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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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Inverse problems in the mechanical characterization of elastic arteries 

Claire Morin*, Stéphane Avril 

This article presents an overview of diverse material models used to 

represent the mechanical behavior of arteries and of the inverse problems posed 

by the identification of their constitutive parameters. After a brief introduction 

about the definition of inverse problems and about the general features of arteries, 

the article addresses three main questions involving inverse problems and arterial 

wall characterization: (1) macroscopic identification of the parameters of 

sophisticated constitutive models from traditional uniaxial and biaxial 

experiments; (2) mesoscopic identification of regional variations in the material 

parameters of arteries, tracking the effects of functional adaptation or lesions; (3) 

how constitutive models and inverse problems allow to obtain information on the 

arterial microstructure and how the structural constituents interact in the 

mechanical response. Finally, the article shows that a significant effort has been 

made so far to relate the complex mechanical behavior of arteries to their 

microstructure but a new class of inverse problems has recently appeared. It is 

related to the identification of mechanobiological parameters which are the 

parameters involved in the numerical models of growth and remodeling. 

Keywords: inverse problems, constitutive model, arteries, collagen, elastin. 

Introduction 

Inverse problems posed by the mechanical characterization of materials  

Identification of mechanical properties is crucial for all kinds of materials 

since one wants to develop faithful models of solids and structures, predict their 

mechanical response to a given loading or simply assess their integrity and 
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monitor their health. The mathematical problems posed by the identification of 

material properties are often referred to as inverse problems.  

To define an inverse problem, it is convenient to first define its opposite: a 

forward problem
1
. In mechanics, solving a forward problem means predicting the 

result of a mechanical action onto a solid (displacement, strain, and stress) from 

the knowledge of the material model and boundary conditions. One combines the 

material model and boundary conditions in a boundary-value problem of partial 

differential equations based on the local mechanical equilibrium. On the other 

hand an inverse problem is posed when the result of the mechanical action is 

partly or entirely measured and one wants to employ these measurements to 

determine unknown parameters of the material model, unknown elements of the 

boundary conditions or even sometimes the unknown initial geometry of the solid 

before the mechanical action
2
. 

Inverse problems should not be confused with semi-inverse problems. 

Semi-inverse problems, which are a sub-category of forward problems, have an 

exact analytical solution, whereas the majority of forward problems have only 

approximate solutions that can be computed numerically using for instance the 

finite-element method. Semi-inverse problems occur especially for predicting the 

result of a mechanical action onto solids having simple geometries
3
. When the 

result of the mechanical action is measured on such solids and one wants to 

employ these measurements to determine unknown parameters of the material 

model, the closed-form expressions of the mechanical fields allow a simpler 

identification of the unknown material parameters. This subcategory of inverse 

problems may be named further the semi-forward problems. Semi-forward 

problems occur in a number of traditional mechanical tests, often called statically-

determined tests, where the parameters can be estimated by best-fit determination 

from the data. 

Solving inverse problems implies the definition of a cost function, 

estimating the distance between the model predictions and the measurements. The 

cost function is minimized in the least-squares sense, by means of a Levenberg-

Marquardt or a genetic algorithm, except in the case of semi-forward problems 
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and linear least-squares, for which an explicit solution can be exhibited. In general 

situations the model is solved numerically using a finite-element model updating 

technique (FEMU). In specific situations, when full-field measurements are 

available, an alternative to FEMU is possible: the Virtual Fields Method, which 

has been shown to be more robust and efficient in these situations
4, 5

. 

However, on the contrary to forward problems, a common difficulty of 

inverse problems is their ill-posed character, which means that existence and 

uniqueness of the solution are not always guaranteed
6
. The illposedness may be 

due to a lack of reliable data and/or to an overcomplexity of the model. When 

access to more reliable data and complexity reduction of the model are not 

possible in practice, illposedness may be overcome mathematically by resorting to 

regularization approaches
7
.
 

Specific context of blood vessels 

The inverse problems, including the semi-forward problems, posed by the 

identification of material properties in soft biological tissues are not the simplest 

due to the complex microstructure of soft biological tissues, their large 

deformation, their response variation by sample and by patient, their anisotropy, 

their point-dependent non-linear behavior, and their permanent functional 

adaptation to the environment.  

Determining the mechanical properties of such tissues has nevertheless 

become a field of intense research for the last twenty years since stress analysis in 

the tissues has been shown to be meaningful for diagnosis in a number of medical 

applications as for instance in the context of vascular medicine, indicating the risk 

of rupture of an aneurysm
8 

or the risk of stroke
9
. The present paper is focused 

especially on the mechanical properties of elastic arteries, which are the largest 

arteries of the body located closest to the heart (aorta, carotid arteries etc…).  

Existing experimental studies for inducing a mechanical stimulus on 

arterial tissues and for measuring their response are numerous, though out of the 

scope of this paper. In vitro, many experiments have been developed to 

characterize pieces of artery after collection on animals or human donors; the 

most commonplace is the uniaxial tensile test, the biaxial tensile test, the tension-
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inflation test, the bulge inflation test. The deformation may be measured at a 

single point or as a whole field using an optical technique. In vivo, non-invasive 

stimuli have to be employed; the most used one being the natural blood action on 

the arterial wall (pressure variations). A number of techniques have been 

developed to image the response of arteries to this mechanical action, such as 

Intravascular Ultrasound Imaging (IVUS)
10, 11, 12

, Magnetic Resonance Imaging 

(MRI)
13

, Intravascular Optical Coherence Tomography (OCT)
14

. Some of these 

techniques are available in the current clinical practice and allow an elastography 

mode, which actually means that they allow mapping strains at different stages 

throughout a cardiac cycle.  

In all these situations where some elements of the response of an artery 

subjected to mechanical stimuli are measured, the access to the mechanical 

parameters is never direct and semi-forward or even inverse problems have to be 

posed and solved. The rest of the paper is devoted to a survey of these inverse 

problems in vascular biomechanics, trying to highlight the salient features but also 

the limits of different identification approaches published so far. After a brief 

review of the main characteristics of elastic arteries and of their constitutive 

models, the survey is divided into 3 parts corresponding respectively to 3 major 

objectives that the researchers try to reach in vascular biomechanics and 

simultaneously to 3 different length scales of the tissue: 

1. Focusing on the macroscopic scale, the first part relates to the general 

objective of performing (patient-specific) stress analyses on the blood vessels to 

predict their possible risk of rupture in a context of disease (such as aneurysm, 

atherosclerotic plaque) or their response to the implantation of a device (stent, 

graft). Macroscopic constitutive equations are necessary to reach this objective. 

Arteries are usually modeled by a phenomenological hyperelastic strain energy 

function involving different numbers of parameters depending on the complexity 

of the observed behavior. This topic has been a subject of extensive research 

because of the challenges in identifying parameters that are needed for the 

sophisticated constitutive equations employed
4, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 

29, 30, 31, 32
.  
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2. Looking further at the mesoscopic scale, the second part relates to the 

objective of characterizing the regional variations of mechanical properties, often 

for a comparative qualitative purpose. The inverse problem is posed here by 

considering heterogeneous distributions of material properties at the scale of the 

tissue (for instance considering several different layers in the artery). 

Characterizing these regional variations is particularly useful for medical 

diagnosis (since the presence of stiffened regions may indicate a lesion) but also 

in understanding the progression of diseases and monitoring lesions. 

3. Finally at the microscopic scale, the third part relates to the objective of 

tracking the separate contribution of the different micro-constituents in the global 

mechanical response as subtle changes in the micromechanical distribution of 

stresses and strains may alter the basic activity of cells (expression of particular 

genes, production of particular enzymes and proteins). Due to this permanent 

activity of growth and remodeling, the tissue is never stress-free and 

mechanobiology tries to understand the related governing processes.  

Inverse problems posed by the complexity of the mechanical behavior at the 

macroscopic scale 

Generalities about the biomechanics of elastic arteries 

Elastic arteries are soft biological tissues which can be described in terms 

of their constituents (histological description), of the arrangement of the latter in 

the microstructure (morphological description) and also as a macroscopic 

structure subjected to mechanical loading. In terms of histology, elastic arteries 

are composed of three main types of cells
33, 34

: endothelial cells, smooth muscle 

cells (SMCs), and fibroblasts, embedded in an extracellular matrix made up 

mainly of collagen, elastin (in the form of elastic fibers), and a fluid-like ground 

substance containing among other things proteoglycans. In terms of morphology, 

arteries are usually arranged in three distinct layers
34 

(see Figure 1). The most 

inner layer of the vascular wall, called the tunica intima, is delimited from the 

lumen by the layer of endothelial cells and from the rest of the artery by a 

fenestrated sheet of elastin called the internal elastic lamina. The intermediate 

layer, called the tunica media, is made up by SMCs embedded in an extracellular 
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matrix made of elastin, collagen and the ground substance. These SMCs are 

organized in different concentric layers separated by fenestrated elastin sheets. 

Finally, the outermost layer, called the tunica adventitia, is made of a dense 

network of collagen fibers, mechanically preventing the wall from over-

distension.  

 

Figure 1 : Schematic representation of the arterial wall, showing the three 

different arterial layers. 

Structurally, an elastic artery in vivo is a pre-stretched pipe under an 

internal pressure load, able to stretch in response to each heart pulse and still able 

to undergo finite deformations far beyond the ones induced by the pressure 

variations in the body: while the diameter change between systole and diastole is 

about 10 %
35

, a segment of artery may shrink from 50 % to 80 % of its length 

when it is removed from the body
36, 21, 37

 only due to elastic recoiling.  

The different mechanical and organizational features of the arterial wall 

have been incorporated in diverse phenomenological, macroscopic constitutive 

models. A comprehensive review of the arterial wall constitutive models can be 

found in Kalita and Schaefer
25

. Most of the models focus on the passive behavior 

of arteries (i.e. neglect the mechanical actions of cells) and neglect the viscous 

effects. We here recall the principal characteristics of the arterial wall models. 

Because of the large deformability of elastin, the constitutive models for elastic 

arteries are usually developed within the finite-strain theory and are based on the 

definition of a strain-energy function. Complex coupling between axial and 

circumferential responses have always been observed in in vitro experiments. 

Accounting for that observation, the strain energy function can either be an 
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orthotropic exponential strain energy function
21

 or be defined as a fiber-reinforced 

composite, where each term of the strain energy function accounts for the 

contribution of a specific constituent
23, 38, 32

. In these models, elastin and the 

ground substance are taken into account into the same phase, considered as a neo-

Hookean matrix, and different numbers of collagenous fiber families and SMCs 

are accounted for by the introduction of polynomial or exponential terms in the 

strain energy function. The large amount of fluid makes the tissue be almost 

incompressible
16

. Since the different tissue layers exhibit different mechanical 

behaviors, a layer-specific strain energy function is sometimes introduced
15, 29, 39

.  

 

Figure 2 : Uniaxial tensile stress-strain response of a human aortic sample
17

 

Due to their permanent functional adaptation, residual stresses sit within 

the arterial wall. The presence of residual stresses has been evidenced by the 

observation that the arterial wall opens up in response to a radial cut
40, 41, 42, 43, 44

 

(see Figure 3). However, empirical observations are not sufficient to measure 

residual stresses since they are self-equilibrating and complex inverse problems 

can arise
45

. 

 

Figure 3: Opening of an arterial wall segment due to a radial cut. 
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Inverse problems for characterization of the mechanical properties at the 

macroscopic scale  

In most cases, statically-determined experimental tests are used to 

characterize the arteries, leading to semi-forward (inverse) problems. But as 

already stated in the introduction, due to the complexity of their mechanical 

behavior, the identification of material parameters of a constitutive model is rarely 

direct. Different inverse approaches and best-fit methods exist for their 

identification, depending on the experimental tests that are available for the 

identification whilst it has been shown that the choice of the cost function can 

influence the results
46

.
 

The identification of the parameters of an anisotropic hyperelastic strain 

energy function requires measuring the response of the material to multiaxial 

stress loading for different loading paths. The most appropriate tests for arteries 

are the tension inflation tests which consist in pressure loading the artery at 

different axial stretches. Auricchio et al.
47

 compared the reliability of two 

isotropic phenomenological models and of four structural invariant-based 

constitutive models, commonly used to describe the passive mechanical behavior 

of arteries, to perform best-fit estimations from the curves of tension inflation 

tests. The conclusion is that each domain may be reliable depending on the level 

of local anisotropy in the tissue. 

The identification may appear simpler when using uniaxial tests; however, 

uniaxial tests provide no sensitivity to the mechanical behavior in the other 

directions of the tissue. In that case, most of the parameters have to be bound in 

narrow ranges of values in order to overcome the lack of sensitivity. A good 

example is the study from Masson et al.
28

 who used dynamical intraluminal 

pressure measured by applanation tonometry to identify the 13 parameters of a 

material model. Another elegant contribution introducing the notion of state 

constraints in the minimization problem was performed on a human aorta by 

Stålhand et al.
30

. 

A recent interest concerns the material parameters of the tissue in the 

regime just preceding its rupture
48, 49, 50, 51

. They usually induce a complex 
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identification due to the localized effects of damage preceding rupture but most of 

the experimental approaches dedicated to this problem so far have assumed 

homogeneous strains in order to keep the semi-forwardness of the inverse 

problem. 

Inverse problems posed by the regional variations of materials properties at 

the mesoscopic scale 

As explained in the introduction, elastography is nowadays widely used as 

a tool for medical diagnosis of different arterial pathologies. Some pathologies 

such as atherosclerosis are characterized by a local arterial stiffening. In other 

cases, since the mechanical properties are related to the composition of the tissue, 

their knowledge helps the doctors to assess the risk of rupture, so as to avoid a 

stroke or a heart attack. However, elastography strictly allows the mapping of the 

strain field. Inverse problems have to be solved to determine maps of the 

mechanical parameters. 

In many situations, researchers are only interested in the small 

deformations of arteries occurring in vivo around a mean static pressure, chosen 

as the average reference configuration. The small deformations are then induced 

by the pressure changes in the lumen of the artery between diastole and systole or 

by palpation. In these situations, the mechanical behavior of the artery is 

linearized around the reference configuration in such a way that any stress change 

Δ in the artery may induce a strain change such as: Δ = C
-1

 Δ. Rigorously, the 

stiffness tensor C should be an anisotropic tensor, tangent to the stress-strain 

curve at the reference configuration point, and the equation should only be used 

for small variations of the strains: ||Δ|| < 0.05, for a proper equivalence with the 

constitutive equations that are characterized from the in vitro bench tests. For 

larger strains, a polynomial Taylor series expansion is still possible. In a large 

number of occasions, transverse isotropy is assumed and only the mechanical 

properties of the artery perpendicularly to the main direction of blood flow are 

sought. Since the tissue is almost incompressible, a Poisson’s ratio is commonly 

prescribed with values varying from 0.45 to 0.49 and only an elastic modulus E 
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has to be identified for a complete material characterization. We would name this 

modulus the tangent elastic modulus.  

Many authors have tried to estimate the regional variations of this 

parameter, for instance on different sites along the length of an artery or even 

mapping its distribution across the whole cross section of atherosclerotic plaques 

in the coronary arteries (using OCT or IVUS) or in the carotid arteries (using 

MRI). FEMU methods were specifically developed to solve these inverse 

problems
52

. Nevertheless identifying E is not sufficient to perform a stress 

analysis on the artery. As the loading applied onto the artery may be dynamic, it 

may permit to characterize a viscoelastic model
18

.  

Note that some authors have also extended the problem of identifying a 

tangent elastic modulus in a configuration of the artery different from the average 

in vivo configuration. For instance, some authors have carried out tests in vitro, 

such as indentation
53 

or micropipette aspiration
54

, on pieces of arteries collected 

from human donors or animal models. An inverse problem has to be solved to 

derive the homogeneous or heterogeneous elastic moduli involved in the 

mechanical response to these tests. However, the obtained values cannot be 

compared to the in vivo ones as they correspond to linearization of the stress-

strain response around two different reference configurations (two different stress 

states). The main interest of these tangent elastic moduli in configurations 

different from the in vivo one is to compare different tissues in the same 

configuration or different locations in the same tissue. 

Regional variations of hyperelastic (non-linearized) parameters involved 

in the complete strain energy functions have rarely been characterized. Variations 

of material properties across the arterial wall thickness are commonly reported 

from experiments: independent characterization of the different layers (intima, 

media, and adventitia) shows their different mechanical properties
55

, which 

influence the global response of the artery: Humphrey
34

 indeed reported normal 

and upside-down tension inflation tests on arteries that evidenced their different 

responses. However, only a few authors
15

 have attempted to solve an inverse 

problem where both the media and adventitia have unknown material properties 
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that have to be extracted from the response of the complete artery. The regional 

variations of hyperelastic material parameters along the circumferential and axial 

directions of arteries constitute a new class of inverse problems with a recent 

interest.  

Modeling the arterial wall as a membrane, and taking advantage of the 

isostaticity of a pressurized membrane, it is possible to reconstruct the (possibly 

heterogeneous) pointwise stress distribution, without the assumption of a known 

constitutive behavior
56

. Besides, the strain distribution across the artery can be 

measured by an optical method. It becomes therefore possible to plot pointwise 

stress-strain curves and to identify the material parameters point-wisely in a semi-

forward manner by simple curve fitting. This considerably simplifies the problem, 

avoiding the repeated resolution of finite element models which is required in 

other approaches
57, 58, 27

. 

Such an approach has especially been developed for understanding the 

aneurysm rupture, showing the development of localized damaged zones in the 

tissue prior to its rupture
59

.
 

Inverse problems posed by functional adaptation of the arterial tissue at the 

microscopic scale 

In vascular tissues as in many biological tissues, the physiological 

properties are closely related to the mechanical environment sensed by the tissues. 

Indeed, biological tissues have the faculty thanks to mechanosensitive cells to 

grow and remodel and to adapt their microstructure to new mechanobiological 

demands. It is also generally agreed upon that the development of vascular 

pathologies (for instance aneurysms, thrombus…) is highly linked to the 

remodeling properties of the vascular tissue and to changes in its mechanical 

environment. Among the different constituents of the vascular wall, collagenous 

fibers are regularly renewed, while the only period of elastin synthesis by the 

organism is the perinatal and childhood period, making the elastin degradation be 

an irreversible process. Besides, the mechanical behavior of vascular tissue is 

highly complex: reorganization of the microstructure, such as progressive 

decrimping and reorientation of the elastic and collagenous fibers
60, 61, 62

 (see 



MRS Bulletin Article Template Author Name/Issue Date 

 12 

Figure 4), happens in vascular tissues when subjected to mechanical loading. In 

order to correctly capture this complex behavior, to account for the remodeling 

process, and to predict its effect on the overall mechanical behavior, it is 

necessary to quantify the specific contributions of the mechanically significant 

constituents to the overall mechanical behavior. 

 

Figure 4 : Progressive decrimping of collagen fibers in the adventitia of a 

rabbit carotid artery (adapted from Schrauwen et al.
62

. The same area was 

imaged at different pressure steps from 0 to 140 mm Hg. The rabbit mean 

physiological pressure is 70 mm Hg. 

The following question can therefore be addressed: what are the predictive 

capabilities of the available constitutive models to reliably account for separate 

contributions of the diverse arterial wall constituents on the macroscopic 

mechanical response
63

? 

We here restrict ourselves to the passive behavior of arterial wall tissues; 

we are therefore mainly interested into the two main constituents that contribute 

to the mechanical response of arterial wall tissues, namely collagen and elastin.  

Tracking the contribution of collagen fibers 

The arterial wall owes its main mechanical characteristics, such as the 

progressive stiffening and anisotropy, to collagen fibers and their orientations
39

. 

In most of the available constitutive models
22, 32, 64

, fiber families are 
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characterized by their orientation angles while their progressive stiffening is 

modeled through exponential functions of the stretch. The selection of a 

constitutive behavior implies the choice of a number of collagen fiber families. 

The determination of their orientations can be done twofold: either by histological 

examination of the tissue or by inverse method, searching for the orientation 

angles that best fit the macroscopic behavior of the tissue. The comparison of both 

methods shows that the optimal orientation angles stemming from the inverse 

method are not always consistent with the histological estimations of the fiber 

orientations both in healthy tissues
47

 and in aneurysmal tissues, for which the 

inverse method leads to overestimations of the orientation angles
65

. Even if some 

authors have introduced more complex models including a distribution function of 

orientations
46

, the great majority of models have a maximum of four fiber 

families: one circumferentially
61

, one axially, and two diagonally-oriented fiber 

families. For that matter, histological observations enlighten the difficulty to 

clearly define families of fiber by allocating them a precise orientation angle
47

.  

Modeling the progressive recruitment of collagen fibers is another 

important question that needs to be addressed. In the (ex-vivo) load-free 

configuration, microscopic observations evidence crimped fibers with different 

orientations that the mechanical loading tends to stretch and reorient along the 

principal strain directions
24

 (see also Figure 4). This progressive reorientation 

process is generally named the recruitment of collagen fibers. At high stretches, 

the collagen fibers are perfectly straight and parallel to each other. However, the 

physiological load lies between these two extreme situations and poses the 

question of the collagen fiber engagement under physiological conditions. 

Different experimental studies
60, 66, 67, 68 

showed that only partial engagement of 

the collagen fibers is reached at physiological pressure: only 5-10% of the fibers 

actively participate to the mechanical behavior of vascular tissues at these 

pressures. This progressive recruitment is the physical origin of the non-linear 

character and progressive stiffening of the response of vascular tissues; it is 

generally implicitly accounted for through the introduction of exponential 

functions in the constitutive models
21, 39, 24, 32, 21

, but in some specific models, a 
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probability distribution function for the engagement strain of the fibers has been 

introduced
69

; such a function simplifies the identification of mechanical properties 

related to the collagen and elastic fibers (thanks to variable recruitment stages)  

Tracking the contribution of elastic fibers 

In general, mechanical models only account for the role of elastic fibers 

(mainly made of elastin) through a neo-Hookean isotropic contribution in the 

strain energy function. However, biological studies show the importance of elastic 

fibers in maintaining the shape and the functions of arteries: it is for instance 

known that arteries with degraded elastin are more prone to local enlargements 

such as aneurysms
70

. The following question can therefore be posed: which 

characteristics of the mechanical behavior of elastic fibers can be retrieved from 

existing models and which ones are missing?  

Concerning the mechanical property of elastic fibers, it is generally 

assimilated to the initial tangent elastic modulus of the arterial stress-strain 

response. However, evaluation of the neo-Hookean parameter by means of 

inverse methods and curve fitting algorithm
32

 leads to an elastic modulus for the 

matrix which is far below the elastic modulus measured on isolated elastic 

fibers
71, 20

. This can be explained by at least two phenomena: first, the matrix in 

which the collagenous fibers are embedded is not only made of elastic fibers, but 

also of a ground substance that contributes to the mechanical behavior at low 

stretches
71

; second, progressive unfolding of the elastic fibers has also been 

evidenced
61

, impacting the recruitment of collagen fibers: this elastic fiber 

unfolding occurs before the decrimping of collagenous fibers, which subsequently 

undergo less decrimping, endowing arterial walls with a more compliant response 

to pressurization
72

; this is confirmed by observations on arteries of elderly people: 

their elastin is degraded, and the decrimping of collagenous fibers is more 

pronounced and occurs earlier
73, 74

. The latter observations clearly evidence strong 

interactions between the elastic and the collagenous fibers. This strong interaction 

is not limited to the low-stretch regime, but is also visible at high stretches: 

models tend to simplify the real behavior of arteries and identify the high-stretch 

tangent modulus with the one of collagen fibers. However, experiments on 
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elastase-treated arteries show a larger elastic modulus for these arteries than for 

healthy ones, evidencing the contribution of elastic fibers to the mechanical 

behavior at high stretches
20

.  

It must be however stated that inverse determination of the neo-Hookean 

parameter can be useful for estimation of the quality of elastic fibers, a too low 

elastic modulus being associated with degraded (non-functional) elastin. In 

particular, aneurysmal arteries, whose elastin is known to be degraded
75

, exhibit a 

low initial tangent modulus, as compared to healthy arteries
76

.  The importance to 

consider the contribution of all the components at the microscale and not only the 

one of the collagen is emphasized by the existence of internal stresses in the tissue 

that the biomechanicists sometimes try to identify
73

. This constitutes another class 

of inverse problems for which experimental data are not available yet. For 

instance, if it would be possible to take the collagen fibers out of the tissue and to 

measure the deformation that this would induce, this would permit evaluating 

internal stresses
77

. 

Conclusion 

 

In conclusion, this article showed that the inverse problems posed by the 

mechanical characterization of arteries are numerous and diverse and it would 

represent a gigantesque task to make an exhaustive review of all the existing 

contributions. The more modest purpose of this bulletin was to synthesize the 

main objectives usually motivating such contributions. Three groups were found: 

the first one is to have a set of relevant parameters to perform numerical 

simulations; the second one is to characterize regional variations of material 

properties to track the effects of functional adaptation or lesions; the third one is 

to identify the contribution of micro-constituents on the mechanical response.  

Even if a relevant theory that can satisfactorily explain the mechanical 

behavior of soft tissues on the basis of its internal structure and composition is 

still lacking, a great effort has already been made so far to relate the complex 

mechanical behavior of arteries to their microstructure and this has motivated 

numerous inverse problems. The current perspective is however elsewhere, as the 
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proper calibration of growth and remodeling models represent nowadays a new 

challenge. This is a new class of inverse problems related to the 

mechanobiological characterization of arteries
78, 79 

instead of their purely 

mechanical characterization. 
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Figure Captions 

Figure 1. Schematic representation of the arterial wall, showing the three different 

arterial layers. 

Figure 2. Uniaxial tensile stress-strain response of a human aortic sample
17 

Figure 3. Opening of an arterial wall segment due to a radial cut.
 

Figure 4. Progressive decrimping of collagen fibers in the adventitia of a rabbit 

carotid artery (adapted from Schrauwen et al.
62

. The same area was imaged at 

different pressure steps from 0 to 140 mm Hg. The rabbit mean physiological 

pressure is 70 mm Hg. 
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