖1 be the first canonical injection of ℤ𝑑1 × ℤ𝑑2 and 𝑖2 the 

second (when ℤ𝑑1 × ℤ𝑑2 is seen as a direct sum). The following map  

 

                  𝛷: {
(ℤ𝑑1 × ℤ𝑑2)
̂ → ℤ𝑑1

̂ × ℤ𝑑2
̂

𝜒 ↦ (𝜒 ∘ 𝑖1, 𝜒 ∘ 𝑖2)
                           (19)  

 

is a group isomorphism. It is obviously one-to-one and for (𝜒1, 𝜒2) ∈ ℤ𝑑1
̂ ×

ℤ𝑑2
̂ , the map 𝜒: (𝑥1, 𝑥2) ↦ 𝜒1(𝑥1)𝜒2(𝑥2) is an element of (ℤ𝑑1 × ℤ𝑑2)

̂  and 

𝛷(𝜒) = (𝜒1, 𝜒2). Then (ℤ𝑑1 × ℤ𝑑2)
̂  is isomorphic to ℤ𝑑1 × ℤ𝑑2 since 𝑍𝑑𝑖

̂  and 

ℤ𝑑𝑖 are isomorphic (for 𝑖 = 1,2). QED 
 

From proposition 3 it follows in particular that ℤ𝑑
�̂� is isomorphic to 

ℤ𝑑
𝑚. This result also provides a specific form to the characters of ℤ𝑑

𝑚 as 

follows. We define a dot product, which is a ℤd-bilinear map from (ℤ𝑑
𝑚)2 to 

ℤ𝑑, by  

 
𝑥 ⋅ 𝑦 =∑ 

𝑚

𝑖=1

𝑥𝑖𝑦𝑖 ∈ ℤ𝑑 
 

(20) 
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for 𝑥, 𝑦 ∈ ℤ𝑑
𝑚. Then the character that corresponds to 𝛼 ∈ ℤ𝑑

𝑚 can be defined 

by 

                        
𝜒𝛼: ℤ𝑑

𝑚 → 𝒮𝑑(GF(𝑞))

𝑥 ↦ 𝑢𝑑
𝛼⋅𝑥                                         (21) 

 

where 𝑢𝑑 is a generator of 𝒮𝑑(GF(𝑞)). In particular for each 𝛼, 𝑥 ∈ ℤ𝑑
𝑚, 

𝜒𝛼(𝑥) = 𝜒𝑥(𝛼). The following result is obvious. 

   

Corollary 1. Let 𝐺 ≅ ∏  𝑁
𝑖=1 ℤ𝑑𝑖

𝑚𝑖 be a finite Abelian group for which each 

integer 𝑑𝑖 divides √𝑞 + 1. Then 𝐺 and 𝐺 are isomorphic.    

 

If 𝐺 = ∏  𝑁
𝑖=1 ℤ𝑑𝑖

𝑚𝑖 satisfies the assumption of the corollary 1, then for 𝛼 =

(𝛼1, … , 𝛼𝑁) ∈ 𝐺 one has 

 

 
            

𝜒𝛼: 𝐺 → 𝒮(GF(𝑞))

𝑥 = (𝑥1, … , 𝑥𝑁) ↦ ∏  𝑁
𝑖=1 𝑢𝑑𝑖

𝛼𝑖⋅𝑥𝑖  
 

(22) 

 
 

where for each 𝑖 ∈ {1,… ,𝑁}, 𝑢𝑑𝑖 is a generator of 𝒮𝑑𝑖(GF(𝑞)). In particular 

for each 𝛼, 𝑥 ∈ 𝐺2, we also have 𝜒𝛼(𝑥) = 𝜒𝑥(𝛼).  
 

Assumption 3.  From now on, each finite Abelian group 𝐺 considered is 

assumed to be isomorphic to a group of the form ∏  𝑁
𝑖=1 ℤ𝑑𝑖

𝑚𝑖 where for each 

𝑖 ∈ {1,… ,𝑁}, 𝑑𝑖 divides √𝑞 + 1.  

 

The dual �̂� of 𝐺 is constructed and is shown to be isomorphic to 𝐺. 

We may also be interested into the bidual �̂̂� of 𝐺, namely the dual of 𝐺. 

Similarly to the usual situation of complex-valued characters, we prove that 

𝐺 and its bidual are canonically isomorphic. It is already clear that 𝐺 ≅ 𝐺 

(because 𝐺 ≅ 𝐺 and 𝐺 ≅ 𝐺). But this isomorphism is far from being 

canonical since it depends on a decomposition of 𝐺, and of 𝐺, and choices for 

generators of each cyclic factor in the given decomposition.  
 

We observe that the map 𝑒: 𝐺 → 𝐺 defined by 𝑒(𝑥)(𝜒) = 𝜒(𝑥) for 

every 𝑥 ∈ 𝐺, 𝜒 ∈ 𝐺 is a group homomorphism. To prove that it is an 

isomorphism it suffices to check that e is one-to-one (since 𝐺 and 𝐺 have the 

same order). Let 𝑥 ∈ ker(𝑒). Then, for all 𝜒 ∈ 𝐺, 𝜒(𝑥) = 1. Let us fix an 

isomorphism 𝛼 ∈ 𝐺 → 𝜒𝛼 ∈ 𝐺 as in the formula (22). Then, for every 𝛼 ∈ 𝐺, 

𝜒𝛼(𝑥) = 1 = 𝜒𝑥(𝛼) so that 𝑥 = 0𝐺. Thus we have obtained an appropriate 
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version of Pontryagin-van Kampen duality (see (Hewitt & Ross, 1994)). Let 

us recall that according to the structure theorem of finite Abelian groups, for 

any finite Abelian group 𝐺, there is a unique finite sequence of positive 

integers, called the invariants of 𝐺, 𝑑1,⋯ , 𝑑ℓ𝐺 such that 𝑑𝑖 divides 𝑑𝑖+1 for 

each 𝑖 < ℓ𝐺. Let us denote by 𝐴𝑏√𝑞+1 the (full sub)category of all finite 

Abelian groups 𝐺 such that 𝑑ℓ𝐺 divides √𝑞 + 1. From the previous results, if 

𝐺 is an object of 𝐴𝑏√𝑞+1, then 𝐺 ≅ 𝐺. Moreover, (⋅)̂ defines a contravariant 

functor (see (McLane, 1998)) from 𝐴𝑏√𝑞+1 to itself. Indeed, if 𝜙: 𝐺 → 𝐻 is a 

homomorphism of groups (where 𝐺,𝐻 belongs to 𝐴𝑏√𝑞+1), then �̂�: �̂� → 𝐺 

defined by �̂�(𝜒) = 𝜒 ∘ 𝜙 is a homomorphism of groups. Then, we have the 

following duality theorem. 

 

Theorem 2 (Duality). The covariant (endo-)functor (⋅)̂̂: 𝐴𝑏√𝑞+1 → 𝐴𝑏√𝑞+1 is 

a (functorial) isomorphism (this means in particular that 𝐺 ≅ �̂̂�). 

 

5. ORTHOGONALITY RELATIONS 

The characters satisfy a certain kind of orthogonality relation. In 

order to establish it we introduce the natural “action” of ℤ on any finite field 

GF(𝑝𝑙) of characteristic 𝑝 as 𝑘𝑥 = 𝑥+⋯+⏟  
𝑘  times

𝑥 for (𝑘, 𝑥) ∈ ℤ × GF(𝑝𝑙). This 

is nothing else than the fact that the underlying Abelian group structure of 

GF(𝑝𝑙) is a ℤ-module. 

 
In the remainder we identify 𝑘1 with 𝑘 mod 𝑝 or in other terms we 

make explicit the identification of GF(𝑝) and ℤ𝑝.   
 

Lemma 1. Let 𝐺 be a finite Abelian group. For 𝜒 ∈ 𝐺,  

 

 

∑ 

𝑥∈𝐺

𝜒(𝑥) = {
0  if   𝜒 = 1  ,
(|𝐺|mod 𝑝)  if   𝜒 = 1  .

 

 

(23) 

 

              

Proof. If 𝜒 = 1, then ∑  𝑥∈𝐺 1 = (|𝐺|mod𝑝) since the characteristic of GF(𝑞) 
is equal to 𝑝. Let us suppose that 𝜒 = 1. Let 𝑥0 ∈ 𝐺 such that 𝜒(𝑥0) = 1.  
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Then we have  
 

 
𝜒(𝑥0)∑  

𝑥∈𝐺

𝜒(𝑥) = ∑  

𝑥∈𝐺

𝜒(𝑥0 + 𝑥) = ∑  

𝑦∈𝐺

𝜒(𝑦), 
 

(24) 

 
 

so that (𝜒(𝑥0) − 1)∑  𝑥∈𝐺 𝜒(𝑥) = 0 and thus ∑  𝑥∈𝐺 𝜒(𝑥) = 0 (because 

𝜒(𝑥0) = 1). QED 

Definition 4. Let 𝐺 be a finite Abelian group. Let 𝑓, 𝑔 ∈ GF(𝑞)𝐺 . We define 

the“innerproduct”of𝑓 and 𝑔 by  

 

 
〈𝑓, 𝑔〉 = ∑  

𝑥∈𝐺

𝑓(𝑥)𝑔(𝑥) ∈ GF(𝑞). 
 

(25) 

 

 

The above definition does not ensure that 〈𝑓, 𝑓〉 = 0 implies that 𝑓 ≡ 0 as it 

holds for a true inner product. Indeed, take 𝑞 = 22𝑛, and let 𝑓: ℤ2 →
GF(22𝑛) be the constant map with value 1. Then, 〈𝑓, 𝑓〉 = 0. Thus, contrary 

to a usual Hermitian dot product, an orthogonal family (with respect to 〈⋅,⋅〉) 
of GF(𝑞)𝐺 is not necessarily GF(𝑞)-linearly independent.  
 

Let 𝐺 be a finite Abelian group. For all (𝜒1, 𝜒2) ∈ �̂�
2 then the orthogonality 

relations holds 
 

       〈𝜒1, 𝜒2〉 = {
0   if    𝜒1 = 𝜒2,
|𝐺|mod 𝑝   if    𝜒1 = 𝜒2.

                           (26) 

   

Proof. Let us denote 𝜒 = 𝜒1𝜒2
−1 = 𝜒1𝜒2. We have 

 

 
〈𝜒1, 𝜒2〉 = ∑  𝑥∈𝐺 𝜒(𝑥).  

 

(27) 

 
 

If 𝜒1 = 𝜒2, then 𝜒 = 1 and if 𝜒1 = 𝜒2, then 𝜒 = 1. The proof is obtained by 

using the previous lemma 1. QED 

 

Remark 1. The term orthogonality would be abusive if |𝐺|mod 𝑝 = 0, 

because then ∑  𝑥∈𝐺 𝜒(𝑥) = 0 for all 𝜒 ∈ 𝐺. Nevertheless from the assumption 

3 all the 𝑑𝑖’s divide √𝑞 + 1 = 𝑝𝑛 + 1. In particular, 𝑑𝑖 = 1 mod 𝑝 and 

therefore |𝐺| = ∏  𝑖 𝑑𝑖
𝑚𝑖 is co-prime to 𝑝, and the above situation cannot 

occur, so |𝐺| is invertible modulo 𝑝. 
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6. FOURIER TRANSFORM OVER A FINITE FIELD 

Let 𝑢 be a generator of 𝒮(GF(𝑞)). Let 𝐺 be a finite Abelian group 

and 𝑓: 𝐺 → GF(𝑞). We define the following function.  

 

 𝑓: �̂� → GF(𝑞)

𝜒 ↦ ∑  𝑥∈𝐺 𝑓(𝑥)𝜒(𝑥)  .
  

 

(28) 

 

 

Since 𝐺 = ∏  𝑁
𝑖=1 ℤ𝑑𝑖

𝑚𝑖, we define, by the isomorphism between 𝐺 and its dual,  

 

 𝑓: 𝐺 → GF(𝑞)

𝛼 ↦ ∑  𝑥∈𝐺 𝑓(𝑥)𝜒𝛼(𝑥) = ∑  𝑥∈𝐺 𝑓(𝑥)∏  𝑁
𝑖=1 𝑢

(√𝑞+1)𝛼𝑖⋅𝑥𝑖
𝑑𝑖

  

 

(29) 

 

 

Let us compute 𝑓. Let 𝛼 ∈ 𝐺. We have 
 

 𝑓(𝛼) = ∑  𝑥∈𝐺 𝑓(𝑥)𝜒𝛼(𝑥)

= ∑  𝑥∈𝐺 ∑  𝑦∈𝐺 𝑓(𝑦)𝜒𝑥(𝑦)𝜒𝛼(𝑥)

= ∑  𝑥∈𝐺 ∑  𝑦∈𝐺 𝑓(𝑦)𝜒𝑦(𝑥)𝜒𝛼(𝑥)

= ∑  𝑦∈𝐺 𝑓(𝑦)∑  𝑥∈𝐺 𝜒𝛼+𝑦(𝑥)

= (|𝐺|mod 𝑝)𝑓(−𝛼)

  

 

(30) 

 

The last equality holds since  

 

 
∑ 

𝑥∈𝐺

𝜒𝛼+𝑦(𝑥) = {
0   if   𝑦 =− 𝛼  ,

(|𝐺|mod 𝑝)   if   𝑦 = −𝛼  .
 

 

 
 

 

Now if we assume that (|𝐺|mod 𝑝) = 0, then it follows that the function 

𝑓 ↦ 𝑓 is non invertible but this situation cannot occur since from the 

assumption 3, |𝐺| is invertible modulo 𝑝. Therefore we can claim that the 

function (⋅)̂ that maps 𝑓 ∈ GF(𝑞)𝐺 to 𝑓 ∈ GF(𝑞)𝐺 is invertible. It is the  

Fourier transform of 𝑓 (with respect to GF(𝑞)) and its inversion formula is  

 

 𝑓(𝑥) = (|𝐺| mod 𝑝)−1∑  

𝛼∈𝐺

𝑓(𝛼)𝜒𝛼(𝑥) 
 

(31) 
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where (|𝐺|mod 𝑝)−1 is the multiplicative inverse of (|𝐺|mod 𝑝) in ℤ𝑝 (this 

inverse exists according to the choice of 𝐺).  

 

Definition 5. Let 𝐺 be a finite Abelian group. Let 𝑓, 𝑔 ∈ GF(𝑞)𝐺 . For each 

𝛼 ∈ 𝐺, we define the convolution product of 𝑓 and 𝑔 at 𝛼 by 

  

 (𝑓 ∗ 𝑔)(𝛼) = ∑  

𝑥∈𝐺

𝑓(𝑥)𝑔(−𝑥 + 𝛼).  

(32) 

 

 

Proposition 5 (Trivialization of the convolution product). Let 𝑓, 𝑔 ∈
GF(𝑞)𝐺 . For each 𝛼 ∈ 𝐺,  

 

                       (𝑓 ∗ 𝑔)̂ (𝛼) = 𝑓(𝛼)𝑔(𝛼)  .                          (33) 

 

Proof. Let 𝛼 ∈ 𝐺. We have 

 (𝑓 ∗ 𝑔)̂ (𝛼) = ∑  𝑥∈𝐺 (𝑓 ∗ 𝑔)(𝑥)𝜒𝛼(𝑥)

= ∑  𝑥∈𝐺 ∑  𝑦∈𝐺 𝑓(𝑦)𝑔(−𝑦 + 𝑥)𝜒𝛼(𝑥)

= ∑  𝑥∈𝐺 ∑  𝑦∈𝐺 𝑓(𝑦)𝑔(−𝑦 + 𝑥)𝜒𝛼(𝑦 − 𝑦 + 𝑥)

= ∑  𝑥∈𝐺 ∑  𝑦∈𝐺 𝑓(𝑦)𝑔(−𝑦 + 𝑥)𝜒𝛼(𝑦)𝜒𝛼(−𝑦 + 𝑥)

= 𝑓(𝛼)�̂�(𝛼) . QED

  

 

(34) 

 

 

The group-algebra GF(𝑞)[𝐺] of 𝐺 over GF(𝑞) is the GF(𝑞)-vector space 

GF(𝑞)𝐺  equipped with convolution. The Fourier transform (⋅)̂ is an algebra 

isomorphism from the group-algebra GF(𝑞)[𝐺] to GF(𝑞)[𝐺] with the point-

wise product. Moreover, let (𝛿𝑥)𝑥∈𝐺  be the canonical basis of GF(𝑞)𝐺 (as a 

GF(𝑞)-vector space). It is easy to see that 𝛿𝑥 = 𝜒𝑥. Because (⋅)̂ is an 

isomorphism, this means that (𝜒𝑥)𝑥∈𝐺 is a basis of GF(𝑞)𝐺 over GF(𝑞), and 

it turns that the Fourier transform 𝑓 of 𝑓 ∈ GF(𝑞)𝐺  is the decomposition of 𝑓 

into the basis of characters (even if a family of elements of GF(𝑞)𝐺  is 

orthogonal with respect to the inner-product 〈⋅,⋅〉 of GF(𝑞)𝐺  this does not 

ensure linear independence because 〈⋅,⋅〉 is not positive-definite). 

 

Proposition 6 (Plancherel formula). Let 𝑓, 𝑔 ∈ GF(𝑞)𝐺 . Then, 

 

 ∑ 

𝑥∈𝐺

𝑓(𝑥)𝑔(𝑥) = (|𝐺|mod 𝑝)−1∑  

𝛼∈𝐺

𝑓(𝛼)𝑔(𝛼).  

(35) 
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Proof. Let us define the following functions with ℎ: 𝐺 → GF(𝑞),  
 

                         

𝐼𝐺: 𝐺 → 𝐺

𝑥 ↦ −𝑥
and

ℎ: 𝐺 → GF(𝑞)

𝑥 ↦ ℎ(𝑥).

                                         (36) 

 

Then (𝑓 ∗ 𝑔 ∘ 𝐼𝐺)(0𝐺) = ∑  𝑥∈𝐺 𝑓(𝑥)𝑔(𝑥).  
 

By the inversion formula:  

 

 
(𝑓 ∗ 𝑔 ∘ 𝐼𝐺)(0𝐺) = (|𝐺|mod 𝑝)−1∑  𝛼∈𝐺 (𝑓 ∗ 𝑔 ∘ 𝐼𝐺)

̂ (𝛼)

= (|𝐺|mod 𝑝)−1∑  𝛼∈𝐺 𝑓(𝛼)(𝑔 ∘ 𝐼𝐺)
̂ (𝛼).  

 

(37) 

 

Let us compute (𝑔 ∘ 𝐼𝐺)̂ (𝛼) for 𝛼 ∈ 𝐺.  

 

 (𝑔 ∘ 𝐼𝐺)̂ (𝛼) = ∑  

𝑥∈𝐺

(𝑔 ∘ 𝐼𝐺)(𝑥)𝜒𝛼(𝑥)

= ∑  

𝑥∈𝐺

𝑔(−𝑥)𝜒𝛼(𝑥)

= ∑  

𝑥∈𝐺

𝑔(𝑥)𝜒𝛼(−𝑥)

= ∑  

𝑥∈𝐺

𝑔(𝑥)(𝜒𝛼(𝑥))
−1

= ∑  

𝑥∈𝐺

𝑔(𝑥)𝜒𝛼(𝑥)

= ∑  

𝑥∈𝐺

𝑔(𝑥)𝜒𝛼(𝑥)

= 𝑔(𝛼)  .

 

 

 

(38) 

 

 

Then we obtain the equality that ensures the correct result 

 

 (𝑓 ∗ 𝑔 ∘ 𝐼𝐺) = (|𝐺|mod 𝑝)−1∑  𝛼∈𝐺 𝑓(𝛼)𝑔(𝛼) . QED 
 

(39) 
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Corollary 2 (Parseval equation). Let 𝑓, 𝑔 ∈ GF(𝑞)𝐺 . Then  

 

 ∑ 

𝑥∈𝐺

norm(𝑓(𝑥)) = (|𝐺|mod 𝑝)−1∑  

𝛼∈𝐺

norm(𝑓(𝛼))  .  

(40) 

 

In particular, if 𝑓 is 𝒮(GF(𝑞))-valued, then 

 

 ∑  𝛼∈𝐺 norm(𝑓(𝛼)) = (|𝐺|mod 𝑝)2.                                           (41) 

 

7. BENT FUNCTIONS OVER A FINITE FIELD 

In the traditional setting, i.e., for complex-valued functions defined 

on any finite Abelian group 𝐺, bent functions (Carlet and Ding, 2004, Dillon, 

1974, Logachev, Salnikov and Yashchenko, 1997, Nyberg, 1990, Rothaus, 

1976) are those maps 𝑓: 𝐺 → 𝒮(ℂ) such that for each 𝛼 ∈ 𝐺,  
 

                                |𝑓(𝛼)|2 = |𝐺|  .                                        (42) 
 

This notion is closely related to some famous cryptanalysis namely 

the differential (Bilham and Shamir, 1991) and linear (Masui, 1994) attacks 

on secret-key cryptosystems. We translate this concept in the current finite-

field setting as follows.  

  

Definition 6. The map 𝑓: 𝐺 → 𝒮(GF(𝑞)) is called bent if for all 𝛼 ∈ 𝐺,  

 

                         norm(𝑓(𝛼)) = (|𝐺|mod 𝑝).                           (43) 

   

7.1.  Derivative and Bentness. 

Propositon 7. (Logachev, Salnikov and Yashchenko, 1997).  

 

Let 𝑓: 𝐺 → 𝒮(ℂ). The function 𝑓 is bent if, and only if, for all 𝛼 ∈ 𝐺∗,  
 

 ∑ 

𝑥∈𝐺

𝑓(𝛼 + 𝑥)𝑓(𝑥) = 0.  

(44) 

 

Now let 𝑓: 𝐺 → GF(𝑞). For each 𝛼 ∈ 𝐺, we define the  derivative of 𝑓  in 

direction α as  

                
𝑑𝛼𝑓: 𝐺 → GF(𝑞)

𝑥 ↦ 𝑓(𝛼 + 𝑥)𝑓(𝑥)  .
                           (45)  
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Lemma 2. Let 𝑓: 𝐺 → GF(𝑞). We have   

 

1. ∀𝑥 ∈ 𝐺∗, 𝑓(𝑥) = 0 ⇔ ∀𝛼 ∈ 𝐺, 𝑓(𝛼) = 𝑓(0𝐺).  

2. ∀𝛼 ∈ 𝐺∗, 𝑓(𝛼) = 0 ⇔ 𝑓 is constant.  

 

Proof.   

1. ⇒ 𝑓(𝛼) = ∑  𝑥∈𝐺 𝑓(𝑥)𝜒𝛼(𝑥) = 𝑓(0𝐺)𝜒𝛼(0𝐺) = 𝑓(0𝐺),  

⇐ According to the inversion formula,  

 

 𝑓(𝑥) = (|𝐺|mod 𝑝)−1∑ 

𝛼∈𝐺

𝑓(𝛼)𝜒𝛼(𝑥)

= 𝑓(0𝐺)(|𝐺|mod 𝑝)−1∑  

𝛼∈𝐺

𝜒−𝑥(𝛼)

= 0   for  all   𝑥 = 0𝐺   .

 

 

(46) 

2. ⇒ 𝑓(𝑥) = (|𝐺|mod 𝑝)−1∑  𝛼∈𝐺 𝑓(𝛼)𝜒𝛼(𝑥) = 𝑓(0𝐺)(|𝐺|mod 𝑝)−1, 

⇐ 𝑓(𝛼) = ∑  𝑥∈𝐺 𝑓(𝑥)𝜒𝛼(𝑥) = constant∑  𝑥∈𝐺 𝜒𝛼(𝑥) = 0 for all = 0𝐺. 

QED 
 

Lemma 3. Let 𝑓: 𝐺 → 𝐺𝐹(𝑞). Let us define its autocorrelation function as 
 

 
 

𝐴𝐶𝑓: 𝐺 → GF(𝑞),

𝛼 ↦ ∑  𝑥∈𝐺 𝑑𝛼𝑓(𝑥)  .
             

 

(47) 

 

Then, for all 𝛼 ∈ 𝐺, 𝐴𝐶�̂�(𝛼) = norm(𝑓(𝛼)).   
 

Proof. Let 𝛼 ∈ 𝐺.  

 

 𝐴𝐶�̂�(𝛼) = ∑  

𝑥∈𝐺

𝐴𝐶𝑓(𝑥)𝜒𝛼(𝑥)

= ∑  

𝑥∈𝐺

∑ 

𝑦∈𝐺

𝑑𝑥𝑓(𝑦)𝜒𝛼(𝑥)

= ∑  

𝑥∈𝐺

∑ 

𝑦∈𝐺

𝑓(𝑥𝑦)𝑓(𝑦)𝜒𝛼(𝑥𝑦)𝜒𝛼(𝑦)

= 𝑓(𝛼)𝑓(𝛼)

= norm(𝑓(𝛼))  . 𝑄𝐸𝐷

 

 

 

 

 

 

(48) 
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Theorem 3. The function 𝑓: 𝐺 → 𝒮(GF(𝑞)) is bent if, and only if, for all 

𝛼 ∈ 𝐺∗, ∑  𝑥∈𝐺 𝑑𝛼𝑓(𝑥) = 0.  

 

Proof. ∀𝛼 ∈ 𝐺∗, ∑  𝑥∈𝐺 𝑑𝛼𝑓(𝑥) = 0 

⇔ ∀𝛼 ∈ 𝐺∗, 𝐴𝐶𝑓(𝛼) = 0 

⇔ ∀𝛼 ∈ 𝐺, 𝐴𝐶�̂�(𝛼) = 𝐴𝐶𝑓(0𝐺) 

(according to lemma 2) 

⇔ ∀𝛼 ∈ 𝐺,  norm(𝑓(𝛼)) = ∑  𝑥∈𝐺 𝑓(𝑥)𝑓(𝑥) 
(according to lemma 3) 

 

⇔ ∀𝛼 ∈ 𝐺,  norm(𝑓(𝛼)) = ∑  𝑥∈𝐺 norm(𝑓(𝑥)) 

⇔ ∀𝛼 ∈ 𝐺,  norm(𝑓(𝛼)) = (|𝐺|mod 𝑝) 
(because 𝑓 is 𝒮(GF(𝑞))-valued.) QED 

 

7.2. Dual Bent Function 

Again by analogy to the traditional notion Carlet and Dubuc, 2001, Kumarm 

Scholtz and Welch, 1985), it is also possible to define a dual bent function 

from a given bent function. Actually, as we see it below, |𝐺| must be a square 

in GF(𝑝) to ensure the well-definition of a dual bent. So by using the law of 

quadratic reciprocity, we can add the following requirement (only needed for 

proposition 8).  

 

Assumption 4. If the prime number 𝑝 is ≥ 3, then |𝐺| must also satisfy 

|𝐺|
𝑝−1

2 ≡ 1(mod 𝑝). If the prime number 𝑝 = 2, then there is no other 

assumptions on |𝐺| (than those already made).  

 

According to assumption 4, |𝐺|mod 𝑝 is a square in GF(𝑝), then there is at 

least one 𝑥 ∈ GF(𝑝) with 𝑥2 = |𝐺|mod 𝑝. If 𝑝 = 2, then 𝑥 = 1. If 𝑝 ≥ 3, 

then we choose for 𝑥 the element (|𝐺|mod 𝑝)
𝑝+1

4 . Indeed it is a square root of 

|𝐺|mod p since  

 

((|𝐺|mod p)
𝑝+1
4 )2 = (|𝐺|mod p)

𝑝+1
2  

= (|𝐺|(mod p))(|𝐺|(mod p))
𝑝−1
2  

= |𝐺|(mod 𝑝). 
 

In all cases we denote by (|𝐺|mod 𝑝)
1

2 the chosen square root of |𝐺|mod 𝑝. 

Since |𝐺|mod 𝑝 = 0, then it is clear that this square root also is non-zero. Its 
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inverse is denoted by (|𝐺|mod 𝑝)−
1

2. Finally it is clear that (|𝐺|mod 𝑝)−
1

2)2 =
(|𝐺|mod 𝑝)−1.   
 

Proposition 8. Let 𝑓: 𝐺 → 𝒮(GF(𝑞)) be a bent function, then the following 

function 𝑓, called  dual of 𝑓, is bent.  
 

                         
𝑓: 𝐺 → 𝒮(GF(𝑞))

𝛼 ↦ (|𝐺|mod 𝑝)−
1

2𝑓(𝛼)  .
              (49) 

   
 

Proof. Let us first check that f̃ is 𝒮(GF(q))-valued. Let α ∈ G. We have  

 

             

𝑓(𝛼)𝑓(𝛼) = (|𝐺|mod 𝑝)−
1

2𝑓(𝛼)(|𝐺|mod 𝑝)−
1

2𝑓(𝛼)

= (|𝐺|mod 𝑝)−1norm(𝑓(𝛼))

= 1   (since  𝑓  is  bent. ) 

              (50) 

 

Let us check that the bentness property holds for 𝑓. Let 𝛼 ∈ 𝐺. We have 

𝑓(𝛼) = (|𝐺|mod 𝑝)−
1

2(|𝐺|mod 𝑝)𝑓(−𝛼) (by (30)). Then  
 

𝑓(𝛼)𝑓(𝛼) = (|𝐺|mod 𝑝)𝑓(−𝛼)𝑓(−𝛼)

= (|𝐺|mod 𝑝)norm(𝑓(−𝛼))

= (|𝐺|mod 𝑝)(since  𝑓  is𝒮(GF(𝑞)) − valued. ) 𝑄𝐸𝐷

    (51) 

 

7.3. Construction of Bent Functions 

We present a simple version of the well-known Maiorana-McFarland 

construction(Dillon, 1974, McFarland, 1973) for our bent functions. 

 

Let 𝑔:𝐺 → 𝒮(GF(𝑞)) be any function. Let f be the following function.  

 

                        
𝑓: 𝐺2 → 𝒮(GF(𝑞))

(𝑥, 𝑦) ↦ 𝜒𝑥(𝑦)𝑔(𝑦)  .
                   (52) 

  

Then 𝑓 is bent. We observe that the fact that f is 𝒮(GF(𝑞))-valued is obvious 

by construction. So let us prove that f is indeed bent. We use the 

combinatorial characterization obtained in theorem 3. Let 𝛼, 𝛽, 𝑥, 𝑦 ∈ 𝐺.  
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 𝑑(𝛼,𝛽)𝑓(𝑥, 𝑦) = 𝑓(𝛼 + 𝑥, 𝛽 + 𝑦)𝑓(𝑥, 𝑦)

= 𝜒𝛼+𝑥(𝛽 + 𝑦)𝑔(𝛽 + 𝑦)𝜒𝑥(𝑦)  𝑔(𝑦)

= 𝜒𝛼(𝛽 + 𝑦)𝜒𝑥(𝛽 + 𝑦)𝑔(𝛽 + 𝑦)𝜒𝑥(𝑦)  𝑔(𝑦)

= 𝜒𝛼(𝛽)𝜒𝛼(𝑦)𝜒𝑥(𝛽)𝜒𝑥(𝑦)𝑔(𝛽 + 𝑦)𝜒𝑥(𝑦)  𝑔(𝑦)

= 𝜒𝛼(𝛽)𝜒𝛼(𝑦)𝑔(𝛽 + 𝑦)𝑔(𝑦)𝜒𝑥(𝛽)

= 𝜒𝛼(𝛽)𝜒𝛼(𝑦)𝑔(𝛽 + 𝑦)𝑔(𝑦)𝜒𝛽(𝑥)

 

 

 

 

 

(53) 

 

because 𝜒𝑥(𝛽)   =   𝜒𝛽(𝑥). 

 

So for (𝛼, 𝛽) ∈ (𝐺2)∗ = 𝐺2\{(0𝐺 , 0𝐺)}, we obtain  

 

∑  

(𝑥,𝑦)∈𝐺2

𝑑(𝛼,𝛽)𝑓(𝑥, 𝑦) = ∑  

(𝑥,𝑦)∈𝐺2

𝜒𝛼(𝛽)𝜒𝛼(𝑦)𝑔(𝛽 + 𝑦)𝑔(𝑦)𝜒𝛽(𝑥) 

= 𝜒𝛼(𝛽)∑  

𝑦∈𝐺

𝜒𝛼(𝑦)𝑔(𝛽 + 𝑦)𝑔(𝑦)∑  

𝑥∈𝐺

𝜒𝛽(𝑥) 

 

(54) 

 

 

 

The sum ∑  𝑥∈𝐺 𝜒𝛽(𝑥) is equal to 0 if 𝛽 = 0𝐺  and |𝐺|mod p if 𝛽 = 0𝐺  

(according to lemma 1). Then the right member of the equality (54) is equal 

to 0 if 𝛽 = 0𝐺 and (|𝐺|mod p)𝜒𝛼(𝛽)∑  𝑦∈𝐺 𝜒𝛼(𝑦)𝑔(𝛽 + 𝑦)𝑔(𝑦) if 𝛽 = 0𝐺 . 

So when 𝛽 = 0𝐺, ∑  (𝑥,𝑦)∈𝐺2 𝑑(𝛼,𝛽)𝑓(𝑥, 𝑦) = 0. Now let us assume that 

𝛽 = 0𝐺, then because (𝛼, 𝛽) ∈ 𝐺2\{(0𝐺 , 0𝐺)}, 𝛼 = 0𝐺, we have 

 

∑  

(𝑥,𝑦)∈𝐺2

𝑑(𝛼,0𝐺)𝑓(𝑥, 𝑦)= (|𝐺|mod p)𝜒𝛼(0𝐺)∑  

𝑦∈𝐺

𝜒𝛼(𝑦)𝑔(0𝐺 + 𝑦)𝑔(𝑦)

= (|𝐺|mod p)∑  

𝑦∈𝐺

𝜒𝛼(𝑦)

 (because  𝑔  is  𝒮(GF(𝑞)) − valued) 

= 0   (because  𝛼 = 0𝐺 . ) 

 

 

(55) 

 

 

So we have checked that for all (𝛼, 𝛽) ∈ 𝐺2\{(0𝐺 , 0𝐺)} 
∑  (𝑥,𝑦)∈𝐺2 𝑑(𝛼,𝛽)𝑓(𝑥, 𝑦) = 0 and then according to theorem 3 this implies that 

𝑓 is bent. 
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