
DDS: The Dynamic Deployment System

A. Manafov1 and A. Lebedev1

1GSI, Darmstadt, Germany

The Dynamic Deployment System (DDS) [1] is a tool-
set that automates and dramatically simplifies the pro-
cess of deployment of user defined processes with their
dependencies on any resource management system us-
ing a given topology.

DDS is a successor of PoD [2]. Unlike PoD, which auto-
mates PROOF [3] deployment, DDS will handle any kind
of user processes with complex dependencies between pro-
cesses. The system is designed and being implemented
within the new ALFA framework [4].

Concept

A key point of this design is the so called “topology lan-
guage”. DDS is a user oriented system, i.e. definition of
topologies is simple and powerful at the same time. The
basic building block of the system is a task. Namely, a task
is a user defined executable or a shell script, which will
be deployed and executed by DDS on a Resource Manage-
ment System. To describe dependencies between tasks in
a topology we use properties. A property is represented
as a key-value pair, where a value is any string. DDS im-
plements an efficient engine for properties synchronization.
We call it a key-value propagation feature.

Tasks can be grouped into DDS collections and DDS
groups. The difference between collections and groups is
that collections are a signal to DDS topology parser that
tasks of given collections will be executed on the same
physical machine. This is useful if tasks have lots of com-
munication or they want to access the same shared memory.
A set of tasks and task collections can be also grouped into
task groups.

DDS utilizes a plug-in system in order to use different
job submission front-ends. The first and the main plug-in
of the system is an SSH plug-in, which can be used to dy-
namically turn a bunch of machines to user worker nodes.
The SSH plug-in is a perfect tool for a Cloud based solu-
tions.

Status

During 2014 the core and main modules of the DDS have
been developed and the first stable prototype has been re-
leased.

The prototype has been tested on Alice HLT cluster us-
ing 40 computing nodes with 32 processes per node. DDS’s
SSH plugin has been used to successfully distribute and
manage 1281 AliceO2 user tasks (1 sampler, 640 FLP and
640 EPN [5]). Throughout the test, one DDS commander

Figure 1: Illustration of the DDS topology activation.

server has propagated more than 1.5M key-value properties
in less than 30 s. Which is a great performance considering
early stage of the product development.

Development

DDS is being actively developed using modern develop-
ment tools, C++11, and Boost libraries [6]. As the contin-
uous integration framework we use BuildBot [7]. The web
site and DDS’s users manual are based on DocBook [8].
We developed and maintain a unique Git workflow to sim-
plify and secure the development [9].

References

[1] Dynamic Deployment System (DDS), http://dds.gsi.de.

[2] A. Manafov et al, “PROOF on Demand”, IT-07, GSI Scien-
tific Report 2012.

[3] TheParallelROOTFacility(PROOF),
http://root.cern.ch/drupal/content/proof

[4] M. Al-Turany et al., Status of the FairRoot framework, this
report.

[5] A. Rybalchenko et al., Evolution and use cases of FairMQ,
this report.

[6] BOOST C++ Libraries, http://www.boost.org.

[7] Buildbot. The Continuous Integration Framework,
http://www.buildbot.net.

[8] DocBook, http://www.docbook.org.

[9] Git Workflow, https://github.com/AnarManafov/GitWorkflow.

GSI SCIENTIFIC REPORT 2014 INFRASTRUCTURE-IT-04

DOI:10.15120/GR-2015-1-INFRASTRUCTURE-IT-04 371

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by GSI Repository

https://core.ac.uk/display/52604157?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

