Spin assignment of the 7.57 MeV state in the unbound nucleus 16 Ne*

J. Marganiec^{1,2,3}, F. Wamers^{1,2,3}, T. Aumann^{1,3}, L.V. Chulkov^{1,4}, B. Jonson⁵, T. Nilsson⁵, H. Simon³, and the R³B collaboration

¹TU Darmstadt, Germany; ²EMMI, GSI Darmstadt, Germany; ³GSI Darmstadt, Germany; ⁴NRC Kurchatov Institute, Moscow, Russia; ⁵Chalmers Tekniska Högskola, Göteborg, Sweden

Two-proton decay of the unbound nucleus 16 Ne, produced in one-neutron knock-out from a 500 MeV/u 17 Ne beam, has been studied at GSI. The beam was directed towards carbon (370 mg/cm²) or polyethylene (213 mg/cm²) targets. The reaction products were identified by means of position, energy loss, and Time-of-Flight measurements, using the R³B-LAND setup. Coincidences between 14 O and two protons provided the momentum four vectors, which were transformed into the projectile rest-mass frame, where two different sets of non-relativistic Jacobi coordinates (*T*- and *Y*-system) were used in the analysis [1].

The internal kinetic energy (the relative energy) E_{fpp} in the three-body system ¹⁴O+p+p (see Fig. 1), and the fractional energies in the fragment-proton (ϵ_{fp}) and the protonproton (ϵ_{pp}) subsystems were reconstructed. The correlation functions normalized to unity, for the fractional-energy distributions $W(\epsilon_{fp})$ and $W(\epsilon_{pp})$ and the angular distributions $W(\cos \theta_{fp})$ and $W(\cos \theta_{pp})$, were constructed and analyzed. The required efficiency and acceptance corrections have been estimated using the Monte Carlo simulations (see Ref. [2] for details).

Figure 1: ¹⁴O+p+p relative energy spectrum.

Correlations between the decay products from the excited state at the resonance energy 7.57(6) MeV are shown in Fig. 2. The two peaks visible in $W(\epsilon_{fp})$ and $W(\cos\theta_{pp})$ have been associated with transition to the state at $E_{rel} = 2.8$ MeV in ¹⁵F. The results of the calculations for the assumed initial spin value $I^{\pi} = 2^+$ and channel spin j = 5/2 are shown in Fig. 2 as dashed lines. The physical background contributions are shown in Fig. 2 as dotted lines. The sum of these two contributions (solid lines) perfectly reproduces the experimental data (see Ref. [2] for details).

Figure 2: Three-body correlations between the decay products of the $E_{rel}=7.57~{\rm MeV}.$

In this case, the initial 2^+ state emits a proton from the $d_{5/2}$ shell feeding the ¹⁴O+p in a $d_{5/2}$ shell configuration in 15 F. This 2^+ state is unstable and emits two protons. Its width is surprisingly narrow. This suggests that its structure can be more complicated than a ¹⁴O+p+p state. This state is also situated above the four proton emission threshold, what indicates a possible many-body structure. And the $^{12}\text{C}+4\text{p}$ configuration with four protons in the (sd) shell, could be the cause of such a narrow width of this state [3]. A special case of such a structure could consist of an excited core together with two protons, ${}^{14}O(2^+)+2p$ [4]. The theoretical predictions for the position of the second 2^+ state in 16 Ne are $E^* = 4.2$ MeV [5] or $E^* = 3.6$ MeV [6], both close to the known position of the second 2^+ state in the mirror nucleus ¹⁶C [7]. From this mirror nucleus (the third 2^+ state of 16 C is at $E^* = 6.11$ MeV [8]), the investigated state is assumed to be the third 2^+ state in 16 Ne.

References

- [1] L.V. Grigorenko et al., Phys. Lett. B 677, 30 (2009)
- [2] J. Marganiec *et al.*, Eur. Phys. J. A **51**:9 (2015)
- [3] H.T. Fortune, R. Sherr, Phys. Rev. C 87, 057308 (2013)
- [4] I. Mukha et al., Phys. Rev. C 82, 054315 (2010)
- [5] N.K. Timofeyuk, P. Descouvemont, Phys. Rev. C 81, 051301 (2010)
- [6] H.T. Fortune, R. Sherr, Phys. Rev. C 82, 027310 (2010)
- [7] M. Petri *et al.*, Phys. Rev. C 86, 044329 (2012)
- [8] Y. Satou et al., Phys. Lett. B 728, 462 (2014)

^{*} Work supported by NAVI, GSI-TU Darmstadt cooperation, HIC for FAIR, EMMI and BMBF. (B.J.) is a Helmholtz International Fellow.