
Generic and modular design for FairMQ devices

N. Winckler1, M. Al-Turany1, D. Bertini1, R. Karabowicz1, D. Kresan1, A. Lebedev1, A. Manafov1, A.
Rybalchenko1, and F. Uhlig1

1GSI, Darmstadt, Germany

Introduction

The ability to combine application-specific functional-
ity with independently developed library modules from a
variety of sources is a key benefit of long term software
projects maintenance and further development. Two main
paradigms are available in C++ for achieving such a goal,
that is, Object Oriented Programming (OOP) and Generic
Programming (GP).

In OOP, libraries usually enforce that the types must be
derived from a common abstract base class of the library,
providing implementations for a collection of virtual func-
tions. The strength of this paradigm is the dynamic poly-
morphism where types supplied to a module can vary at
runtime. However, module composition is limited since
independently produced modules generally do not agree
on common abstract interfaces from which supplied types
must inherit. On the other hand, the GP paradigm offers
mechanisms for producing modules with clean separation,
open for extension and without imposing the need to intru-
sively inherit from a particular abstract base class. How-
ever, in the current C++ standard (C++11), GP paradigm
only allows static polymorphism, which limits the applica-
tions where dynamic polymorphism is required. This lim-
itation will nevertheless disapear with the introduction of
C++Concept [1, 2] in the next C++ standard.

Generic FairMQ devices

Policy based class design

In this contribution, we present a policy based design [3]
– a design pattern steming from the GP paradigm – for the
FairMQ devices [4, 5]. The pattern usually consists of a
child class template, called a host class, which inherit from
its template parameters, called policy classes. An impor-
tant aspect is that, the relationship between base and de-
rived class are inverted w.r.t. usual OOP, that is, the base
class (host) is the abstract (implicit) interface while thepar-
ent classes (policies) supply an implementation set of spe-
cific behaviours, which will be inherited by the host class at
compile time. The policies are usually split into orthogonal
behaviours, and, for a given policy, there can be an unlim-
ited number of implementations. Moreover the host class
can be library independent. This design pattern is particu-
larly adapted to the devices of the FairMQ library, since the
latter aims to support the process distribution of various ex-
perimental group, each depending on different libraries or
data types.

Figure 1 shows the class diagram of three generic de-
vices, namely a sampler, a processor and a filesink. Each
device inherit from the FairMQDevice abstract class, and
from an input policy, an output policy, and eventually a task
policy. The FairMQDevice class handle the communica-
tion layer. Depending on the device, the input policies can
be a file reader, or a deserialization policy and the output
policy can be a serialization or a storage policy.

Figure 1: Class diagram of a generic processor.

FairRoot Tutorial 7

An application example of these generic devices can
be found in FairRoot/examples/Tutorial7, where different
policies are used.

References

[1] B. Stroustrup, et al. “Runtime Concepts for the C++ Stan-
dard Template Library”, Proceedings of the 23rd ACM sym-
posium on applied computing (SAC), (2008)

[2] M. Marcus, et al. “Runtime Polymorphic Generic Program-
ming — Mixing Objects and Concepts in ConceptC++”, Mul-
tiparadigm Programming 2007: Proceedings of the MPOOL
Workshop at ECOOP’07, (2007)

[3] A. Alexandrescu “Modern C++ Design: Generic Program-
ming and Design Patterns Applied” Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA (2001)

[4] A. Rybalchenko, and M. Al-Turany “Streaming data process-
ing with FairMQ”, GSI Scientific Report (2013)

INFRASTRUCTURE-IT-02 GSI SCIENTIFIC REPORT 2014

368 DOI:10.15120/GR-2015-1-INFRASTRUCTURE-IT-02

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by GSI Repository

https://core.ac.uk/display/52604155?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


[5] M. Al-Turany et al. “ALFA: A new Framework for ALICE
and FAIR experiments”, GSI Scientific Report (2013)

GSI SCIENTIFIC REPORT 2014 INFRASTRUCTURE-IT-02

DOI:10.15120/GR-2015-1-INFRASTRUCTURE-IT-02 369


