# Helium ion beam modelling

*M. Krämer*<sup>1</sup>, *E. Scifoni*<sup>1</sup>, *F. Schmitz*<sup>1</sup>, and *M. Durante*<sup>1,2</sup> <sup>1</sup>GSI, Darmstadt, Germany; <sup>2</sup>TU Darmstadt, Germany

## **Cross Sections**

Soft tissue is mainly water, so cross sections for the collisions <sup>4</sup>He+p and <sup>4</sup>He+O are required in order to perform transport calculations for radiotherapy [1]. Dedicated experiments to obtain data over the whole energy range are time consuming, thus we rely on nuclear reaction models. We investigated the semiempirical models of Tripathi [2] and Sihver [3], Figure 1. The gross properties are similar, however, we currently prefer the Tripathi model, giving better agreement with experimental data.

## **Transport Calculation**

One of the most important observables is the attenuation of the primary beam, which is usually easier to measure than pure cross sections. Figure 2 shows the result of our deterministic transport calculation compared with experimental results obtained at HIT [4]. At maximum penetration depth, about 50% of the beam is lost due to nuclear reactions.

## Radiobiology

Although <sup>4</sup>He ions are considered low-LET radiation, their RBE, in particular in the stopping region, is all but negligible. In Figure 3 we show the relevant quantities for a model system (CHO,  $\alpha/\beta$ =8.6Gy, LEM IV) for a typical target depth and a target dose of  $\approx$  3Gy(RBE). RBE rises steeply towards the distal edge and thus cannot be neglected in treatment planning.



Figure 1: Nuclear reaction cross sections.



Figure 2: Primary beam attenuation.



Figure 3: Depth profiles, including dose-mean LET.

#### References

- M. Kraemer, E. Scifoni, C. Waelzlein, M. Durante, "Ion beams in radiotherapy - from tracks to treatment planning" J. Phys.: Conf. Ser., 373 (012017) (2012)
- [2] Tripathi et al., "Accurate universal parameterization of absorption cross sections III–light systems" Nuclear Instruments and Methods in Physics Research Section B, 155/4, p.349-356 (1999)
- [3] L. Sihver and D. Mancusi, Radiation Measurements, "Present status and validation of HIBRAC" 44/1, p.38-46 (2009)
- [4] M. Rovituso et al., "Fragmentation of 120 and 200 MeV/u 4He in water", this report