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Many models of heavy ion collisions employ relativis-
tic hydrodynamics to describe the system evolution at high
densities. The Cooper-Frye formula [1] is applied in most
of these models to turn the hydrodynamical fields into par-
ticles. However, the number of particles obtained from the
Cooper-Frye formula is not always positive-definite. Phys-
ically negative contributions of the Cooper-Frye formula
are particles that stream backwards into the hydrodynami-
cal region.

We have investigated negative Cooper-Frye contribu-
tions and backscattering using a coarse-grained molecular
dynamics approach. Au+Au collisions Bf,;, = 5-160A4
GeV energies have been simulated using UrQMD [2], and a
hypersurface: of constant Landau rest frame energy den-
sity has been constructed. On this surface we have calcu-
lated two quantities: The ratio of Cooper-Frye negative to
positive contributions(,), which assumes local thermal
equilibrium, and the ratio of UrQMD particles crossikg
inward to crossing. outward (,e,), Which does not as-
sume equilibrium.

We found that at all collision energies, > ryq [3].

We explain this by a deviation of pions in UrQMD simula-
tion from equilibrium. A non-monotonous dependency of
Teq aNdry,e, 0N collision energy was found with a maxi-
mum at 10-20! GeV, maximal-., being around 13% (Fig.

1 a). The size of the negative contributions is a result of
an interplay of several factors: the temperature on the hy-
persurface, the relative velocities between flow and sarfac
and the relative amounts of volume and surface emission.

Both r., andr,., are smaller for hadron sorts with
higher mass (Fig. 1 b) and decrease for peripheral events
(Fig. 1 ¢).
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Figure 1:a)r., andr,., for pions at midrapidity versus collision
energy; by, rapidity distribution for different hadron species; c)
req fOr pions versus collision centrality
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