Insights in the molecular basis of a reduced lymphocyte adhesion to irradiated and stimulated primary endothelial cells *

*N. Erbeldinger*¹, *S. Meyer*², *J. Zimmermann*¹, *T. Dettmering*¹, *B. Bertulat*², *M. Durante*^{1,2}, *F. Rödel*³, *M.C. Cardoso*², and *C. Fournier*¹

¹GSI, Darmstadt, Germany; ²Technische Universität Darmstadt, Darmstadt, Germany; ³Universitätsklinikum Frankfurt, Germany

We reported previously a radiation induced lowered adhesion of immune cells on hybrid endothelial cells (EA.hy.926) as a model of the inner layer of the blood vessel walls [1], which is one possible modification of inflammatory processes in the treatment of chronic inflammatory diseases [2]. Recently, we could further show a relationship between metabolic ROS accumulation and modification of adhesion at low doses in the EA.hy.926 endothelial cell line [3]. We now measured the adhesion of immune cells to primary endothelial cells and assessed NF κ B nuclear translocation as a putative molecular basis implicated in the lowered adhesion.

X-ray irradiation (250 kV, 16 mA) of primary endothelial cells (HMVEC) and adhesion assay to TNF- α treated HMVEC was performed with isolated peripheral blood lymphocytes (PBL) according to [1]. TNF- α induced NF κ B signalling was analysed in parallel by quantification of the nuclear p65 translocation. Figure 1 shows that the adhesion of non-irradiated PBLs to HMVEC is enhanced by inflammatory TNF- α treatment, whereas the adhesion is reduced in the low dose range (0.1–0.5 Gy) 24h after X-ray exposure. In the presence of TNF- α , non-irradiated EC show nuclear translocation of p65 (not shown), but irradiation did not modify this (Figure 2).

Figure 1: X-ray induced reduced adhesion of PBL to stimulated HMVEC under static conditions normalized to non-irradiated HMVEC. The response for non-stimulated HMVEC is shown as a comparison.

Figure 2: Activation of NF κ B signalling via nuclear translocation of p65 in TNF- α stimulated HMVEC 1h after X-ray exposure, normalized to stimulated and non-irradiated HMVEC.

These results confirm that low dose X-ray exposure of primary EC reduces the adhesion of PBL to EC, but rather based on ROS accumulation than on modification of NF κ B nuclear translocation.

References

- [1] Erbeldinger et al., GSI annual report, 2013
- [2] Rödel et al. (2007), IJRB83(6): 357-366.
- [3] Large et al. Radiat Oncol (2014), 9:80

^{*} Financed by by BMBF (GREWIS, 02NUK017A, 02NUK017F, 02NUK017D), DFG (GRK 1657), FOI Bad Gastein.