Alpha decay of 227 U and excited levels in 223 Th studied at SHIP*

Z. Kalaninova^{†1,2}, S. Antalic¹, F.P. Heßberger^{3,4}, D. Ackermann³, B. Andel¹, B. Kindler³, M. Laatiaoui³, B. Lommel³, and J. Maurer³

¹Comenius University, Bratislava, Slovakia; ²JINR, Dubna, Russia; ³GSI, Darmstadt, Germany; ⁴HIM, Mainz,

Germany

Alpha decay is a valuable tool to investigate nuclear structure. Analyzing α - γ coincidences, one can localize energy levels in daughter nuclei populated by α decays of parent isotopes. Information of level ordering and placement helps to optimize theoretical nuclear models, which improve our understanding of basic processes in atomic nuclei.

The excited levels in ²²³Th were studied for the first time in an in-beam measurement in Heidelberg (Germany) already more than 20 years ago [1]. Short time after that, also an out-of-beam study was performed in Louvain-la-Neuve (Belgium), where ²²³Th was produced by the α decay of ²²⁷U [2]. Different levels in ²²³Th were populated in each of those studies.

We studied the levels in ²²³Th in an experiment performed at GSI in April 2014. The levels were populated by the α decay of ²²⁷U produced in the fusion-evaporation reaction ²²Ne + ²⁰⁸Pb. The beam energy was 104 MeV in front of the target. The nuclei of interest were separated from other particles by the velocity filter SHIP and implanted into a focal-plane detector arrangement. A 16-strip position-sensitive silicon detector registered α -decay signals and a germanium clover detector placed close behind the silicon detector registered γ rays.

To avoid admixtures of decays of other isotopes in our analysis, we applied strict conditions on parent, daughter and granddaughter decays. We searched for correlated $\alpha 1(^{227}\text{U})-\alpha 2(^{223}\text{Th})-\alpha 3(^{219}\text{Ra})$ chains. We accepted position differences of subsequent decays smaller than 0.4 mm and time windows were set to be 90 ms $< \Delta t(\alpha 1-\alpha 2) < 3$ s and 0.5 ms $< \Delta t(\alpha 2-\alpha 3) < 50$ ms. During the irradiation time of about two days, we collected in total approximately 50000 nuclei of ^{227}U implanted into the silicon detector.

The detection of $\alpha 1-\gamma$ coincidences within a 5- μ s time window (see Fig. 1b) allowed us to associate the α decays of ²²⁷U with the corresponding levels in ²²³Th. Based on the analysis of experimental and theoretical conversion coefficients, we assigned tentative characters to observed γ transitions. Consecutively, the improved decay scheme of ²²⁷U-²²³Th was obtained. As an extension to the previous out-of-beam study [2], we identified a new level at 370 keV in ²²³Th. The weak lines at 396 and 489 keV can also be tentatively assigned to ²²³Th. In order to verify the suggested decay scheme, we performed Monte-Carlo simulations using the toolkit Geant 4 [3]. Fair agreement was achieved between the simulation and experimental data (see Fig. 1a). More details will be given elsewhere [4].

Figure 1: (a) Experimental energy spectrum (black solid line) of $\alpha 1$ decays extracted from the $\alpha 1$ - $\alpha 2$ - $\alpha 3$ correlation search measured in the focal-plane silicon detector. The shaded area represents the Monte-Carlo simulation of the decay of 227 U performed by Geant 4 [3]. A peak at ~ 7010 keV marked by an asterisk does not correspond to an α line of 227 U, but is created by the summing of α -particle and conversion-electron energies. (b) Spectrum of $\alpha 1$ - γ coincidences showing γ rays detected within a time window of 5 μ s after the $\alpha 1$ decays from (a).

References

- [1] M. Dahlinger et al., Nucl. Phys. A 484, 337 (1988)
- [2] T. Hoare et al., J. Phys. G: Nucl. Part. Phys. 17, 145 (1991)
- [3] S. Agostinelli et al., Nucl. Instr. and Meth. A 506, 250 (2003)
- [4] Z. Kalaninova et al., in preparation

^{*} Work supported by the European Community FP7 Capacities, Contract ENSAR No. 262010, the Slovak Research and Development Agency (Contract No. APVV-0105-10) and the Slovak Grant Agency VEGA (Contract No. 1/0576/13).

[†] zdenka.kalaninova@gmail.com