Development of a MEBT Design to replace current UNILAC Superlens*

H. Hähnel^{†1}, *U. Ratzinger*¹, *R. Tiede*¹, and *S. Mickat*² ¹IAP, Goethe University, Frankfurt, Germany; ²GSI, Darmstadt, Germany

As part of the UNILAC upgrade, a new MEBT section is proposed [1]. It will provide improved matching to the IH-DTL and therefore a significant reduction in emittance growth and lossless transmission at 20.75 mA U⁴⁺. This way the FAIR requirement of 18 mA U⁴⁺ behind the IH-DTL can easily be reached with the new MEBT. The design comprises of two quadrupole triplet lenses and a two-gap buncher cavity (see Figure 1), providing more flexibility than the existing "Superlens" MEBT [2]. This layout allows to reuse the existing XY-steerer, the vacuum valve and the diagnostics box. It also provides some spare room for additional/redesigned components.

Figure 1: Layout of the proposed MEBT section.

The overall length of the new MEBT is 1.82 m which is 0.4 m longer than the existing MEBT section. The posibility of providing the extra length by moving the IH-DTL is currently being investigated.

At 20.75 mA the simulated losses in the Superlens using the RFQ output distribution after the 2008 upgrade amount to 12 % [1][3]. Losses are caused by insufficient transversal focusing and the limiting aperture of the Superlens.

Figure 2: Output distribution of new MEBT with IH-DTL acceptance as reported in [4].

The new MEBT ensures transversal and longitudinal focusing matched to the IH-DTL input acceptance (Figure 2). By using two quadrupole triplet lenses, the design provides some flexibility to compensate changes in the input distri-

[†] haehnel@iap.uni-frankfurt.de

bution. The gap voltage of the buncher cavity can also be adjusted if necessary to change longitudinal focusing.

Figure 3: Envelopes of new MEBT and IH1 at 20.75 mA.

Table 1.	Prestrinner	output	narameter	comparison
	riesuipper	output	parameter	comparison

	SL MEBT	New MEBT
Total length	1.4 m	1.82 m
Design current	16.5 mA	20.75 mA
Design A/q	65	59.5 (U ⁴⁺)
MEBT-out	for 20.75 mA U^{4+}	
Transmission	87.94 %	100 %
ϵ_{rms} [mm mrad]	x:0.108 y:0.09	x:0.072 y:0.073
$\epsilon_{rms} \left[\frac{keV}{u} \text{ ns} \right]$	0.389	0.358
IH-out		
Transmission	85.7 %	100 %
ϵ_{rms} [mm mrad]	x:0.162 y:0.158	x:0.117 y:0.138
$\epsilon_{rms} \left[\frac{keV}{u} \text{ ns} \right]$	1.279	0.517

A comparison of output parameters of the prestripper section is made in Table 1 showing a reduction of rms emittance growth of 27.8 %, 12.7 % for x-x',y-y' and 59.6 % for the longitudinal plane behind the IH-DTL. Simulations with currents from 10 to 20.75 mA U⁴⁺ show lossless transmission for the MEBT+IH and even low losses at 35 mA U⁴⁺. Upgrading the MEBT section would significantly improve the overall UNILAC efficiency and provide flexibility for high current operation which is required for FAIR.

References

- [1] H. Hähnel, U. Ratzinger, R. Tiede, MOPP062, Proc. LINAC2014
- [2] U. Ratzinger, R. Tiede, MOP31, Proc. LINAC96
- [3] All simulations were performed with LORASR.
- [4] R. Tiede, "HSI IH-DTL Acceptance Studies", Talk at IAP-GSI UNILAC-Upgrade meeting, Frankfurt, January 16th, 2014