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ABSTRACT 

The present study examines the influence of chemical composition and structure of guar gum 

derivatives on water retention capacity (WR) and rheological behavior of fresh state cement-

based mortars. The investigation was also completed by adsorption isotherms. For this, 

original guar gum, three HydroxyPropyl Guars (HPG) and two hydrophobically modified 

HPGs were selected. The effect of the molar substitution (MSHP) and of hydrophobic 

substitution (DSAC) was investigated. The results highlight that chemical composition of 

HPGs has a remarkable effect on fresh state properties of mortars. The original guar gum does 

not impact on neither WR nor rheological behavior. Increasing MSHP leads to an improvement 

of the WR and the stability of mortars while the hydrophobic units further enhance WR and 

lead to a decrease in the yield stress and an increase in the resistance to the flow of admixed 

mortars. 

 

Keywords: Admixture; Rheology; Water retention; Polysaccharide; Mortar; Guar derivatives. 

 

HIGHLIGHTS 

 The influence of chemical composition and structure of guar gum derivatives on water 

retention capacity and rheological behavior of fresh mortars is examined. 

 The effect of the molar substitution (MSHP) and the degree of substitution of 

hydrophobic units (DSAC) was investigated. 

 Increasing MSHP leads to an improvement of the WR and the stability of mortars while 

the presence of alkyl chains promotes the WR and increases the resistance to the flow 

of admixed mortars. 
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1. Introduction 

Modern factory-made mortars are complex materials, in which several kinds of admixtures 

are added in order to obtain specific properties, from the fresh state to the hardened material. 

Indeed, since many years, concretes, mortars or cement grouts with high fluidity have been 

developed, since their use implies many economical and technical advantages. However, the 

use of highly flowable mixtures may lead to segregation or excessive bleeding and 

subsequently, durability issues. In order to overcome this problem by enhancing the 

sedimentation resistance while maintaining high fluidity, viscosity-enhancing admixtures 

(VEA) are frequently introduced within the formulation [14]. Among these admixtures, 

natural polysaccharides or their derivatives (such as welan gum, starch derivatives or cellulose 

ethers) are the most widely used. The incorporation of these VEAs in shotcrete or render 

mortar is useful to ensure sagging resistance for thick application on vertical support, and to 

allow sufficient fluidity for normal pumpability by supplying shear thinning rheological 

behavior [5]. Indeed, these admixtures provide, generally, high yield stress and apparent 

viscosity at low shear rate but low resistance to flow at high shear rate [6]. However, their 

mode of action is not fully understood, since results are sometimes contradictory and strongly 

dependent of the kind of binder, the polysaccharide nature and the molecular parameters of 

the admixture (such as molecular weight, nature and content of substitution groups) [7,8-15].  

Water retention (WR) is another essential property of monolayer render at fresh state. Indeed, 

high water retention improves the cement hydration and limits the absorption of the mixing 

water by a substrate and thus provides good mechanical and adhesive properties to the mortar 

[16,17]. Among admixtures enhancing water retention capacity of the freshly-mixed mortars, 

cellulose ethers (CE) are the most widely used [11]. As in the case of the rheological 
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properties, it appears that polymer molecular parameters, such as nature and content of 

substitution groups, and molecular weight, have a significant influence on WR [11,18]. The 

results demonstrated that the WR is strongly improved by the increase in the molecular 

weight of HydroxyEthylMethylCellulose (HEMC), HydroxyPropylMethylCellulose (HPMC) 

and HydroxyEthylCellulose (HEC). On the contrary, the molar substitution seems to have a 

lower impact on the water retention of admixed mortars. Nevertheless, the water retention is 

improved for low molar substitutions of the CE. 

Despite a wide use of CE, HydroxyPropyl Guar (HPG) are now also well-established in the 

construction industry as water retention agents, as anti-sagging agents and rheology modifiers 

for mortars [1923]. Moreover, HPGs are already widely used in various industrial fields, 

such as textile printing, hydraulic fracturing process, oil production or paper manufacturing, 

due to their thickening effect [24,25]. Consequently, since HPGs improve the two main 

properties of mortar, they appear as suitable admixtures to be used in render formulation. 

However, the study of their impact on mortars is still low, since Plank presented these natural 

polysaccharides as new promising class of water retaining agents in building materials [26]. 

Poinot et al. studied the impact of HPGs on WR and rheological properties of cement-based 

mortars [21,22]. However, since the main objective of the research was to elucidate the WR 

mechanism involved by CEs and HPGs, the formulation did not correspond to an industrially-

used standard mixture. Indeed, high Liquid-to-Solid ratio and consequently high admixture 

dosages were used to be discriminant with respect to WR. Cappellari et al. also studied the 

effect of HPG and CE on WR and rheological properties of mortars [23]. However, the 

influence of the molecular parameters could not be studied since the only one commercial 

HPG was tested on a lime-based mortar. 
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The aim of this study is to provide an understanding of the effect of chemical composition and 

structure of HPGs and its dosage on macroscopic properties of mortars. For this purpose, an 

original guar gum and five HPGs with specific chemical modifications, such as increase in 

MSHP or substitutions by hydrophobic units, were selected. The impact of admixtures on the 

water retention capacity and on the rheological behavior of mortars was investigated. 

2. Materials and methods 

2.1. Mineral products 

Mineral products used in this study consist of Portland-composite cement (Holcim), lime 

(Holcim), calcium carbonate (Calcitec V60, Mineraria Sacilese S.p.A.) and two dolomites 

(Bombardieri noted Dolomite 1 and Leidi 0.1-0.4mm noted Dolomite 2). The mineral 

composition of the commercial Portland-limestone cement used, CEM II/B-LL 32.5 R 

according to the European standard EN 197-1 [27], is given in Table 1. 

Table 1. Mineral composition (%, weight) of the investigated cement determined by XRF and 

XRD-Rietveld refinement. 

Chemical composition (% wt)  Phase composition (% wt) 

Oxides XRF Oxides XRF  Phases XRD 

(Rietveld) 

Phases XRD 

(Rietveld) 

CaO 57.87 SO3 3.95  C3S 54.3 Calcite 28.9 

SiO2 12.31 Na2O 0.50  C2S 3.5 Gypsum 3.0 

Al2O3 2.63 K2O 0.83  C3A 4.7 Quartz 0.9 

MgO 1.19 TiO2 0.16  C4AF 4.6 Free CaO 0.8 

Fe2O3 2.03 LOI 13.7      

 

The phase composition was determined by Rietveld refinement method after XRD analysis 

(D5000, Siemens) and the oxide composition was quantified by means of X-ray fluorescence 

spectroscopy. The particle sizes were determined by means of laser diffractometry with dry 
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powder disperser (Mastersizer 2000, Malvern). The median particle diameters by volume 

(d50%) are 630 µm, 300 µm, 20 µm, 15 µm and 5 µm for the Dolomite 1, Dolomite 2, calcium 

carbonate, cement and lime, respectively. The particle size distribution and the specific 

surface area (determined by BET) are given in Fig. 1 and Table 2. 

Table 2. Median particle diameters (d50) and specific surface area of the mineral phases. 

 CEM II/B-LL Lime Dolomite 1 Dolomite 2 Calcite 

d50 (µm) 15 5 630 300 20 

BET specific 

surface area 

(m2/g) 

2.40 5,67 0.34 0.43 1.44 

 

Fig. 1. Particle size distribution of raw materials constituting the mortar. 

2.2. Organic admixtures 

Guar gum is a high molecular weight, hydrophilic, non-ionic natural polysaccharide extracted 

from the endospermic seed of Cyamopsis tetragonolobus. Guar gum belongs to the large 

family of galactomannans and consists in a β(14)-linked D-mannopyranose backbone with 

random branchpoints of galactose via an α(16) linkage (Fig. 2 (a)). Hydroxypropyl guars 

(HPGs) are obtained from the original guar gum via an irreversible nucleophilic substitution, 

using propylene oxide in the presence of an alkaline catalyst (Fig. 2(b)). The manufacture of 

HPGs has the advantage of having a more reduced impact on the environment than cellulose 

derivatives. Indeed, guar gum is extracted by simple thermo-mechanical process, exhibits a 

higher chemical reactivity and is soluble in cold water thanks to its branched-chain structure 
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with a lot of hydroxyl groups. Thus, the chemical modification of the original guar gum 

requires normal reaction conditions of temperature and pressure, does not generate large 

quantity of by-products, and requires minimal purification procedure [19].  

(a)  (b)  

Fig. 2. Molecular structure of original guar gum (GG) (a) and HydroxyPropyl Guar (b). 

In this paper, five HPGs and one original guar gum provided by Lamberti S.p.A were studied. 

They exhibit roughly the same molecular weight, around 2.10
6
g.mol

-1
 since they are all from 

the same original guar gum (GG) [28].  

Table 3. Qualitative description of the HPG used. 

 MSHP 
Additional 

substitution 
DSAC 

GG - - - 

HPG 1 Low - - 

HPG 2 Medium - - 

HPG 3 High - - 

HPG 4 High Short alkyl chain  

HPG 5 High Short alkyl chain Higher DS than HPG 4 

 

Table 3 provides a qualitative description of the polymers used. The qualitative substitution 

degrees are provided by the manufacturers. The molar substitution ratio (MSHP) represents the 

number of hydroxypropyl units per hexose unit (mannose or galactose), which is, according to 

the manufacturer, less than 3 for the investigated HPGs. The degree of substitution (DSAC) 

represents the amount of alkyl chain per hexose unit. As in the case of the MS, the DSAC is 

less than 3 for the investigated HPGs. The only difference between HPGs 1, 2 and 3 is the 
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molar substitution ratio, which increases from HPG 1 to HPG 3, while HPGs 4 and 5 exhibit 

an additional substitution (short alkyl chains) compared to HPG 3. The DSAC of HPG 5 is 

higher than that of HPG 4. 

2.3. Preparation of fresh mortars 

Mortars were prepared according to the following mixture proportions: 12 wt.% of cement, 3 

wt.% of lime, 18 wt.% of calcium carbonate, 43 wt.% of dolomite Bombardieri and 24 wt.% 

of dolomite Leidi. The admixtures were dry blended with the binders and fillers, and the 

dosages were expressed in percent by weight of solid (% bwos). The polymer dosages used 

for the study are summarized in Table 4. 

Table 4. Polymer dosages used in the mortar formulations. x corresponds to the dosages 

tested for the Water Retention and adsorption measurements, o corresponds to the dosages 

used for the rheological measurements. 

 
Dosage (%bwos) 

0.03 0.05 0.06 0.075 0.1 0.125 0.15 0.175 0.2 

HPG 1  x/o  x/o x/o x/o x/o x x 

HPG 2  x/o  x/o x/o x/o x/o   

HPG 3  x/o x x/o x/o x/o x/o   

HPG 4 x x/o x x/o x/o x/o x/o   

HPG 5 x x/o x x/o x/o x/o x/o   

GG  x/o   x/o x/o x/o  x 

 

The dry mixture was blended in a shaker (Turbula, Wab) for 10 min. Deionized water was 

added in order to obtain a liquid-to-solid ratio L/S = 0.22. The mixing was made in mixer 

(MIx40, CAD Instruments), in accordance to EN 196-1 [29]. The experimental strategy 

consisted in dividing the freshly mixed mortar into three parts in order to characterize several 

properties from the same mixing. A first part was used to study the rheological behavior of 
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the mortar, the water retention measurements were performed on the second part and the third 

part of the freshly mixed mortar was centrifuged in order to determine the adsorption 

isotherms and the polymer concentration within the pore solution following a procedure 

described later. 

All tests were carried out, at least, in triplicate and at a controlled temperature since water 

retention, rheological behavior of the mortar and adsorption isotherm are temperature-

dependent. A control test was also performed with a mortar without admixture. 

2.4. Water retention measurements 

The water retention capacity of freshly-mixed mortar was assessed using the standard method 

described in ASTM C1506-09 [30]. The test had to be performed 15 min after mixing to 

measure the water loss of a mortar under vacuum. The standardized apparatus was submitted 

to a vacuum of 50 mm of mercury (6.6 10
3
 Pa) for 15 min. Then, the water retention capacity, 

WR, was calculated using the following equation:  

010 /100)((%) WWWWR                          (1) 

where W0 represents the initial mass of mixing water; W1 is the loss of water mass after 

suction. 

All the experiments were carried out at 23 °C. Three classes of water retention (measured by 

ASTM method) of a fresh mortar can be specified according to the DTU 26.1 [31]. The first 

class (low water retention category) contains mortars that exhibit a water retention lower than 

86%. The second class (intermediate) corresponds to values ranging from 86% to 94%. The 

last one (strong) is defined by water retention higher than 94%, corresponding to the required 

values in the field of rendering application.  
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2.5. Rheological behavior 

The rheological measurements were performed with a Rheometer MCR 302 (Anton-Paar), 

thermostated at 20 °C. The rheological properties of fresh mortars were investigated with 

vane-cylinder geometry since this system is suitable for granular pastes like mortars [13,32]. 

The gap thickness, distance between the periphery of the vane tool and the outer cylinder, was 

set at 8.5 mm, in order to be less sensitive to the heterogeneity of the mortar. Using a Couette 

analogy, the shear stress and shear rate were calculated from the torque and the applied 

rotational velocity respectively, after calibration with glycerol [33]. The mortar was 

introduced into the measurement system at the end of the mixing cycle and was then held at 

rest. At 10 min, the mortar was pre-sheared for 30 s at 100 s
-1

 in order to re-homogenize the 

sample and to eliminate its shear history because of potential thixotropic character of 

cementitious materials [34,35]. After a period of rest of 5 min, the rheological measurements 

were started. The imposed shear rate was 16 decreasing steps from 300 to 0.06 s
-1

. The 

measuring time was adjusted for each shear rate, in order to obtain a steady state. The samples 

were systematically submitted to high shear rate (100 s
-1

) for 30 s before each imposed shear 

rate in order to resuspend particles of mortar within the mortar mixtures.  

The shear stress () was expressed as a function of the shear rate ( ) and the Herschel-Bulkley 

(HB) model was applied to fit the experimental data and used to describe mortars rheological 

behavior [36]:  

nK  0                 (2) 

where 0 corresponds to the yield stress, K the consistency coefficient and n the fluidity index 

which characterizes shear-thinning behavior of  mortar.  
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2.6. Adsorption curves of HPGs on binder 

The adsorption isotherms were determined using the depletion method. The non-adsorbed 

polymer remaining within the pore solution was quantified by means of Total Organic Carbon 

(TOC) measurements. Prior to the analysis, the pore solution was extracted from the mortar 

by means of two centrifugation steps, 15 min after contact between binder and water. The first 

step consisted in the centrifugation of around 150 g of mortar at 5000 rpm for 5 min. The 

supernatant was, afterward, centrifuged again at 14500 rpm for 10 min in order to avoid the 

presence of mineral particles within the solution. The supernatant was diluted with 

hydrochloric acid solution at 0.1 mol.L
-1

. The TOC was determined by combustion at 850 °C 

with a Vario-TOC Cube (Elementar). The adsorbed amount of polysaccharides was calculated 

from the difference of TOC content of the HPG reference solution and the TOC content of the 

supernatant.  

2.7. Hydrodynamic radius measurement using dynamic light scattering 

The dynamic light scattering (DLS) measurements were performed using a Zetasizer Nano ZS 

(Malvern Instrument). The wavelength of the incident light was 633 nm and the scattered light 

was detected at 173°. The admixtures were dissolved in lime solution (20 mM) during 24 h 

under magnetic stirring. The concentration in polymer was fixed to 0.2 g.L
-1

. The solutions 

were filtered through a 0.45µm filter in order to remove dust before testing. 

2.8. Dissolution kinetics of the admixture after the mixing 

The dissolution process of the admixtures was monitored by TOC measurements. However, 

all the solid phases were substituted by normalized sand [29]. This avoids evolution of the 

system due to the hydration process, it limits potential adsorption of polymer on cement 

phases [37] and size distribution of the mineral phases is close to that of the binder. The 
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admixture was first added to the sand and the dry mixture was blended in a shaker (Turbula, 

Wab) for 10 min. The amount of polymer was the same as for a dosage of 0.05% bwos in 

mortars. Then, a 20 mM lime solution was added in order to keep high pH and to replace the 

pore solution (simplified model). The liquid-to-solid ratio was maintained at 0.22 (similar 

than mortars). Finally the mixture was mixed for 4 min according to EN 196-1 standard [29]. 

At 5, 15 and 30 min (i.e. 1, 11 and 26 min after the end of the mixing, respectively), a part of 

the mixture was centrifuged and the amount of polymer was determined by TOC 

measurements with same experimental procedure than in the case of the adsorption 

quantification. 

3. Experimental Results 

3.1. Impact of HPGs on the water retention property of fresh mortars 

Fig. 3 represents the evolution of the water retention capacity of fresh admixed mortars, 

according to the polymer dosage. The non-admixed mortar exhibits a low water retention 

capacity of about 71.9% ± 0.7%. Then, the water retention increases with the use of HPGs 

and with increasing polymer dosage [21,23], until reaching a plateau with very high WR 

values (>98%). In the range of polymer dosage studied, the WR values reached for HPG 1 to 

HPG 5, are greater than 94% and therefore belong to the strong WR class. However, 

according to the admixture, this WR value is reached for different admixture dosages. Indeed, 

HPG 1 is able to provide a strong WR to the mortar for dosages ranging between 0.175 and 

0.2% bwos, corresponding approximately to twice and three times the required dosage with 

HPG 3 and HPGs 4 and 5, respectively. One can also clearly notice the very limited impact of 

the original guar gum regardless of the dosage tested, since the WR provided by the gum is 

lower than 75% and is very close to that of the non-admixed mortar (≈72%). These results 
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suggest that the substitution of the hydroxyl units from original guar gum by hydroxypropyl 

units allows us to increase the WR of mortars. Furthermore, the increase in the MSHP (from 

HPG 1 to HPG 3) improves the WR capacity of mortar, since HPG 3 provides the higher WR 

despite lower dosage, followed by HPG 2 and then by HPG 1. These results are consistent 

with those obtained by Poinot et al. [21]. 

 

Fig. 3. Impact of polymer dosage on water retention capacity of fresh admixed mortars. 

The results highlight also the positive impact of additional alkyl chain on WR of mortars. 

Indeed, the water retention is strongly improved by the use of hydrophobically modified 

HPGs (HPG 4 and HPG 5) compared to HPG 3, even at low dosages. In the range of the 

dosage studied, the highest WR were obtained with these both hydrophobically modified 

HPGs and the strong WR class was reached for the lowest polymer dosages.  

Moreover, as far as the shape of WR curves is concerned, an abrupt change in slope can be 

noticed for mortars admixed with HPG 1 to HPG 5. The origin of this point will be discussed 

later. The change in slope occurs for a decreasing polymer dosage from HPG 1 to HPG 3 and 

from HPG 3 to HPG 4 and HPG 5.  

3.2. Adsorption curves of HPGs on binder 

From the TOC measurements, the polymer concentration within the extracted pore solution 

was determined. Fig. 4 shows the evolution of this concentration as a function of the polymer 

70

75

80

85

90

95

100

0.00% 0.05% 0.10% 0.15% 0.20%

W
R

 (
%

)

Polymer dosage (% bwos)

HPG 1

HPG 2

HPG 3

HPG 4

HPG 5

GG

Strong 
WR

Low 
WR

Medium 
WR



Construction and Building Materials 122 (2016) 772–780 

 14 

 

 

 

dosage introduced. Excepted the original guar gum (GG), the amount of non-adsorbed 

polymer increases with increasing polymer dosage. The concentration of the GG within the 

pore solution is the lowest of all the tested admixtures and corresponds to less than 1.5% of 

the introduced dosage. The case of GG will be discussed later (section 4). The presence of 

hydroxypropyl substitutions on the guar leads to an increase in the polymer concentration 

since the amount of GG within the pore solution is around 24 and 43 times lower than HPG 1 

and HPG 3, respectively. According to the admixture, the concentration rises following this 

order: GG < HPG 1 < HPG 2 < HPG 5 < HPG 4 < HPG 3.  

 

Fig. 4. Concentration of HPGs and original guar gum (GG) within the extracted mortar pore 

solution, expressed as function of the introduced polymer dosage. 

In order to check if the non-adsorbed polymer coils were not trapped into the porosity of the 

fresh mortar during extraction of the pore solution, adsorption measurements were carried out 

with a very large excess of water (L/S = 2). In these conditions, due to the large excess of 

water, the admixture is not trapped into the porosity of the paste. Consequently, the amount of 

missing polymer can be ascribed to its adsorption onto the surface of solid particles. The 

concentration in admixture was determined by TOC measurements using the protocol 

described in section 2.6. This protocol was applied to HPG 1 and HPG 4, with a dosage fixed 

at 0.1% bwos. For HPG 1, the amount of retained polymer was equal to 0.69 mg/g and 0.70 

mg/g for the L/S ratio of 0.22 and 2, respectively. For the same L/S ratios, the amounts of 
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HPG 4 retained were equal to 0.51 mg/g (L/S=0.22) and 0.45 mg/g (L/S=2). This results show 

that whatever the liquid-to-solid ratios tested (0.22 or 2), the amount of missing polymer is 

quite similar, confirming that hydroxypropyl guars are mainly adsorbed onto the surface of 

solid particles rather than entrapped into the porosity of the paste. The results are consistent 

with the large amount of polar groups on HPGs, such as hydroxyl groups, leading to 

interactions between the admixtures and the polar cement phases [38, 39]. 

Fig. 5 shows the adsorption isotherms of the admixtures on Portland based-mortars, as a 

function of the real polymer concentration in the pore solution (data extracted from Fig. 4).  

 

Fig. 5. Adsorption isotherms of HPG 1 to HPG 3 (a), and HPG 3 to HPG 5 (b) on binder, 

expressed as function of the polymer concentration in the pore solution obtained from TOC 

measurements. The data were fitted with Langmuir equation excepted the original guar gum. 

Excepted GG, the experimental data were successfully fitted using a Langmuir model. In the 

range of polymer dosage tested in this study, no plateau was reached whatever the HPG. This 

suggests that either all the sites were not occupied or no equilibrium between adsorption and 

desorption reactions was achieved [40]. However, the strict linearity seems to be overcome 

(reduction in slopes), meaning that the amount of available adsorption sites starts to decrease. 

The increase in hydroxypropyl substitutions on the guar (increasing MSHP) leads to a decrease 

in the adsorption of the admixture onto the solid surfaces. Indeed, the adsorption is reduced, 

respectively, by 18% and 45% for HPG 2 and HPG 3, with respect to HPG 1 (Fig. 5(a)). This 
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tendency is consistent with previous studies conducted on HPGs and cellulose ethers (CE) in 

cementitious materials [15,20].  

Fig. 5(b) highlights the effect of the additional alkyl chain on the adsorption. It appears that 

the hydrophobic side chains slightly intensify the adsorption of the hydrophobically modified 

HPGs onto the surface of grains with respect to HPG 3. However, the adsorption of HPG 4 

and HPG 5 is still lower than that of HPG 2. The effect of the DSAC appears as negligible 

since the experimental data from HPG 4 and HPG 5 are superimposed. 

3.3. Impact of HPGs on the rheological properties of fresh mortars 

Prior to rheological measurements, the thixotropy of the mortars was evaluated. The results 

(not shown here) suggest that thixotropy does not affect the rheological measurements. 

Indeed, in the range of tested shear rates and thanks to the experimental procedure, the shear 

stress obtained by the increasing or decreasing shear rate ramps are superimposed which 

justifies the choice to consider only the decreasing ramps for all the rheological study.  

Fig. 6 shows the evolution of the yield stress, extracted from Herschel-Bulkley model, for all 

the studied mortars with and without admixture. The mortar without admixture exhibits a 

yield stress value of around 45 Pa. From the presented results, three different classes of HPG, 

inducing different evolutions of the yield stress with the polymer dosage, can be highlighted 

for admixed mortars. The first category is only composed of the original guar gum (GG), 

which induces a low and quasi linear decrease in the yield stress of mortar when admixture 

dosage increases. On the contrary, HPGs 1, 2 and 3 lead to a continuous rise of the yield 

stress of mortars from 5060 Pa to around 120 Pa with the increase in the HPG dosage from 

0.05% to 0.15%. Finally, HPG 4 and HPG 5 constitute the third class of admixture. The use of 

these admixtures leads to an improvement of the yield stress compared to the non-admixed 
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mortar, whatever the dosages tested in the study. However, the improvement is not 

proportional to the admixture dosage. Indeed, our first dosage (0.05% bwos) leads to an 

increase in the yield stress. Beyond this dosage, increasing the dosage provides a low decrease 

in the yield stress, before reaching a plateau. The value of the yield stress reached on the 

plateau (≈60 MPa) is still higher than that of the mortar without admixture. 

 

Fig. 6. Impact of polymer dosage on yield stress of fresh admixed mortars (HPG 1 to HPG 3 

and original guar gum (GG) (a) and HPG 3 to HPG 5 (b)). 

The evolution of the consistency coefficient (K from Herschel-Bulkley equation) during the 

increase of polymer dosage is presented Fig. 7.  

 

Fig. 7. Impact of polymer dosage on consistency coefficient of fresh admixed mortars (HPG 1 

to HPG 3 and original guar gum (GG) (a) and HPG 3 to HPG 5 (b)). 

As in the case of the yield stress, the results suggest that the admixtures can be divided into 
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compared to non-admixed mortar. HPG 1 to HPG 3, constituting the second group, induce 

first an increase followed by a plateau in the consistency coefficient (≈5 Pa.s
n
). Finally, HPG 

4 and HPG 5 lead to a continuous increase, up to 22 Pa.s
n
, in the consistency coefficient of 

admixed mortars. 

Fig. 8 shows the evolution of the fluidity index (n) versus the polymer dosage for all the 

studied mortars.  

 

Fig. 8. Impact of polymer dosage on fluidity index of fresh admixed mortars (HPG 1 to HPG 

3 and original guar gum (GG) (a) and HPG 3 to HPG 5 (b)). 

Whatever the mortars (non-admixed and admixed), the values of the fluidity index are lower 

than 1, meaning that they are all shear thinning. Due to the high standard deviation, the value 

of the fluidity index of mortars admixed with HPG 1 to HPG 3 and GG seem to be unchanged 

as the dosage of HPGs increase. However, HPGs 4 and HPG 5 leads to a low increase 

followed by a continuous decrease in the fluidity index until reaching values around 0.5. It 

means that the shear thinning behavior of mortars becomes more and more pronounced. 

3.4. Hydrodynamic radius measurements using dynamic light scattering 

The hydrodynamic radii of the original guar gum (GG) and three HPGs (1, 3 and 4) were 

determined in lime solution (20mM) (Fig. 9).  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.00% 0.05% 0.10% 0.15%

n

Polymer dosage (% bwos)

HPG 1

HPG 2

HPG 3

GG

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.00% 0.05% 0.10% 0.15%

n

Polymer dosage (% bwos)

HPG 3

HPG 4

HPG 5

(b)



Construction and Building Materials 122 (2016) 772–780 

 19 

 

 

 

 

Fig. 9. Hydrodynamic radius of HPGs 1, 3, 4 and original guar gum (GG) in lime solution (20 

mM), (polymer concentration was fixed at 0.2 g.L
-1

). 

Guar gum exhibits a radius of 138  5 nm. The hydrodynamic radius decreases when 
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GG is close to 1.5% of the initial amount of polymer, very few molecules are in the pore 

solution. The composition of pore solution is thus very close to that of the non-admixed 

mortar, leading to similar WR. Indeed, WR is governed by the ability of the admixture to 

form aggregates and to plug the porous network of a thin polysaccharide-enriched filter cake 

[21], which can be, as first approximation, linked to the concentration. 

Two assumptions were proposed to explain the very low content of the original guar gum in 

the pore solution: either the polymer is adsorbed onto the solid particles and/or trapped during 

hydration process [43]; or the dissolution of admixtures during the mixing is low. In order to 

answer, the dissolution kinetics of GG and HPGs 1, 3 and 4 were monitored in a simplified 

system composed only of normalized sand, admixture and lime solution (20 mM).  

 

Fig. 10. Dissolution kinetics of HPGs 1, 3 and 4, and original guar gum (GG) at 5, 15 and 30 

minutes after the beginning of mixing with sand, in Dry mix (a) and after a pre-dissolution of 

the admixtures for 24h in lime solution (20 mM) (b). 
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(Fig. 10(a)). Indeed, the data obtained for HPGs 1, 3 and 4 are superimposed. Moreover, more 
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during the first 30 min. These results suggest that GG was not trapped during the hydration 

process and/or adsorbed onto the surface of the cement.  

In order to confirm the second hypothesis proposed (low dissolution of the original guar 

gum), the same experiments were conducted after a pre-dissolution of the admixtures. The 

admixture was added to the lime solution and stirred for 24h prior its use. In these conditions, 

the polymer was totally dissolved in the solution before being introduced in the mixer.  

The results show that the amount of HPGs 1, 3 and 4 detected in the solution after mixing 

with sand, is very slightly increased compared to dry-mixing experiments, confirming the fast 

dissolution of these admixtures (Fig. 10(b)). However, since the amount of polymer is not 

equal to 100% of the introduced amount, the adsorption onto surface of sand seems to occur 

(about 15%). Contrary, the amounts of GG in the solution strongly increase since they reach 

values between 60% and 70% of the introduced amount of polymer, validating the slow 

dissolution kinetics in the dry mix. However, the original guar gum is strongly adsorbed onto 

sand surfaces since more than 30% of the initial amount of polymer is still missing. This 

result is in accordance with the adsorption of guar gum onto quartz previously shown by Ma 

and Pawlik [44]. 

Concerning the hydroxypropyl guar, the results of WR experiments are consistent with those 

of previous studies performed with HPGs or CEs and with the proposed mechanism 

[21,45,46]. Indeed, the WR of admixed mortars is mainly governed by the ability of 

polysaccharidic admixtures to form a hydrocolloidal associated polymer molecules network 

and to induce overlapping of polymer coils within the pore solution [21,45,46]. When the 

concentration of polymer increases in solution, the isolated polymer coils, existing at low 

polymer concentration, begin to come into contact with one another. This concentration is 

defined as the coil-overlap concentration (noted C*). Above this critical concentration, the 
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polysaccharide aggregates stop the water flow by plugging the porous network of a thin 

polysaccharide-enriched filter cake at the interface mortar-substrate resulting in a sudden and 

sharp rise in WR curves [21]. As previously mentioned, the abrupt change in slope is reached 

for a decreasing polymer dosage from HPG 1 to HPG 3. The only difference between these 

HPGs is the increasing substitution degree. According to literature, the increase in MSHP does 

not lead to a change in the C* [47]. However, the increasing substitution degree leads to a 

decrease in adsorption of polymer (Fig. 5) and hence to a rise in polymer concentration in the 

pore solution (Fig. 4). Consequently, the coil overlapping occurs at lower dosage. The results 

highlight furthermore the positive impact of additional alkyl chain on WR.  

The presence of additional alkyl chains (HPG 4 and HPG 5), despite a slight rise in adsorption 

compared to HPG 3, leads to the formation of polymer aggregates at lower polymer dosage. 

Indeed, the interconnection between alkyl chains creates intramolecular and intermolecular 

interactions through specific hydrophobic interactions which cause a decrease in the coil-

overlapping concentration [41,42,48]. Consequently, the abrupt change in slope is reached for 

HPG 4 and HPG 5 at lower polymer dosage than HPG 3. However, an increase in the DSAC 

(from HPG 4 to HPG 5) can lead to a conversion of some intermolecular associations to 

intramolecular associations and hence an increase in the polymer dosage necessary to reach 

coil overlap [47]. 

The rheological results (Fig. 6, Fig. 7 and Fig. 8) highlight that HPG 1 to HPG 3, HPG 4 to 

HPG 5 and GG behave quite differently. Indeed, HPGs 1, 2 and 3 lead to a continuous 

increase in the yield stress, while HPG 4 and HPG 5 modify mainly the consistency 

coefficient and the fluidity index. This means that HPG 1 to HPG 3 increase the stability of 

mortars while HPG 4 and HPG 5 increase the resistance to the flow of admixed mortars.  
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HPG 1 to HPG 3 affect the rheological behavior of the admixed mortars in the same way, i.e. 

an increase in the yield stress, a low increase followed by a plateau in the consistency 

coefficient and a negligible modification of the fluidity index when the polymer dosage rises. 

These results are in agreement with several papers reporting that an increase in VEA dosage 

leads to a rise in the yield stress [2,4,14]. However, Poinot et al., using the same type of 

HPGs, observed a decrease in the yield stress when the admixture dosage increases [22]. The 

different rheological behavior may be explained by the different mineral composition and the 

higher L/S ratio (0.3) of the mortars which are known to strongly affect the rheological 

properties [7]. 

Fig. 5 shows that HPGs adsorb onto particles constituting the mortar. Prima facie, this 

adsorption could be responsible for the increase in the yield stress because of bridging 

flocculation [6,15,49]. The bridging was highlighted thanks to rheological measurements, by 

applying to the mortar (non-admixed and admixed with 0.1% of HPG 3 and HPG 4) a 

constant shear rate of 0.05s
-1

 during 180s. This was performed after the pre-sheared step and 

the period of rest previously described in the section 2.5. The rheometer, the mobile and the 

cell were also the same. Fig. 11 shows the shear stress as a function of shear strain, for non-

admixed mortar and for mortar admixed with HPG 3 and HPG 4.  

 

Fig. 11. Flow onset measurements for the non-admixed mortar and for mortars containing 

0.1% of HPG 3 and 4. 
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A stress peak can be noticed, corresponding to “static yield stress. This stress is characteristic 

of the strength of the percolated network of cement particles [15,35] and linked to a critical 

strain necessary to initiate the flow. It appears clearly that HPG 3 strongly increases the yield 

stress, which is consistent with the results shown in Fig. 6(a). The critical strain linked to this 

yield stress also increases until reaching a couple of 100%. Brumaud et al. published similar 

results by studying cellulose ethers [15]. According to the authors, the increase in the critical 

strain is the result of the partial stretch of polymer chains beforehand adsorbed onto two 

cement particles (corresponding to bridging flocculation). This theory is compatible with the 

polymer chain length of our HPGs which can be estimated between 5 and 10 µm (thanks to 

Rh, Mw and DP). However, despite a strong drop of the adsorption (45%) with the increase in 

the MSHP from HPG 1 to HPG 3, the yield stress also increases. This suggests that the non-

adsorbed polymer may be responsible for the yield stress increase. The potential loss of 

bridging can be compensated by an increase in the pore solution viscosity (not shown here but 

already demonstrated in [22]) induced by the rise in the polymer concentration (Fig. 4) and/or 

by the depletion flocculation induced by the non-adsorbed coils [50]. 

Moreover, the presence of HPG coils within the pore solution leads to an increase in the 

consistency coefficient (K) compared to non-admixed mortars. However, the expected 

increase in K due to the rise of pore solution viscosity with the polymer dosage may be 

compensated by steric hindrance, leading to a plateau for K.  

The rheological behavior of the admixed mortar with GG is very close to that of the non-

admixed mortar. This result is consistent with the very low amount of polymer dissolved due 

to the low dissolution kinetics. However, when the admixture dosage increases, the amount of 

polymer molecules available and the adsorption onto solid surfaces also increases. This can 

lead to an increase in the steric hindrance and in the dispersion and lubrication effects, leading 
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to a low but continuous decrease in the yield stress. For dosages higher than 0.1% bwos, the 

concentration in polymer coils into the pore solution begins to slightly increase (Fig. 4), 

leading to the beginning of the increase in the consistency coefficient and of the decrease in 

the fluidity index. 

The additional alkyl chain also modifies the rheological properties of mortars. Contrary to 

HPG 3, hydrophobically modified HPGs (HPG 4 and HPG 5) lead to a strong and continuous 

increase in the consistency coefficient and a decrease in the fluidity index. These results 

highlight that mortars become more and more shear-thinning since the fluidity index 

decreases from 0.8 to 0.5. This rheological behavior gets more pronounced as the HPG dosage 

increases. These results are consistent with the rise of hydrodynamic radius and the promotion 

of the entanglement induced by the additional alkyl chains leading to the overlapping of 

polymer coils at lower dosage (0.05% in this study). The enhancement of entanglement by 

additional alkyl chains was already established in a previous paper [21]. Above this dosage, 

entanglement of polymer coils induces a shear thinning behavior to the solution. The shear 

thinning behavior of the solution, and thus of the mortars, amplify with the increasing 

polymer dosage.  

The yield stress is also impacted by the additional alkyl chain. Indeed, 0, of mortar admixed 

with HPG 4 and HPG 5, increases for a dosage equal to 0.05% bwos then slowly decreases 

for dosages ranging from 0.05% to 0.075% bwos, before reaching a plateau for higher 

dosages (0 reached is still slightly higher than that of the non-admixed mortar). This trend 

could be the result of antagonist effects such as the increase in pore solution viscosity with the 

dosage (not shown here but already demonstrated in [22]), which should promote the yield 

stress, and the increase both in adsorption onto the surface of particles (Fig. 5(b)) and in 

hydrodynamic radius (Fig. 9). The two last phenomenon lead to steric hindrance which 
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implies a prevention of direct contacts between particles. Moreover, Fig. 11 shows that the 

static yield stress is reduced by HPG 4 in comparison to HPG 3, confirming the results of Fig. 

6(b). This, also, confirms the reduction of the bridging ability of hydrophobically modified 

HPGs since the critical strain decreases. All these points could lead to a decrease in the yield 

stress.    

5. Conclusions 

This study was dedicated to the effect of several guar gum derivatives on water retention 

property and rheological behavior of mortars. Based upon the results, it was found that the 

original guar gum was very weakly dissolved, leading to a negligible modification of WR and 

rheological behavior with respect to the non-admixed mortar. Depending of the chemical 

structure of HPGs, it is possible to promote the water retention according to two different 

ways. First, by increasing the MSHP of HPGs, the amount of adsorbed polymer drops, which 

leads to an increase in the HPG concentration within the pore solution and therefore to lower 

HPG dosage necessary to reach coil overlapping. Second, by enhancing overlapping, the 

hydrophobically modified HPGs improve the effectiveness of WR agent at low dosage. HPGs 

also modify the rheological behavior of the mortars. As in the case of WR, the hydrophobic 

characteristic of HPGs is the preponderant parameter. Indeed, it was shown that additional 

alkyl chain mainly leads to a more shear thinning behavior of the mortar and to a rise in the 

consistency coefficient, while classical HPGs strongly increases the yield stress.  
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