
FairMQ application example in CbmRoot

N. Winckler1, M. Al-Turany1, D. Bertini1, R. Karabowicz1, D. Kresan1, A. Lebedev1, A. Manafov1, A.
Rybalchenko1, and F. Uhlig1

1GSI, Darmstadt, Germany

Introduction

The FairMQ package is an asynchronous messag-
ing layer in FairRoot framework aiming to support on-
line/offline data analysis with high data rates[1, 2, 3]. It al-
lows to distribute processes on different nodes (from a lap-
top to an entire homogenous or heterogenous system with
many thousands of cores) and provides the communication
layer between these processes.

In this contribution, we present a simple FairMQ
application example in the context of the CbmRoot
framework[4].

Device topology

The components encapsulating the tasks are called de-
vices and derive from the common base class FairMQDe-
vice. The devices are arranged into topologies, which de-
scribe the data flow between the different deployed pro-
cesses. In this example, the used device topology is shown
in figure1 and consists of the following devices:

• Two data sources (called Sampler) sending mi-
croslices

• One Merger merging microslices into timeslices
• One FileSink receiving and storing data to file

Figure 1: Simple topology involving four processes (2 sam-
plers, 1 merger, 1 FileSink) with the push-pull messaging
pattern.

Sampler, Merger and FileSink

The sampler device is used as data source, i.e. it reads
data from a file and send them to another device. In this
example, the two samplers read from root file theCbmRoot
timeslices, convert the data into STS or MUCH FLESmi-
croslices, and then streamed them to the Merger device.

The merger device collect, synchronize and merge the
FLESmicroslices streamed by the two samplers into FLES
timeslices. Once merged, thetimeslices are streamed to the
FileSink device.

The FileSink device collect the data send by the Merger,
convert them into CbmRoot data format and store the result
into root file.

Summary and outlook

A simple FairMQ application example is available in the
CbmRoot simulation framework. Other process nodes (e.g.
track finder or track reconstruction task) as well as other
messaging pattern (e.g. request/reply, pub/sub) can be eas-
ily added to the device topology. A Dynamic Deployment
System (DDS) under development will ease the topology
generation and deployments[5].

References

[1] D. Klein, “Flexible data transport for the online analysis in a
particle physics experiment”, Bachelor Thesis, TU darmstadt
(2013)

[2] A. Rybalchenko, and M. Al-Turany “Streaming data process-
ing with FairMQ”, GSI Scientific Report 2013-2014

[3] M. Al-Turany et al. “ALFA: A new Framework for ALICE
and FAIR experiments”, GSI Scientific Report 2013-2014

[4] CbmRoot collaboration

[5] A. Manafov, et al. “DDS : A Dynamic Deployment Sytem”,
GSI report 2014-2015

INFRASTRUCTURE-IT-03 GSI SCIENTIFIC REPORT 2014

370 DOI:10.15120/GR-2015-1-INFRASTRUCTURE-IT-03

CORE Metadata, citation and similar papers at core.ac.uk

Provided by GSI Repository

https://core.ac.uk/display/52604156?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

