
Failure of the Point Blinding Countermeasure Against

Fault Attack in Pairing-Based Cryptography

Nadia El Mrabet, Emmanuel Fouotsa

To cite this version:

Nadia El Mrabet, Emmanuel Fouotsa. Failure of the Point Blinding Countermeasure Against
Fault Attack in Pairing-Based Cryptography. Article published in the proceedings of the C2SI
conference, May 2015. 2015, <10.1007/978-3-319-18681-8 21>. <hal-01197148>

HAL Id: hal-01197148

https://hal.archives-ouvertes.fr/hal-01197148

Submitted on 11 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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Abstract. Pairings are mathematical tools that have been proven to be very useful in the con-
struction of many cryptographic protocols. Some of these protocols are suitable for implementation
on power constrained devices such as smart cards or smartphone which are subject to side channel
attacks. In this paper, we analyse the efficiency of the point blinding countermeasure in pairing
based cryptography against side channel attacks. In particular,we show that this countermeasure
does not protect Miller’s algorithm for pairing computation against fault attack. We then give rec-
ommendation for a secure implementation of a pairing based protocol using the Miller algorithm.
Key words: Miller’s algorithm, Identity Based Cryptography, Side Channel Attacks, Fault Attacks,
Countermeasure.

1 Introduction

Pairings are bilinear maps defined on the group of rationals points of elliptic or hyper elliptic
curves [36]. Nowadays, more and more protocols using pairings are proposed in the literature [10,
21, 6]. Among these protocols, only those constructed on the identity based model involve a se-
cret which is one of the argument during the computation of a pairing. The implementation
of a pairing based protocol is efficient enough to allow the use of pairing based cryptography
on power constrained device such as smart cards and mobile phones [31, 22, 19]. Smart cards
are by nature sensitive to side channel attacks. Side channel attacks are powerful attacks that
use the implementation of a protocol to obtain information on the secret. They are divided
into two families: invasive and non invasive attacks. Invasive attacks are based on the model
of fault attacks. The execution of a protocol is disturbed, the result is then a faulty one and
the analysis of this faulty result can provide information on the secret. In non invasive attacks,
the information can be leaked by the time of execution, the electric consumption or the elec-
tromagnetic emission of the device. Several works have investigated the robustness of identity
based cryptography to side channel attacks. They are mainly focused on fault attacks [27, 37,
11, 2]. Few works consider differential power analysis attack [27, 13, 5]. As the secret during an
identity based protocol can be recovered by side channel attacks, several countermeasures were
proposed. Those countermeasures are the same for invasive and non invasive attacks [14]. In [16],
Ghosh, Mulhopadhyay and Chowdhury proposed an analysis of countermeasures to fault attack
presented in [27]: the new point blinding method and the alliterating point blinding method.
They concluded that the countermeasures are not sufficient and proposed new one. However,
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their explanations on the non efficiency of the countermeasure are not convincing. Later, Park
et al. [28] clearly exposed the weaknesses of the point blinding technique against fault attacks
described by Page and Vercauteren [27].

In this article we analyze and extend the work in [16, 28] on the efficiency of the point blinding
countermeasure in pairing based cryptography. Especially, we generalize the attack of Park et
al. [28] and expose its failure to protect the Miller algorithm, main tool in pairing computation.
As the most efficient pairings are constructed on the model of the Tate pairing, we focus on the
Miller algorithm, used for the Tate pairing considering Weierstrass elliptic curve. Obviously, this
analysis is the same for the (optimal ) Ate, twisted Ate or pairing lattices; and for every model
of elliptic curve or coordinates.

The rest of this paper is organized as follows: The Section 2 presents brief concepts on
pairings that are useful to understand this work. In Section 3 we present side channel attacks with
emphasis on fault attacks in pairing based cryptography. In Section 4 we explicitly demonstrate
that the point blinding countermeasure fails to protect the Miller algorithm against fault attack.
Finally we conclude the work in Section 6.

2 Background on pairings

In this section, we briefly recall basics on pairings and on the Miller algorithm [25], main tool for
an efficient computation of pairings. Let E be an elliptic curve defined over a finite field Fq, with
q a prime number or a power of a prime. The neutral element of the additive group law defined
on the set of rational points of E is denoted P∞. Let r be a large prime divisor of the group order
]E(Fq) and k the embedding degree of E with respect to r, i.e. the smallest integer k such that
r divides qk − 1. The integer k is also the smallest integer such that E

(
Fq
)

[r] ⊂ E(Fqk), where

E
(
Fq
)

[r] = {P ∈ E
(
Fq
)

: [r]P = P∞} with [r]P = P + P + . . .+ P︸ ︷︷ ︸
r times

and Fq is the algebraic

closure of Fq.
In general , the sizes of r, q and k are dependent from the security level and the currently

recommendations are at least r > 2160 and qk > 22024 [15]. The recent results for the discrete
logarithm problem [20, 3] imply that the number q must be a large prime number. The security
recommendations allow the choice of k to be a product of power of 2 and 3. A consequence of the
fact that k ≡ 0 mod 2 is the use of a twist representation for the point Q. This representation
using a twisted elliptic curve allow the denominator elimination optimization [23].

Definition of a twisted elliptic curve. We explain here the concept of twist of elliptic curve
in the context of Weierstrass elliptic curve. This will help us to understand the choice of the
coordinates of points in Section 4. The quadratic twist of the elliptic curve E : y2 = x3 + ax+ b
over Fpk is the elliptic curve Ẽ : 1

ν y
2 = x3 + ax+ b where {1, ν} is a basis of Fqk as Fqk/2 vector

space. The two curves are isomorphic via

ψ : Ẽ(Fqk/2) −→ E(Fqk)

(x, y) 7−→ (x, y
√
ν).

This isomorphism is particularly useful since it enables to take the point Q ∈ E(Fqk) in
the following manner Q = ψ(Q′) where Q′ = (xQ, yQ) with xQ, yQ ∈ Fqk/2 . This ensures an



efficient computation since many computations will be consequently done instead in the subfield
Fqk/2 and more interestingly, it enables to avoid the inversions in the Miller algorithm. This
elimination is the denominator elimination [23].

Indeed, if P1(x1, y1) and P2(x2, y2) are two points of the elliptic curve in Weierstrass form
E : y2 = x3 + ax+ b then the function hP1,P2 with divisor

Div(hP1,P2) = (P1) + (P2)− (P1 + P2)− (P∞),

is hP1,P2 =
`P1,P2
vP1+P2

where `P1,P2 is the straight line defining P1+P2 and vP1+P2 is the corresponding

vertical line passing through P1 + P2. Explicitly, we have

hP1,P2(x, y) =
y − λx− α
x− x3

,

where x3 is the first coordinate of P1 + P2 and λ =
y2 − y1
x2 − x1

if P1 6= P2, λ =
3x21 + a

2y1
if

P1 = P2 and α = y1 − λx1.
In the particular case of doubling (P1 = P2), a straightforward computation gives, after

changing to Jacobian coordinates (x1 = X1

Z2
1

, y1 = Y1
Z3
1
)

hP1,P1(Q) = hP1,P2(xQ, yQ
√
ν) =

2Y1Z
3
1yQ
√
ν − 2Y 2

1 − (3X2
1 + aZ4

1 )(xQZ
2
1 −X1)

2Y1Z3
1 (xQ − x3)

,

We then remark that the denominator of the previous expression is an element of Fqk/2 and
consequently will be equal to 1 during the final exponentiation. So the main expression that will
be used in the Miller algorithm is:

hP1,P1(Q) = hP1,P2(xQ, yQ
√
ν) = 2Y1Z

3
1yQ
√
ν − 2Y 2

1 − (3X2
1 + aZ4

1 )(xQZ
2
1 −X1) (1)

The expression given by equation 1 is used in algorithms 1 and 2 and will be particularly useful
in Section 4 to illustrate our attack.

The Tate pairing. Consider a point P ∈ E(Fq)[r], the principal divisor D = r(P ) − r(P∞)
and a function fr,P with divisor Div (fr,P ) = D. Let Q ∈ E(Fqk)[r]/E(Fq) and µr be the group
of r-th roots of unity in F∗

qk
. The reduced Tate pairing er is a bilinear and non degenerate map

defined as

er : E(Fq)[m]× E(Fqk)[r]→ µm

(P,Q) 7→ fr,P (Q)
qk−1

r

The value fr,P (Q) can be determined efficiently using Miller’s algorithm [25].
More information on pairings can be found in [9]. In order to obtain the result of the Tate

pairing, the output of Miller’s algorithm must be raised to the power qk−1
r , this operation is

called the final exponentiation.



Algorithm 1: Miller’s Algorithm

Input : P ∈ E(Fq)[r], Q ∈ E(Fqk )[r], m = (1,mn−2, ....m1,m0)2.
Output: fm,P (Q)

1: Set f ← 1 and T ← P
2: For i = n− 2 down to 0 do
3: f ← f2 · hT,T (Q), with hT,T the Equation (1) of the tangent to E at point T
4: T ← 2T
5: if mi = 1 then
6: f ← f · hT,P (Q), with hT,P the equation of the line (PT )
7: T ← T + P
8: end if
9: end for
10: return f

Fig. 1. The Miller algorithm

We call a Tate-like pairing any pairing constructed on the following model: an execution of the
Miller algorithm followed by a final exponentiation. Every Tate-like pairing was an improvement
of the previous. The ate pairing [18] was an improvement of the Tate pairing [29], the twisted ate
pairing [18] an improvement of the ate pairing, the notion of optimal pairings [35] an improvement
of the ate and twisted ate pairing and finally the pairing lattices [17] another way to deal with
optimal pairings. The algorithmic difference between the Tate pairing and a Tate-like pairing is
principally the number of iterations, sometimes it could also be the role playing by P and Q. In
Algorithm 1, we describe the Miller algorithm. In order to keep our explanations general , the
number of iterations in the Miller algorithm is indexed over m. The integer m would be r for the
Tate pairing, or smaller than r for a Tate-like pairing. We describe the attack considering that
we are computing a pairing using fm,P (Q), for m the integer giving the number of iterations
of the pairing. Obviously, the discussion can be straightforward adapted for the computation of
fm,Q(P ).

Obviously, the system of coordinates influences the equations of the Miller algorithm, but if
the attack is efficient over one model of elliptic curve for one system of coordinates, then the
same attack will be efficient over any other model of elliptic curve and considering any other
system of coordinates.

3 Side channel attacks on Pairing-Based cryptography and Countermeasures

In this section we briefly recall and describe existing side channel attacks and countermeasures
in the context of pairing-based cryptography. Especially, we analyse the point blinding counter-
measure presented in [27] and its weakness exposed in [28].

3.1 Background on side channel attacks

The first analysis of side channel attacks against a pairing was proposed by Page and Ver-
cauteren [27]. They attack the Duursma and Lee algorithm used to compute a pairing over
super singular elliptic curves. Page and Vercauteren described a new fault attack model and
mention without development the differential power analysis against pairings. The fault model
consists in the modification of the number of iterations of an algorithm. The fault attack was



adapted by further works on the Miller algorithm [37, 11, 2]. Whelan et Scott [37] highlighted
the fact that pairings without a final exponentiation are more sensitive to a sign change fault
attack. They analyzed the Weil, the Tate and Eta pairing. They used a simplified version of
Page and Vercauteren attack. After that, El Mrabet [11] generalized the attack of Page and
Vercauteren to the Miller algorithm used to compute all the recent optimizations of pairings. El
Mrabet considered only the Miller algorithm and did not take into account the final exponen-
tiation. The target of El Mrabet’s attack is the loop counter in the Miller algorithm. The final
exponentiation was attacked by Lasherme et al. [24]. They used three faults to inverse the final
exponentiation of the Tate pairing, which is the same for Ate and twisted ate pairing. Recently,
an attack against a whole pairing, i.e. the Miller algorithm together with the final exponenti-
ation, was published by Blömer et al. in [4]. The attack consists in modifying the clock of the
device and as a consequence, the device returns intermediary results that allow to recover the
secret. Few works consider differential power analysis. In [13] El Mrabet et al. highlight the fact
that without protection the Miller algorithm is sensitive to a differential power analysis attack.
Their work was recalled in [5]. In practice, the efficiency of side channel attacks does not lay on
the choice of the characteristic, neither on the choice of the elliptic curve, nor on the choice of
the coordinates. To each attack, several countermeasures were proposed. The countermeasures
rely on the bilinearity of pairings, or on the homogeneity of the coordinates [14].

3.2 Description of Fault Attack

In an Identity Based Encryption scheme [6], one argument of the pairing is secret. So fault
attacks can be performed to reveal the secret. We describe the attack against the Miller algo-
rithm. As stated in the introduction, fault attack on pairing algorithm tries to corrupt the loop
bound (which is log(m)) of the Miller algorithm. The attacker injects fault repetitively in such
a way that he can obtain two consecutive loop bounds log(m − s) and log(m − s) + 1 and the
corresponding pairings em−s(P,Q) and em−s+1(P,Q), for a certain integer s. It has been shown
in [11] that it is possible to obtain such consecutive integers in a finite number of fault injections.

The clock glitch attack described in [4] highlights the fact that in practice a modification of
the glitch can make the device stop and return intermediary results, such as internal results of
Miller’s algorithm. In order to explain how the attacker can obtain the secret point from the
erroneous pairings em−s(P,Q) and em−s+1(P,Q) we consider the two following situations.

First situation: Excluding the final exponentiation. Instead of obtaining the values
em−s(P,Q) and em−s+1(P,Q) after the final exponentiation, the attacker tries to get the final
values obtained after log(m−s) and log(m−s)+1 iterations, just before the final exponentiation.
A method to obtain those intermediary values is the use of a clock glitch attack [4]. We denote
these values by fm−s,P (Q) and fm−s+1,P (Q). Depending of the last bit corresponding to each
iteration, we have four possibilities for the expression of fm−s,P (Q) and fm−s+1,P (Q).

Without lost of general ity, we can consider the case when

fm−s+1,P (Q) = (fm−s,P (Q))2 × h[j]P,[j]P (Q),

with j the integer composed by the log2(m− s) most significant bits of m.



Consequently, the attacker knows

S =
fm−s+1,P

f2m−s,P
(Q) = h[2j]P,[2j]P (Q).

The trick of the attacker is now to use the representation of S and h[2j]P,[2j]P (Q) ∈ Fqk in a
basis of Fqk/Fq in order to obtain by identification, a system of linear or non-linear equations.
The resolution of this system leads to the obtention of the coordinates of the secret point. A
successful such attack has been mounted against the Miller algorithm [12]. We briefly recall the
attack and refer to [11] for a complete description of this attack.

We recall that the point Q is public, the point P is secret and R is random in E(Fqk). For
efficiency reasons, the embedding degree k is smooth and at least divisible by 2, or 4 or for
the best cases by 6. A smooth integer is a number that admits a factorisation into small prime
numbers. This condition on k enables efficient computation of pairings and the denominator
elimination thanks to the twist of the elliptic curve. A consequence is that the points Q and R
are seen as images of points belonging to the twist. The coordinates of R are composed by at
most k values in Fqk/d , where d is the degree of the twist. The point P could be given in affine,
projective or Jacobian coordinates. The choice will depend on the most efficient computation
for the pairing. Whatever the choice is, the coordinates of point P will always count as 2
unknown values XP and YP . This is obvious if P is given in affine coordinates. If P is given
in projective or Jacobian coordinates, P would be characterized and gives improvement of the
pairing computations by 3 unknown values XP , YP and ZP . But, using the homogeneity of
projective and Jacobian coordinates, we could consider that the point P is in fact X ′P , Y ′P and
1. Indeed, we know that for Z 6= 0 in projective coordinates (X,Y, Z) ∼= (X/Z, Y/Z, 1) and in
Jacobian coordinates (X,Y, Z) ∼= (X/Z2, Y/Z3, 1).

Putting all together one obtains a system of k + 2 polynomial equations in k + 2 unknown
values. This system admits solutions as it is derived from a constructive algorithm. The points
P and R are defined by construction. So, we can use the Gröbner basis [8] for instance to solve
the system and find the coordinates of the point P . If the secret is the point Q, the attack is
easier and successful [11].

Second situation: Including the final exponentiation. In this situation we consider the
values em−s(P,Q) and em−s+1(P,Q) obtained after the final exponentiation. Then

em−s+1

e2m−s
=
[
h[2j]P,[2j]P (Q)

] (qk−1)
r

The aim here is, since it has been easy to obtain em−s(P,Q) and em−s+1(P,Q) contrary to

situation 1, to reverse the exponent (qk−1)
r , such that an application of the method in situation

1 may lead to the obtaining of the secret. In secured pairing based protocols, it has been shown

that the exponent (qk−1)
r is difficult to reverse mathematically [30, 24]. So the attack in this

situation requires a fault model that would neutralize the final exponentiation, which is possible
experimentally. One possibility can be to combine two fault models to neutralize the final expo-
nentiation. For instance use a fault attack to reduce the number of iterations as in [11] and a
fault attack to reverse the exponentiation as in [24]. Another way would be to use a fault model
that modifies the time of execution as modification of the glitch or under voltage attack [4].



Remark 1. In the case of super singular elliptic curves, the final exponentiation can be reversed
by mathematical considerations, the form of the exponent combined with a sparse decomposition
in the basis of Fpk allow this operation [27]. This is specific to pairings over supersingular elliptic
curves and cannot be applied to ordinary elliptic curves.

3.3 The Point Blinding countermeasure and weaknesses

In [16], Ghosh, Mulhopadhyay and Chowdhury proposed an analysis of countermeasures to fault
attack presented in [27]. They analyze what they called the new point blinding technique:

e(P,Q) = e([x]P, [y]Q) for random x, y such that xy ≡ 1 mod (r)

and the altering traditional point blinding:

e(P,Q) =
e(P,Q+R)

e(P,R)
,

for R a random point in E(Fq) such that the pairings e(P,Q) and e(P,R) are defined. They
conclude that these two countermeasures are not sufficient against the fault attack described
in [27]. However their analysis was not convincing. Concerning the new point blinding method,
they claim that the intermediary steps of a pairing computation are bilinear which is not the
case. The ratio obtained in the attack depends on the coordinates of the points [x]P and [y]Q,
with x and y unknown to the attacker. They do not explain how they can recover the value
of the secret point used during the pairing computation. Concerning the altering traditional
point blinding method, their analysis was not clear enough. In [16] the explanation did not take
into account the randomness induced by the point R. We demonstrate in the next section that
this countermeasure is not efficient with a precise approach and we develop the corresponding
equation.

In [28] Park et al. exposed the weaknesses of the point blinding technique against fault attacks
of Page and Vercauteren [27]. They presented an attack where they omit the last iteration of
the Duursma and Lee algorithm. We generalize their approach to the Miller algorithm and for
every iteration not only the last one.

4 Attack against the point blinding countermeasure during Miller’s
algorithm

In this section, we first explain how the Miller algorithm can be implemented with the point
blinding technic. As far as we know, this is the first time that an algorithm is proposed for the
implementation of this counter measure. The aim of point blinding method is to add randomness
to the known entry of the pairing computation. Indeed, a side channel attack is successful
principally because the attacker knows the value of data combined with the secret. The point
blinding countermeasure is made to blind the knowledge of the attacker. As the point R is
random, the point Q + R is also random. This countermeasure is considered as sufficient to
prevent any side channel attack against a pairing implementation.

We then show how this countermeasure does not really protect the algorithm against fault
attack.



4.1 Implementation of the countermeasure

We discuss here the possible ways to implement the Miller algorithm using the point blinding
countermeasure: e(P,Q) = e(P,Q+R)

e(P,R) .

Case 1: We consider that the secret is the point P ∈ E(Fq). The point Q ∈ E(Fqk) is public.
The countermeasure consists in adding randomness to the point Q, expecting that it would be
then impossible to perform the fault attack. The randomness is the choice of a point R such
that the pairings e(P,R) and e(P,Q+R) are defined.

In practice, for optimization reason, k is smooth. In order to simplify the explanation, we
consider that k ≡ 0 mod 2. The point Q is represented as the image of a point Q′ belonging
to the twisted elliptic curve E′ of E and defined over Fqk/2 . The coordinates of Q are Q =
(xQ, yQ

√
ν), for a quadratic twist. If another twist is used, the scenario is the same, but the

equation must be adapted in consequence.

The device is implemented to compute e(P,Q+R)
e(P,R) . For efficiency reasons, as these two pairing

computations are performed during the scalar multiplication of the point P , the two com-
putations e(P,Q + R) and e(P,R) would be done in parallel. In order to compute only one
exponentiation on the elliptic curve. The inversion in the field Fqk and the final exponentia-
tion are expensive operations. So, once obtained the results fm,P (Q + R) and fm,P (R), it will
be more efficient to perform the inversion followed by the final exponentiation instead of two
final exponentiations followed by an inversion. In practice, the discussion about inverting the
final exponentiation is the same for the altering point blinding countermeasure and the classical
Miller algorithm recalled in Section 3.2. Given these efficiency considerations, the Miller algo-
rithm that would be used for the point blinding countermeasure would likely to be as presented
in Algorithm 2. For clarity of explanations, we add the inversion at the end of Miller algorithm
(step 14), it could be performed outside the Miller algorithm and that would not change our
discussion.

Algorithm 1: Miller’s Algorithm with the point blinding countermeasure

Input : P ∈ E(Fq)[r], Q ∈ E(Fqk )[r] \ E(Fq)[r], m = (1,mn−2, ....m1,m0)2.

Output:
fm,P (Q+R)

fm,P (R)

1: Choose R randomly in E(Fqk )[r] \ E(Fq)[r]
2: If R = −Q, go to 1.
3: Set f ← 1, g ← 1 and T ← P
4: For i = n− 2 down to 0 do
5: f ← f2 · hT,T (Q + R)
6: g ← g2 · hT,T (R)
7: T ← 2T
8: if mi = 1 then
9: f ← f · hT,P (Q + R)
10: g ← g · hT,P (R)
11: T ← T + P
12: end if
13: end for

14: return f
g

Fig. 2. The modified Miller algorithm



Case 2: We consider that the point P ∈ E(Fq) is public and the secret is the point Q ∈ E(Fqk).
The randomness, considering the point blinding countermeasure would be added to the point P .
The device would be implemented in order to compute e(P+R,Q)

e(R,Q) . The implementations of the
two Miller algorithms would then be done either in parallel or consecutively. The choice would
highly depend on the target for the implementation. On a multiple processor device the parallel
solution would be preferred. On a constrained device, as a smart card, the computation would
be done one after the other, or delegated to a more powerful device. Considering this hypothesis
we do not try to give a general way to perform the computation. Indeed, either the same counter
will be used and if it is modified once, it will be for the two computations. Either two counters
will be used and then two faults would be necessary to modify them. The case of a delegation
of the computation would require a whole article. We do not describe it here.

4.2 Description of the attacks

We describe here the fault attack against the Miller algorithm implemented using the point
blinding countermeasure e(P,Q) = e(P,Q+R)

e(P,R) .

Case 1: when the secret is the point P . We consider that the secret is the point P , we
can freely choose the point Q and the randomness is the point R such that the pairings e(P,R)

and e(P,Q+R) are defined. The device is implemented to compute e(P,Q+R)
e(P,R) using the modified

Miller algorithm described in the Algorithm 2.
The target of the fault attack is the counter given the number of iterations in the modified

Miller algorithm. The aim of the fault is to reduce the number of iterations performed during
the execution of the Miller algorithm. For instance, the fault can be induced by a laser [1, 34] or
a modification of the glitch [4]. The probability to obtain two shortened Miller algorithms with
consecutive number of iterations is high enough to made this hypothesis realistic [11]. So, we
suppose that we have obtained the results of the modified Miller algorithm after the m′th and
the (m′+ 1)th iterations, for m′ an integer smaller than m the original number of iterations. We
exactly know what happens during the (m′ + 1)th iteration.

Let f ′m and g′m denote the results stored in f and g at the m′th iteration, let mi be the
value of the corresponding bit. Then, in order to express fm′+1 and gm′+1 we must consider two
possibilities, either the mi is 0, or 1.
Ifmi = 0, then fm′+1 = f ′2m×hT,T (Q+R) and gm′+1 = g2m×hT,T (R), with T = [1mn−1 . . .mi+1mi]P .
If mi = 1 then fm′+1 =

(
f ′2m × hT,T (Q+R)

)
× h2T,P (Q + R) and gm′+1 =

(
g′2m × hT,T (R)

)
×

h2T,P (R). The attacker will receive the two values f ′m
g′m

and
fm′+1

gm′+1
in Fqk . We could be tempted

to follow the scheme of the attacks described in [27, 11], i.e. compute the exact value in Fqk of

the ratio

fm′+1
gm′+1(
f ′m
g′m

)2 , use its theoretical decomposition (if mi = 0 it is
hT,T (Q+R)
hT,T (R) or if mi = 1 it is

hT,T (Q+R)×h2T,P (Q+R)
hT,T (R)×h2T,P (R) ) and after use the identification in the basis of Fqk in order to obtain k

equations depending on the coordinates or P , Q and R. The equation of the elliptic curve gives
two more equations as P and R are on the curve.

But be careful! The point R is randomly chosen at each execution of the Algorithm 2. So

in practice, we obtain f ′m
g′m

(P,Q,R1) and
fm′+1

gm′+1
(P,Q,R2), for R1 and R2 two random points in



E(Fqk)[r] \E(Fq)[r]. In this case, the theoretical decomposition of the ratio

fm′+1
gm′+1

(P,Q,R2)

f ′2m
g′2m

(P,Q,R1)
would

not admit any simplification and the previous description inspired from [27, 11] is no longer
possible. We have to describe a more painful and awful attack.

In this attack, we need only one faulty result f ′m
g′m

(P,Q,R), for P secret, Q chosen and R
random. After one iteration of the Miller algorithm, assuming that the corresponding bits of m
are 0, we have f1 = hP,P (Q + R) and g1 = hP,P (R). After two iterations, f2 = h[2]P,[2]P (Q +

R) × (hP,P (Q+R))2 and g2 = h[2]P,[2]P (R) × (hP,P (R))2. We can express the equation of hP,P
and h[2]P,[2]P in terms of the coordinates of P . The evaluation of these functions at the points
Q+R and R will give a polynomial expression in the coordinates of P and R.

The theoretical description of the coordinates of R will admit a decomposition in the basis
of Fqk . If we are able to obtain the result of the Miller algorithm after m′ iterations (denoted
λ0 + λ1

√
ν, with λ0 and λ1 ∈ Fqk/2), we have on one hand the theoretical description and on an

other the value in Fqk of this description:

fm′(P,Q,R)

gm′(P,Q,R)
= λ0 + λ1

√
ν. (2)

We know the value of λ0, λ1 and the theoretical description of fm′(P,Q,R) and gm′(P,R).
Exactly like at the end of the attack described in [11], by identification in the basis of Fpk , we
obtain a system of k polynomial equations with coordinates of P and R as unknown. The degree
of the polynomial depends on the number of iterations. That is why an important step of the
attack is to minimize the number of iterations that are executed by the Miller algorithm.

As illustration we have for one iteration, fm′(P,Q,R) = hP,P (Q + R) and gm′(P,R) =
hP,P (R). The equation 2 gives hP,P (Q + R) = (λ0 + λ1

√
ν) × hP,P (R) which is a degree 3

polynomial in XP , a degree 2 in YP , a degree 6 for ZP and a degree 1 polynomial in xR. We
give the equations of hP,P (Q + R) and hP,P (R) (see section 2 for details) in order to illustrate
an idea of the system.

P = (XP , YP , ZP ), XP , YP , ZP ∈ Fq
Q+R = (xQ+R, yQ+R

√
ν), xQ+R, yQ+R ∈ Fqk/2

R = (xR, yR
√
ν), xR, yR ∈ Fqk/2

hP,P (Q+R) = 2YPZ
3
P yQ+R

√
ν − 2Y 2

P − (3X2
P + aZ4

P )(xQ+RZ
2
P −XP )

hP,P (R) = 2YPZ
3
P yR
√
ν − 2Y 2

P − (3X2
P + aZ4

P )(xRZ
2
P −XP )

The equation of the elliptic curve in P and R gives us 2 more equations and we still have k+2
unknown values in Fq. To conclude the attack, we will use the Gröbner basis. In order to ensure
the fact that the solution will be in Fq, we have to add the equation ξp ≡ ξ mod p for each
unknown value. We therefore obtain a system of 2k+ 2 polynomial equations for k+2 unknown
values. The Gröbner basis is the perfect tool for solving this system, that admits solutions by
construction.

Obviously for a greater number of iterations, by hand it is difficult to develop the theoretical
expression without any mistake. We do not describe it even for one iteration. Fortunately, we have
mathematical softwares that can help us, like PariGP[33], Sage [32], Magma [7] or Maple [26].



If we consider that each iteration raise the degree of the polynomials in the system by a
power of 2, than after µ iterations, the degree of the polynomial would be 2µ in the coordinates
of P . In practice, the evaluation of the degree is more complex. The degree of hP,P (R) is 6 in
ZP . After 2 iterations, the degree of g2,P (R) will be at the most 6× 2 + 6 for ZP and 3 for the
coordinates of R. (The degree of g and f are the same, we choose to describe it for g for clarity.
The degree of f depends on the coordinates of Q+R.) For n iterations, n > 2, we can estimate
the degree of the polynomial with the formulas:

deg(n,ZP ) = 2× deg(n− 1, ZP ) + 6n−2 × 13

deg(n,R) = 2× deg(n− 1, R) + 1,

where deg(n,ZP ) represents the degree of the polynomial system after n iterations in the
unknown value ZP and deg(n,R) is the degree in the coordinates of R. The degree of the
polynomial for XP and YP is smaller than the degree for ZP .

The interesting question is how many iterations can we deal with? What would be the
maximum degree of the polynomial system that can be solved by Gröbner basis in a reasonable
time? We refer to [8] for more details on Gröbner basis.

Case 2: when the secret is the point Q. We consider that the secret is the point Q, we can
freely choose the point P , the randomness is the point R such that the pairings e(P +R,Q) and

e(R,Q) are defined. The device is implemented to compute e(P+R,Q)
e(R,Q) using a modified version

of the Miller algorithm. If the same counter is used to perform the computation it would be
modified once and used for both computations. If two counters are used, as in [34] we need two
faults to modify the counters. After that, the scheme of the attack is the same. Once we obtain

the intermediate results f ′m
g′m

(P,R,Q), for P public, R random and Q secret. The theoretical

expression of R, P +R and hT,T (Q) depending on the coordinates of P , R and Q combined with

the value of f ′m
g′m

(P,R,Q) will give a polynomial system in the unknown coordinates of R and Q.
This polynomial system would be solved using the Gröbner basis.
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6 Conclusion

In this paper we analysed the efficiency of the point blinding countermeasure in pairing based
cryptography considering fault attacks in Miller’s algorithm. We describe a theoretical fault at-
tack. We highlighted the fact that the point blinding countermeasure alone is not a protection in
the case of pairing based cryptography. Whenever the secret is the first or the second parameter,
a fault attack gives the coordinates of the secret.



In our opinion, we believe that the only way to provide a secure implementation of the pairing
relies on the discrete logarithm problem. The computation of e(P,Q), should be e([a]P, [b]Q),
with a and b integers such that ab ≡ 1 mod r. Of course, the computation of [a]P and [b]Q
should be secured.
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