Spin assignment of the 7.57 MeV state in the unbound nucleus ${ }^{16} \mathrm{Ne}^{*}$

J. Marganiec ${ }^{1,2,3}$, F. Wamers ${ }^{1,2,3}$, T. Aumann ${ }^{1,3}$, L.V. Chulkov ${ }^{1,4}$, B. Jonson ${ }^{5}$, T. Nilsson ${ }^{5}$, H. Simon ${ }^{3}$, and the $R^{3} B$ collaboration
${ }^{1}$ TU Darmstadt, Germany; ${ }^{2}$ EMMI, GSI Darmstadt, Germany; ${ }^{3}$ GSI Darmstadt, Germany; ${ }^{4}$ NRC Kurchatov Institute, Moscow, Russia; ${ }^{5}$ Chalmers Tekniska Högskola, Göteborg, Sweden

Two-proton decay of the unbound nucleus ${ }^{16} \mathrm{Ne}$, produced in one-neutron knock-out from a $500 \mathrm{MeV} / \mathrm{u}{ }^{17} \mathrm{Ne}$ beam, has been studied at GSI. The beam was directed towards carbon ($370 \mathrm{mg} / \mathrm{cm}^{2}$) or polyethylene ($213 \mathrm{mg} / \mathrm{cm}^{2}$) targets. The reaction products were identified by means of position, energy loss, and Time-of-Flight measurements, using the $\mathrm{R}^{3} \mathrm{~B}$-LAND setup. Coincidences between ${ }^{14} \mathrm{O}$ and two protons provided the momentum four vectors, which were transformed into the projectile rest-mass frame, where two different sets of non-relativistic Jacobi coordinates (T - and Y-system) were used in the analysis [1].

The internal kinetic energy (the relative energy) $E_{f p p}$ in the three-body system ${ }^{14} \mathrm{O}+\mathrm{p}+\mathrm{p}$ (see Fig. 1), and the fractional energies in the fragment-proton $\left(\epsilon_{f p}\right)$ and the protonproton ($\epsilon_{p p}$) subsystems were reconstructed. The correlation functions normalized to unity, for the fractional-energy distributions $W\left(\epsilon_{f p}\right)$ and $W\left(\epsilon_{p p}\right)$ and the angular distributions $W\left(\cos \theta_{f p}\right)$ and $W\left(\cos \theta_{p p}\right)$, were constructed and analyzed. The required efficiency and acceptance corrections have been estimated using the Monte Carlo simulations (see Ref. [2] for details).

Figure $1:{ }^{14} \mathrm{O}+\mathrm{p}+\mathrm{p}$ relative energy spectrum.
Correlations between the decay products from the excited state at the resonance energy $7.57(6) \mathrm{MeV}$ are shown in Fig. 2. The two peaks visible in $W\left(\epsilon_{f p}\right)$ and $W\left(\cos \theta_{p p}\right)$ have been associated with transition to the state at $E_{r e l}=$ 2.8 MeV in ${ }^{15} \mathrm{~F}$. The results of the calculations for the assumed initial spin value $I^{\pi}=2^{+}$and channel spin $j=5 / 2$ are shown in Fig. 2 as dashed lines. The physical background contributions are shown in Fig. 2 as dotted lines. The sum of these two contributions (solid lines) perfectly reproduces the experimental data (see Ref. [2] for details).

[^0]

Figure 2: Three-body correlations between the decay products of the $E_{\text {rel }}=7.57 \mathrm{MeV}$.

In this case, the initial 2^{+}state emits a proton from the $d_{5 / 2}$ shell feeding the ${ }^{14} \mathrm{O}+\mathrm{p}$ in a $d_{5 / 2}$ shell configuration in ${ }^{15} \mathrm{~F}$. This 2^{+}state is unstable and emits two protons. Its width is surprisingly narrow. This suggests that its structure can be more complicated than a ${ }^{14} \mathrm{O}+\mathrm{p}+\mathrm{p}$ state. This state is also situated above the four proton emission threshold, what indicates a possible many-body structure. And the ${ }^{12} \mathrm{C}+4 \mathrm{p}$ configuration with four protons in the $(s d)$ shell, could be the cause of such a narrow width of this state [3]. A special case of such a structure could consist of an excited core together with two protons, ${ }^{14} \mathrm{O}\left(2^{+}\right)+2 \mathrm{p}[4]$. The theoretical predictions for the position of the second 2^{+} state in ${ }^{16} \mathrm{Ne}$ are $E^{*}=4.2 \mathrm{MeV}$ [5] or $E^{*}=3.6 \mathrm{MeV}$ [6], both close to the known position of the second 2^{+}state in the mirror nucleus ${ }^{16} \mathrm{C}$ [7]. From this mirror nucleus (the third 2^{+}state of ${ }^{16} \mathrm{C}$ is at $E^{*}=6.11 \mathrm{MeV}$ [8]), the investigated state is assumed to be the third 2^{+}state in ${ }^{16} \mathrm{Ne}$.

References

[1] L.V. Grigorenko et al., Phys. Lett. B 677, 30 (2009)
[2] J. Marganiec et al., Eur. Phys. J. A 51:9 (2015)
[3] H.T. Fortune, R. Sherr, Phys. Rev. C 87, 057308 (2013)
[4] I. Mukha et al., Phys. Rev. C 82, 054315 (2010)
[5] N.K. Timofeyuk, P. Descouvemont, Phys. Rev. C 81, 051301 (2010)
[6] H.T. Fortune, R. Sherr, Phys. Rev. C 82, 027310 (2010)
[7] M. Petri et al., Phys. Rev. C 86, 044329 (2012)
[8] Y. Satou et al., Phys. Lett. B 728, 462 (2014)

[^0]: * Work supported by NAVI, GSI-TU Darmstadt cooperation, HIC for FAIR, EMMI and BMBF. (B.J.) is a Helmholtz International Fellow.

