
Compiler-based Countermeasure Against Fault Attacks

Thierno Barry, Damien Couroussé, Bruno Robisson

To cite this version:

Thierno Barry, Damien Couroussé, Bruno Robisson. Compiler-based Countermeasure Against
Fault Attacks. Workshop on Cryptographic Hardware and Embedded Systems, Sep 2015,
Saint-Malo, France. <http://www.chesworkshop.org/ches2015/>. <emse-01232664>

HAL Id: emse-01232664

https://hal-emse.ccsd.cnrs.fr/emse-01232664

Submitted on 23 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-EMSE

https://core.ac.uk/display/52616922?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal-emse.ccsd.cnrs.fr/emse-01232664

&

Compiler-based Countermeasure Against Fault Attacks

CONTEXT
The goal is to implement the instruction duplication technique as a countermeasure against Fault
Attacks on an ARM 32-bit Microcontroller[1,2]. Operating inside a compiler allowed us to reduce the
security overhead thanks to the flexibility and code transformations opportunities offered by compilers

Instruction
Selection

Clang

@__to_secure__(“fault”)
int foo(int a, int b){
 . . .
 return a * b + a;
}

Generation of 3-address instructions:

add r0, r1, r2
str r5, [r3, #4]

add r0, r1, r2
add r0, r1, r2
str r5, [r3, #4]
str r5, [r3, #4]

str r5, [r3, #4]
add r0, r1, r2
str r5, [r3, #4]
add r0, r1, r2

Before scheduling After scheduling

Duplication
Scheduling

Before duplication

WORKFLOW The user identifies the portions of the program to protect

Source
Code

LLVM
bytecode

Binary
Code

 Instructions cannot be duplicated at the middle-end due to the SSA form
entry:
 %mul = mul %a, %b
 %add = add %mul, %a
 ret %add

entry:
 %mul = mul %a, %b
 %mul2 = mul %a, %b
 %add = add %mul, %a
 %add2 = add %mul, %a

Unused and will be
removed by the Dead
Code Elimination pass

 We only select instructions that are suitable for duplication

+

* a

a b

multiply and accumulate: mla a, a, b is matched

we separately match: a mul followed by add

By default

1

2
Instead of generating add vreg1, vreg2

We generate add vreg3, vreg1, vreg2

When the liveness intervals (L) of registers are disjoint: {L(vreg3) } ∩ {L(vreg1) . L(vreg2)} = ∅

add r0, r0, r1

add r0, r1, r2
We introduce a constraint:

$𝑑𝑠𝑡 ≠ $𝑠𝑟𝑐 ≠

 Registers are allocated in favor of duplication

The register allocator tends to reduce register pressure: Reusing the allocated registers as soon as possible

By default

Instead

 Instructions are duplicated before scheduling

Attempted

duplication

LLVM bytecode

C source code

The user has a full control over parts of the code to protect

add vreg3, vreg1, vreg2

Register
Allocation

Instruction
Scheduling

Code
Emission

 Comparison with assembly approach

FUTURE WORK & REFERENCES

 Using code annotation for more flexibility when defining the code
regions to protect

 Automatic identification of the most vulnerable parts of the program

 compiler-based implementation of the masking countermeasure

[1] Barenghi et al. Countermeasures against fault attacks on software implemented AES

[2] Moro et al. Electromagnetic Fault Injection : Towards a Fault Model on a 32-bit Microcontroller

FUTURE WORK REFERENCES

LEGEND
Duplicable Not duplicable

 Instruction Transformation Duplication

Assembly

approach

add r0, r0, r2 mov rx, r0
add r0, rx, r2

mov rx, r0
mov rx, r0
add r0, rx, r2
add r0, rx, r2

Our

approach

add r0, r1, r2 add r0, r1, r2
add r0, r1, r2

X 4

X 2

M
id

d
le

-e
n

d

Fr
o

n
t-

en
d

B

ac
k-

en
d

Thierno Barry* Damien Couroussé* Bruno Robisson**
*Univ. Grenoble Alpes, F-38000 Grenoble, France

CEA, LIST, Minatec Campus, F-38054 Grenoble, France
**CEA-Tech DPACA, Gardanne, France

firstname.lastname@cea.fr

sources destination llc

AES 8-bit NIST on ARM Cortex-M3

Unprotected Protected Overhead

 8541 cycles 17311 cycles × 2.03

