
Redesign of the FairRootManager

R. Karabowicz1, M. Al-Turany1, D. Kresan1, and F. Uhlig1

1GSI, Darmstadt, Germany

Introduction

FairRoot is a data simulation and reconstruction frame-
work developed in the Experiment Software group and
used by various experiments for the physics analysis. It
has originally been designed both to read the input data
and to store the output data from/in the root files. The re-
cent requirements of several experiments made it necessary
to develop alternative ways of accessing input data, like the
MBS systems or LMD files.

In the meantime, it became imperative to unify and stan-
darize the different approaches.

Source

In the original design, the central data manager, theFair-
RootManager, reads the data from the input ROOT trees
stored in (multiple) files. The redesignedFairRootMan-
ager accesses the data inputs via specific implementations
of the FairSource. The genericFairSource class provides
abstract functions to access input data. The concrete de-
rived classes include:

• FairMbsSource - for reading data from the MBS event
server;

• FairLmdSource - for reading data from the LMD files;
• FairFileSource - for reading data from the root files, it

is possible to add many files (creaing chains of input
data) or to add friend files (in case if the event data is
spread between different files);

• FairMixedSource - for mixing of input data from the
background file with signal files. Each added signal
requires providing of a value of mixing ratio, which
determines the occurence of signal events in respect
to the background events.

The reorganization allows now easy creation of another,
more experiment-specific, implementations of theFair-
Source, should such be needed.

Manager

With the introduced changes, theFairRootManager
complexity has been greatly reduced and the source file
size scaled down by about55%. The functions that were
responsible for reading the input tree structure or compar-
ing integrity of the trees if more input files were provided,
were moved to theFairFileSource andFairMixedSource.

FairRunAna* fra = new FairRunAna();
fra->SetBackgroundFile(‘‘file_bg.root’’);
fra->SetSignalFile(‘‘file_sg.root’’);
fra->AddTask(TTask* task);
fra->Init();
fra->Run(ev_start,ev_end);

Figure 1: Standard way of adding input files.

FairRunAna* fra = new FairRunAna();
FairSource* source = FairMixedSource(‘‘file_bg.root’’);
source->SetSignalFile(‘‘file_sg.root’’);
fra->SetSource(source);
fra->AddTask(TTask* task);
fra->Init();
fra->Run(ev_start,ev_end);

Figure 2: Adding FairSource after introduced modifica-
tions.

User macros

With the introduced changes the analysis macros, that
steer the reconstruction, will slowly undergo a reorganiza-
tion process. Previously, when only root files were recog-
nized as the input source, the user was setting file names
in the FairRunAna, as presented in Figure 1. Currently,
one has to create an instance of a wanted source and set its
properties, compare Figure 2. Such a source is then given
to theFairRunAna, which passes it to the instance of the
FairRootManager.

It has to be mentioned that to preserve the compatibil-
ity, the previous scenario is still supported, although with a
warning message given to the user about code obsolence.

Summary

The goal of the introduced changes is to unify the recon-
struction running scenario with different sources of input
and to increase the framework modularity.

It has been achieved by introducing an abstract layer
(FairSource) between the input source and the data man-
ager.

The FairRunAna works with different kinds of sources.
The experimantal software developers may now easily im-
plement experiment-specific sources.

INFRASTRUCTURE-IT-05 GSI SCIENTIFIC REPORT 2014

372 DOI:10.15120/GR-2015-1-INFRASTRUCTURE-IT-05


