Lepton spectroscopy at storage rings: from electrons at ESR to positrons at HESR*

P.-M. Hillenbrand^{1,2}, S. Hagmann^{1,3}, F. King³, Yu. A. Litvinov¹, S. Schippers², K. E. Stiebing³, and Th. Stöhlker^{1,4,5}

¹GSI Darmstadt; ²Universität Giessen; ³Universität Frankfurt; ⁴Universität Jena; ⁵Helmholtz-Institut Jena

Electron spectroscopy at ESR

In collisions of heavy highly-charged projectile ions with atomic targets, the energy distribution of the emitted electrons is a characteristic observable for the underlying elementary processes. At the experimental storage ring ESR at GSI, a dedicated magnetic electron spectrometer was built downstream from the gas-jet target, which enabled the measurement of high-energetic electrons emitted in ionatom collisions within a small cone in the forward direction. Using this electron spectrometer in combination with detectors for emitted x rays and charge-exchanged projectiles, the study of the collision system $U^{88+} + N_2$ @ 90 MeV/u revealed three processes resulting in the emission of electrons with a velocity similar to the projectile velocity, i.e., cusp electrons:

(a) The process of **electron loss to continuum** (ELC) corresponds to the ionization of an electron from the projectile into the projectile continuum during the collision with the target,

$$U^{88+} + N_2 \rightarrow U^{89+} + [N_2]^* + e^-.$$

For the ELC the measured spectrum was compared to first-order perturbation theory using fully-relativistic Dirac wavefunctions [1].

(b) The process of **electron capture to continuum** (ECC) corresponds to the capture of a target electron into the projectile continuum, while the excess energy is carried away by the recoil of the generated target ion:

$$U^{88+} + N_2 \rightarrow U^{88+} + [N_2^+]^* + e^-$$

For the ECC the measured spectrum was compared to calculations in the impulse approximation using semirelativistic Sommerfeld-Maue wavefunctions and to calculations the in continuum-distorted-wave approach [2].

(c) The process of **radiative electron capture to continuum** (RECC) corresponds to the capture of a target electron into the projectile continuum, while the excess energy is carried away by a photon:

$$U^{88+} + N_2 \rightarrow U^{88+} + [N_2^+]^* + e^- + \gamma.$$

This latter process can be seen as the high-energy endpoint of bremsstrahlung studied in inverse kinematics. For the RECC the measured spectra were compared to calculations in the impulse approximation using semi-relativistic Sommerfeld-Maue wavefunctions, and to calculations using fully-relativistic Dirac wavefunctions [3].

 * Work supported Helmholtz-CAS Joint Research Group HCJRG-108 and BMBF Contract No. 05P12RFFAH.

Positron spectroscopy at HESR

Based on the experience gained with the magnet electron spectrometer at the ESR, an experimental concept for positron spectroscopy at the high-energy storage ring HESR at FAIR was developed [4]. The high projectile energy of up to 5 GeV/u accessible at HESR facilitates the study of electron-positron pair production processes through coincidence experiments observing the emitted positron and the singly or doubly charge-exchanged projectile. For the example of collisions U^{92+} + Ar two processes have been contrasted in Ref. [4]:

(a) The process of **bound-free pair production** (BFPP) results in the emission of a positron and a singly charge-exchanged projectile:

$$U^{92+} + Ar \rightarrow U^{91+} + Ar^* + e^+$$

Its theoretical description requires a relativistic two-center approach, since the electron-positron pair is generated in the combined Coulomb field of projectile and target nucleus.

(b) The hitherto unobserved process of **negativecontinuum dielectronic recombination** (NCDR) results in the emission of the positron and a doubly chargeexchanged projectile:

$$U^{92+} + Ar \rightarrow U^{90+} + [Ar^+]^* + e^+.$$

Its theoretical description requires a relativistic singlecenter approach, since the electron-positron pair is generated by the energy released in the recombination of a target electron into a bound state of the projectile ion.

Electron-optical simulations for the design of a positron spectrometer at the HESR derived from the electron spectrometer at the ESR were performed and resulted in the application of BMBF Verbundforschung for developing and building such a positron spectrometer.

References

- [1] P.-M. Hillenbrand *et al.*, Electron-loss-to-continuum cusp in $U^{88+} + N_2$ collisions, Phys. Rev. A **90**, 042713 (2014).
- [2] P.-M. Hillenbrand *et al.*, Electron-capture-to-continuum cusp in U⁸⁸⁺ + N₂ collisions, Phys. Rev. A **91**, 022705 (2015).
- [3] P.-M. Hillenbrand *et al.*, Radiative-electron-capture-tocontinuum cusp in U⁸⁸⁺ + N₂ collisions and the high-energy endpoint of electron-nucleus bremsstrahlung, Phys. Rev. A 90, 022707 (2014).
- [4] P.-M. Hillenbrand *et al.*, Experimental concepts of positron spectroscopy at HESR, Phys. Scr., *submitted* (2015).