Groundstate properties of the unbound $T_z = 5/2$ nucleus ¹⁵Ne *

F. Wamers^{1,2,3}, J. Marganiec^{2,1,3}, T. Aumann^{2,1}, L. Chulkov^{4,1}, M. Heil¹, B. Jonson⁵, T. Nilsson⁵, R. Plag¹, H. Simon¹, and the R³B Collaboration

¹GSI, Darmstadt; ²Technische Universität, Darmstadt; ³EMMI @ GSI, Darmstadt; ⁴NRC Kurchatov Institute, Moscow; ⁵Chalmers Tekniska Högskola, Göteborg

In this report we present our findings on the properties of the recently observed 15 Ne [1], with a focus on its ground-state structure and the decay mechanism to 13 O.

Fig. 1: Level scheme of 15 Ne and neighbours along its decay path to 13 O [2]. Decay via 14 F is energetically possible.

Fig. 1 shows a level scheme of the unbound ¹⁵Ne, the also unbound ¹⁴F, and the finally bound ¹³O [2]. In order to cast light on the decay mechanism of the ground state of ¹⁵Ne – be it a *diproton*, a *three-body*, or a *sequential* decay via a state in the unbound ¹⁴F – we studied its 3-body energy correlations and compared them to those in ¹⁶Ne, which is known to decay in a *three-body* way [3, 4, 5].

Fig. 2: Fractional relative energy (E_{pp}/E_{fpp}) distributions in the ground states of ^{15,16}Ne [2, 5]. See text for details.

Fig. 2 shows the (E_{pp}/E_{fpp}) fractional relative energy

of the ground states of ¹⁵Ne (filled diamonds), of ¹⁶Ne (open diamonds) and a *three-body* decay calculation for ¹⁶Ne [5] (full red line), and a calculation for *sequential* decay of ¹⁵Ne via the ¹⁴F ground state (black dashed line). The striking similarity to the pattern for ¹⁶Ne, combined with the discrepancy to the *sequential*-decay shape, leads us to conclude that, like in ¹⁶Ne, also the ¹⁵Ne ground state undergoes *three-body* decay.

Furthermore, we used the measured two-proton separation energy of ¹⁵Ne of 2.522(66) MeV, translated into an atomic mass excess of 40.215(69) MeV, to deduce the $(1s_{1/2})^2$ occupation probability of its unbound valenceproton pair in the ground state. We followed the approach of Fortune [6] shown in Fig. 3, using a correlation between the $(1s_{1/2})^2$ value for valence-nucleon pairs in Z = 8,10mirror nuclei and their 2n-2p separation-energy difference in order to predict the ¹⁵Ne ground-state energy. Using our measured value of $S_{2p} = 2.522(66)$ MeV, we have turned the relation around to predict an $(1s_{1/2})^2$ content for the ¹⁵Ne ground state of 63(5) % (red square in Fig. 3).

Fig. 3: Relation of ΔS_{2N} to $P((1s_{1/2})^2)$ in Z = 8,10 mirror-nucleus pairs (based on [6]). See text for details.

References

- [1] F. Wamers et al., GSI Report 2014-1, 136 p. (2014)
- [2] F. Wamers et al., Phys. Rev. Lett. **112**, 132502 (2014)
- [3] J. Marganiec et al., Eur. Phys. J. A 51: 9 (2015)
- [4] I. Mukha et al., Phys. Rev. C 77, 061303 (R) (2008)
- [5] L.V. Grigorenko et al., Phys. Rev. Lett. 88, 042502 (2002)
- [6] H.T. Fortune, Phys. Lett. B 718, 1342 (2013)

^{*} Work supported by EMMI, HIC for FAIR, the GSI-TU Darmstadt cooperation, BMBF, and NAVI. (B. J.) is a Helmholtz International Fellow.